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Abstract—Cloud platforms often execute parallel batch appli-
cations, such as distributed machine learning (ML), that include
numerous synchronization barriers. These barriers, which pre-
vent any task from advancing beyond a specified point until all
tasks have reached that point, significantly degrade application
performance by reducing it to that of the slowest “straggler”
task. To address the problem, researchers have proposed numer-
ous straggler mitigation techniques, including speculatively re-
executing straggler tasks and various relaxations of strict barrier
semantics. While these techniques improve parallel application
performance, they incur a cost in terms of the resources wasted
re-executing tasks or waiting. Importantly, these costs, which are
often implicit in prior work that targets dedicated resources,
become explicit in the cloud, which charges for resources at
fine-grained intervals. In addition, the cost difference between
techniques is exacerbated in cloud platforms, since they charge
substantially less for transient resources that effectively yield a
probabilistic performance across a wide range.

While transient resources’ low list price is attractive, revo-
cations increase the frequency and severity of stragglers, which
decreases parallel job performance and increases overall execu-
tion cost. To better understand the cost of synchronization, we
develop simple analytical models of different straggler mitigation
techniques and compare their cost and performance on on-
demand and transient resources. Our analysis shows that i)
transient servers offer complex tradeoffs compared to on-demand
servers, and can result in higher overall costs despite their
highly discounted price due to their probabilistic performance;
ii) common approaches to straggler mitigation, which is a well-
studied problem, are less effective using transient servers that
cause frequent and severe stragglers; and iii) a recent approach
to flexible synchronization offers the best cost and performance.

I. INTRODUCTION

Public cloud platforms provide users access to an essentially
unlimited number of servers on demand without requiring
a large capital investment. Thus, enterprises are increasingly
leveraging public clouds to run large-scale workloads, often for
distributed data processing, across hundreds-to-thousands of
servers. Since distributed data processing platforms, including
Hadoop [1], Spark [2], Tensorflow [3], and parameter servers
(PSs) [4], simplify running jobs across many resources, they
have become the dominant platforms for leveraging cloud
resources. These platforms partition data processing jobs into
parallel tasks that run concurrently, and, thus, must determine
when to synchronize their output across tasks. Many general
platforms, including Hadoop and Spark, adopt a bulk syn-
chronous processing (BSP) model [5], which defines synchro-
nization barriers that prevent any task from advancing beyond
specified points until all tasks have reached those points.

Unfortunately, synchronization barriers significantly de-
grade parallel application performance by reducing it to that
of the slowest “straggler” task. The original work on MapRe-
duce identified such stragglers, which arise for many reasons,
including hardware failures [6], software configuration er-
rors [7], and resource contention due to background processes,
e.g., garbage collectors or OS daemons [8], [9]. Notably, such
stragglers occur even when parallel tasks run on homogeneous
hardware. While prior work assumes stragglers are rare, having
at least one straggler that degrades job performance is expected
under high degrees of parallelism. As a result, prior work
has developed many techniques to identify and mitigate the
effect of stragglers on performance. For example, the orig-
inal MapReduce work proposed identifying straggler tasks,
speculatively executing backup tasks, and then accepting the
result of whichever task finishes first (and cancelling the other
task). Subsequent work further optimized the policy for when
to spawn backup tasks to minimize running time [6], [10].

While Hadoop and Spark are general data processing plat-
forms, recent frameworks, such as Tensorflow and PSs, focus
specifically on distributed machine learning (ML) jobs, given
their increasing importance. While these platforms must also
address stragglers, distributed ML jobs enable new approaches
beyond speculative execution. Specifically, distributed ML
jobs in some (but not all) cases admit relaxations to strict
barrier semantics without significantly affecting ML accuracy.
These relaxations range from simply executing tasks asyn-
chronously [3], [11], [12] to allowing tasks to proceed past
barriers a bounded amount [4], [13], [14]. Unfortunately, in
some cases, these relaxations can impact the running time
and accuracy of the ML algorithm. For example, since asyn-
chronous processing provides no guarantee of convergence, it
can extend running time indefinitely if the algorithm diverges.
In this case, even though tasks spend less time waiting at each
barrier, their running time and resource usage becomes infinite.

Importantly, while stragglers significantly degrade applica-
tion performance, as indicated above, they also significantly
increase application cost when run in the cloud. Cloud plat-
forms charge users for the time they use a server at fine-
grained intervals, e.g., every second or minute. As a result,
any time tasks spend waiting idle at barriers results in resource
waste that translates into a higher cost. Of course, some of the
techniques for mitigating stragglers also incur additional costs,
e.g., to acquire more cloud resources to execute backup replica
tasks. In general, prior work focuses on dedicated clusters in
data centers and thus does not consider cloud platforms’ fine-



grained costs when evaluating their techniques.
Yet, cost, and not performance, is the dominant metric

when using cloud platforms, as it is nearly always possible
to increase performance by acquiring more cloud resources
for an increased cost, although the relationship may not be
linear. However, optimizing cost tends to differ from opti-
mizing performance because cloud platforms offer servers
under multiple different contract options. In particular, cloud
platforms sell their excess capacity at highly discounted prices
in the form of transient servers [15], which they may revoke
at any time to satisfy new requests for on-demand servers,
which platforms do not revoke. Due to their unreliability,
transient servers often cost up to 90% less than on-demand
servers. While parallel batch jobs are ideal candidates for
running on cheap transient servers, revocations degrade their
usable computational capacity, since applications must either
re-execute work lost at each revocation or incur some overhead
to implement fault-tolerance mechanisms, such as periodic
checkpointing. The higher the revocation rate the lower a
transient server’s capacity for doing useful work, i.e., not
related to re-executing tasks or fault-tolerance overhead [16].

Currently, cloud platforms do not reveal any information
about the revocation characteristics of transient servers [16].
Google Cloud Platform (GCP) and Microsoft Azure charge
a fixed-price per unit time for transient servers [17], [18].
Amazon’s Elastic Compute Cloud (EC2) originally enabled
users to bid on transient servers, called spot instances, such
that they were revoked whenever the spot price exceeded the
bid price [19]. The spot price was then determined based on
supply and demand by conducting a uniform price auction
across the available servers and bids. As a result, the spot price
revealed historical revocation rates to users, and enabled some
control over the tradeoff between revocation rate and cost by
adjusting the bid. However, EC2 recently modified their spot
pricing algorithm to make it more stable, such that it reflects
only the long-term balance of supply and demand [20]. As a
result, EC2 also no longer reveals transient server revocation
characteristics, or allows any control over them.

Thus, transient servers essentially define a new type of
cloud server that yields a probabilistic computational capacity,
dictated by its unknown revocation characteristics, but where
users pay a highly discounted fixed price per unit time. Despite
the discounted price, using a transient server could result in a
higher overall execution cost than using an on-demand server
if it yields a low capacity (due to a high revocation rate), and
thus takes significantly longer to complete a job. For parallel
jobs, transient servers also increase the likelihood of stragglers
compared to prior work, as any revocation results in straggling,
which increases resource waste and further increases overall
cost compared to using on-demand servers. While straggler
mitigation techniques can reduce the cost of stragglers, they
each impose their own cost, making it unclear which technique
is optimal and whether any provide a net cost benefit.

To better understand the design space, we develop simple
analytical models to quantify and compare the expected perfor-
mance and cost of executing parallel jobs using different strag-

gler mitigation techniques on both on-demand and transient
cloud resources. In analyzing these models for a representative
baseline application, we draw a number of conclusions.
Transient Servers offer Complex Tradeoffs. As the degree
of parallelism increases, the performance and cost of stragglers
can make using transient servers more expensive than using
on-demand servers despite their high discount. However, de-
termining whether transient servers provide a net benefit is
not straightforward, as their cost is a complex function of
numerous parameters, including the transient server discount,
degree of parallelism, revocation rate, number of barriers,
network overhead, straggler mitigation technique, etc.
Common Approaches Less Effective. Some common ap-
proaches for mitigating stragglers, such as bounded stale-
ness [4], [13], [14], are ineffective when stragglers are the
expected case, as with transient servers. Other common ap-
proaches, such as spawning backup tasks [6], [7], [10] and
using partial barrier semantics [21], are more effective at
reducing running time and cost but offer different tradeoffs.
Flexible Synchronization Performs Best. We find that a re-
cent approach to Flexible Synchronous Processing (FSP) [22]
offers the maximum speedup per cost (relative to using a single
on-demand server) across all straggler mitigation techniques,
although it presents some challenges, as we discuss.

II. MODEL OVERVIEW

We first provide an overview of our basic model, and then
discuss representative baseline values for its parameters.

A. Basic Model

Table I shows the name and description of our model’s
parameters, including their measurement units and range.

We assume parallel jobs must complete some workload W
that requires executing some number of abstract operations,
which represent a collection of CPU instructions and I/O
operations. Servers execute these operations at a rate s, in
operations per unit time, based on their performance capacity.
We normalize s relative to the capacity of an on-demand
server of a specific type, i.e., with a specific CPU, memory,
and I/O capacity, that experiences no revocations. Thus, on-
demand servers of the specified type complete operations
at a normalized rate of s = 1 operation per unit time.
In contrast, transient servers of the same type, which do
experience revocations, complete operations at a normalized
rate 0 < s < 1. Note that even though these transient servers
have the same resource capacity as the on-demand server, they
must devote some resources to handling revocations, either
by re-executing work lost on revocations or executing fault-
tolerance mechanisms, such as checkpointing. As a result, the
rate at which a transient server can perform useful work is
strictly less than an on-demand server with the same resources.

For transient cloud servers, we model s as a random
variable, since revocation rates are not revealed by cloud
platforms and are thus opaque to users. Ultimately, revocation
rates are a function of the variance in the high-priority fore-
ground workload, i.e., for on-demand servers. Prior analysis of



Name Parameter Description Units Range
Workload W Total workload to execute for job #Operations W ≥ 0
Performance s Normalized computing speed of a cloud server #Operations/time 0 < s ≤ 1
Price p Price of an on-demand cloud server of type i (s = 1) per unit time $/time c > 0
Parallelism k Number of parallel tasks W is evenly distributed across # k > 0
Barriers b Number of synchronization barriers when executing W # b ≥ 0
Network Overhead n Network communication overhead constant per barrier time n ≥ 0
Discount Factor f Discount factor for transient cloud server of type i % 0 ≤ f < 1
Backup Replicas r Number of backup task replicas spawned to mitigate stragglers # r ≥ 0
Staleness Parameter d Scaling factor that determines the work per barrier interval # 1 ≤ p ≤ b
Drop Parameter N Number of slow tasks dropped each barrier # N ≥ 0

Total Time T Total time to execute workload W time T ≥ 0
Total Cost C Total cost to execute workload W $ C ≥ 0

TABLE I
NAME AND DESCRIPTION OF OUR MODEL’S PARAMETERS, INCLUDING THEIR UNITS AND RANGE.

publicly-available cluster traces has shown that this variance
can yield a wide range of revocations rates across different
transient servers [16]. Since realistic revocation characteristics
are unknown, and for simplicity, our model assumes transient
servers yield a uniformly random performance s between 0
and 1 with an average performance of s = 0.5. Prior analysis,
which estimates revocation characteristics from cluster traces
and spot prices (before EC2’s recent change in their pricing
algorithm), suggests this average performance is akin to run-
ning jobs on transient servers and simply re-executing work
lost on a revocation without using fault-tolerance [16], [23].
Note that since a transient server’s performance degradation
derives from unknown revocation characteristics, users cannot
measure its performance capacity s, and thus cannot simply
identify and replace transient servers with low values of s.

As with today’s cloud platforms, our model assumes that
on-demand servers with s = 1 incur a fixed-price p in dollars
per unit time, while transient servers with 0 < s < 1 are
discounted by a factor 0 < f < 1, which results in a
fixed-price of (1 − f) × p. Public cloud platforms currently
discount transient servers up to 90%, or f = 0.9. However,
note that since we assume transient servers yield an average
performance of only s = 0.5, the discount in the expected cost
C to complete a job, when accounting for the performance
overhead of revocations, is actually only 0.5× 0.9 = 45%, as
the jobs must run for longer compared to on-demand servers.

We adopt a simple model for parallel jobs: their total work-
load W is initially divided evenly across b barrier intervals and
k parallel tasks running on separate (on-demand or transient)
servers. This model is consistent with platforms that use
bulk synchronous processing (BSP), including Hadoop, Spark,
and PSs. While some platforms, such as Tensorflow, Dryad,
GraphLab, Naiad, etc., allow users to specify more complex
execution patterns (based on arbitrary graphs), doing so is
complex and users often revert to implementing simple BSP-
style synchronization. Our model also assumes every barrier
incurs some network overhead to communicate its results to
other tasks. We model this overhead per barrier as being linear
in the number of parallel tasks, as suggested in prior work [13],
resulting in a total delay across all barriers of n×b×k, where
n is a constant representing network overhead. We discuss the
remaining model parameters from Table I in the next section
in the context of specific straggler mitigation techniques.

Name Parameter Baseline Value
Workload W 8000
Parallelism k 8
Barriers b 500
Network Overhead n 0.175
Discount Factor f 0.9

TABLE II
REPRESENTATIVE MODEL PARAMETER VALUES FOR BASELINE JOB.

Given our model above, we compute a parallel job’s ex-
pected running time T and cost C to execute a workload W .
The running time is simply the sum of the time for computing
between barriers, including the time any servers spend waiting,
and for communicating at barriers. Thus, using our notation
from Table I, we derive the expected running time as below.

T =
W

s× k
+ (n× b× k) (1)

The first term ( W
s×k ) is the workload (in number of op-

erations) divided by the product of the number of parallel
tasks (k) and the expected performance of each task (s) (in
operations completed per unit time). This expression yields
the job’s expected computation time, assuming its workload
W is evenly divided across k homogeneous servers with
performance s. The second term (n × b × k) represents the
communication delay, as discussed above.

Similarly, we also derive the cost as below using our
parameters from Table I. Here, the cost C to execute W is
simply the product of i) the server discount (1 − f), ii) the
server price p per unit time, iii) the number of servers k used,
such that there is a one-to-one mapping between servers and
tasks, and iv) the expected running time T from above.

C = (1− f)× p× k × T (2)

Note that, since we model s as a random variable with a
uniform distribution, T and C represent expected values and
are not deterministic. In Section III, we modify the expressions
for T and C above when using on-demand and transient
servers under different straggler mitigation techniques.

B. Representative Baseline Parameter Values

Our model above includes many parameters that affect a
parallel job’s completion time and cost. Rather than explore
the entire parameter space, we define representative values for
these parameters to serve as a baseline for comparison. Ta-
ble II shows these representative values. We extract values for
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Fig. 1. Parallel job using BSP on on-demand servers.

workload (W ), degree of parallelism (k), number of barriers
(b), and network overhead (n) from experiments performed in
recent work on stale synchronization for distributed ML [13].
These values are based on i) a distributed implementation of
LDA Topic Modeling with collapsed Gibbs sampling, ii) using
a dataset from the New York Times that includes 100 million
tokens, and iii) executed on multi-core blade servers connected
via 10Gpbs Ethernet, where each server has 8 cores, running
at 2.3-2.5Ghz with 23GB RAM. This representative parallel
job took ∼1700 seconds to complete using 8 parallel tasks
(k = 8), 500 barriers (b = 500), and a network overhead
constant of 0.175 seconds (n = 0.175). This results in a
workload W of 8000 in our model when run on homogeneous
on-demand servers using BSP, assuming no stragglers. As in
[13], the job spends slightly more time computing compared to
communicating at barriers. Finally, we use a baseline discount
factor f of 0.9 based on the discounts for transient servers
offered by Amazon, Google, and Microsoft.

C. Summary

As with any model, ours is not perfect and does not capture
many job and resource characteristics that impact performance
and cost. For example, unlike prior work, we only model
stragglers caused by transient server revocations, and not other
reasons. We assume stragglers due to frequent revocations
dominate any effects from “naturally occurring” stragglers,
which are rare. We also do not model the effect of different
synchronization approaches on algorithmic running time and
correctness. Specifically, we assume our workload W is fixed
regardless of the synchronization approach, which may not
be true for some problems, especially with distributed ML.
Further, our baseline job above defines only a single point in
a large parameter space. As a result, we intend our analysis to
only highlight trends in job performance and cost for different
synchronization approaches as the parameters change with a
focus on scalability, i.e., an increasing degree of parallelism
(k). Finally, we do not intend our model to be predictive, and
thus, in practice, the precise performance and cost for even
our baseline job may differ from our model’s estimate.

III. COMPARING SYNCHRONIZATION MODELS

Given the model from the previous section, we derive the
expected running time T and cost C to execute a parallel job
on on-demand and transient servers using different synchro-
nization models and straggler mitigation techniques.
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Fig. 2. Speedup and cost of executing our representative parallel job using
BSP on on-demand cloud servers as the degree of parallelism increases.

A. BSP on On-demand Servers

The simplest case is to use bulk synchronous processing
(BSP) on on-demand servers, as done by Hadoop, Spark,
and other distributed data processing platforms. Since, in our
model, on-demand servers experience no revocations, they
exhibit no stragglers, and thus we do not employ any straggler
mitigation technique in this case. Figure 1 depicts a parallel
job using BSP on homogeneous on-demand servers, where
each horizontal progress bar is a task running across time on a
different server, and the vertical dotted lines represent barriers.
The W

b terms above the progress bars represent the expected
work done by all tasks over each barrier interval.

In this case, each parallel task arrives at the barrier at pre-
cisely the same time, and thus there is no waiting or resource
waste associated with stragglers. We simplify Equation 1 by
setting s = 1 for on-demand servers, yielding an expected1

running time using BSP on on-demand servers as follows.

T =
W

k
+ (n× b× k) (3)

Similarly, the discount is f = 0 for on-demand servers, as it
only applies to transient servers. Thus, we simplify Equation 2
by removing the (1−f) term, yielding a total cost as follows.

C = p× k × T (4)
Figure 2 then plots the speedup (left y-axis) and cost

(right y-axis) of executing our representative parallel job from
Section II-B as k increases. Here, the speedup and cost is
normalized relative to their values when running the job on a
single on-demand server with no barriers, i.e., s = 1, k = 1,
and b = 0. The graph shows that as we increase k, the
speedup, as with any parallel job, increases up to a point
where the communication delay at each barrier begins to offset
the benefit of using more resources. Even so, parallelization
provides a clear performance advantage up to and beyond
k = 32 with a maximum speedup near 5× at k = 8.

In contrast, the overall execution cost C rises dramatically
as k increases, as the increasing communication delays at
barriers result in wasted time where the parallel job is paying
for computing capacity but not using it. Note that, under
our model, increasing k when using on-demand servers can
never decrease cost: even if there were no communication

1In this case, s is actually deterministic.
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Fig. 3. Parallel job using BSP on transient servers.

delays at barriers, the cost C would remain constant as the
decreased time spent computing would be exactly offset by
more resources being used in parallel over that time. From
the equations above, as k→∞, the cost C is O(k2). Thus,
when using 32 tasks, the job gains a speedup of 2.6× but costs
12.2× more compared to using a single on-demand server.

Figure 2 illustrates how users must consider both perfor-
mance and cost when executing parallel jobs in the cloud.
Since cloud platforms provide users limitless resources, users
can always improve their jobs’ performance by purchasing
more resources, but for an increasingly higher cost.
Result: Increasing the degree of parallelism k when using on-
demand servers with BSP improves performance up to a point,
but at an increasingly high cost that scales super-linearly.

B. BSP on Transient Servers

Based on the high cost above of using BSP with on-demand
servers, transient servers are a potentially attractive option for
executing large-scale parallel batch jobs due to their low price.
However, as discussed in Section II-A, revocations decrease
their usable performance capacity s, which we model as being
uniformly random in the range [0, 1]. Importantly, recall that
under BSP the slowest straggler task to reach a barrier dictates
when all other (faster) tasks can proceed past the barrier. Thus,
while cheaper, transient servers cause stragglers that reduce
performance by increasing waiting time and resource waste.
We must account for this waste and transient servers’ discount
when computing their expected running time and cost.

To do so, we must determine the expected speed of the
slowest server: since we assume transient server performance
s is uniformly distributed, this is equivalent to finding the
expected minimum value when drawing k uniformly random
numbers in the range [0, 1]. To determine this value, we note
that for any value of k, given our assumption, the expected
performance s across all of the k servers should be uniformly
distributed. As a result, the expected performance for the
fastest of k servers should be s = k

1+k and for the slowest
server should be s = 1

1+k . Since the expected performance
of all transient servers is dictated by the performance of
the slowest expected server, we can reduce Equation 1 for
expected overall running time for a parallel job under transient
servers to the following, where we simply substitute s with
1

1+k . The cost C remains the same as in Equation 2.

T =
W (1 + k)

k
+ (n× b× k) (5)

 0

 0.25

 0.5

 0.75

 1

1 8 16 24 32
 0

 1

 2

 3

 4

 5

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
, 
k
=

1
)

C
o
s
t 

(1
X

 o
n
-d

e
m

a
n
d
, 

k
=

1
)

Degree of Parallelism (k)

Speedup Cost

Fig. 4. Speedup and cost of executing our representative parallel job using
BSP on transient cloud servers as the degree of parallelism increases.

Figure 3 illustrates the expected performance s for each
transient server when k = 4 under our model. The figure
shows that, under our model, some transient servers will yield
better expected performance than others due to experiencing
fewer revocations, such that the overall performance and cost
is dictated by the slowest server, and where faster servers waste
resources by waiting at barriers. Here, the progress bar’s width
represents each task’s expected performance s,2 and the area
of the progress bar represents total work, such that within each
barrier interval, the area of each progress bar is equal.

Similar to Figure 2, Figure 4 plots the speedup (left y-
axis) and cost (right y-axis) of executing our representative
parallel job on transient servers as k increases. The graph
shows that a single transient server incurs an expected speedup
of 0.5× (or equivalently a slowdown of 2×), since it runs
at half the expected speed of an on-demand server. As k
increases, similar to above, expected performance increases
up to a point where communication delays offset the benefit
of adding more servers. However, based on Equation 5, as
k → ∞, the expected speedup with transient servers can
never exceed that of using a single on-demand server with
s = 1. However, despite their low performance, due to their
90% discount, transient servers offer a lower overall cost than
using a single on-demand server for up to k = 8.
Result: Increasing the degree of parallelism k when using
transient servers with BSP improves cost up to a point (based
on their discount), but incurs an increasingly high perfor-
mance penalty due to their lower and non-uniform expected
performance, which diminishes their cost advantage.

C. BSP on Transient Servers with Backup Replica Tasks

As mentioned in Section I, prior work proposes handling
stragglers by identifying them, submitting a backup replica
task for them, and then accepting the result of whichever task
finishes first (and cancelling the other task) [6], [7], [10].
We model this approach by assuming that we can always
immediately identify the slowest server(s) and submit backup
replica tasks for them. While this assumption is not realistic,
since we cannot assess transient server performance due to
their unknown revocation rates, it serves as an upper bound
on the performance and cost advantage of using backup tasks.

2In all figures, we denote performance using E[s] to emphasize that
transient server performance is an expected value, and not deterministic.
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Fig. 5. Parallel job using BSP on transient servers with backup replica tasks
where k = 4 and r = 1.

Figure 5 illustrates a parallel job using BSP on transient
servers with backup tasks, where our degree of parallelism
k = 4 and the number of replicas r = 1. The red X represents
that the replica task is cancelled once one of the replicas
reaches the barrier. Note that the other replica is cancelled
in the second barrier interval to illustrate that performance of
transient servers is probabilistic and can change over time. As
shown, the replica effectively increases the expected speed of
the slowest task from s = 0.17 to s = 0.33, by allowing
us to discard the slowest task, but at an additional cost for
the replica. Thus, the expected performance s of the slowest
task is a function of both the degree of parallelism k and the
number of replicas r, as shown below.

s =
1 + r

1 + k + r
(6)

To derive the expected running time for this approach, we
substitute s above into Equation 1, which yields the following.

T =
W (1 + r + k)

k(1 + r)
+ (n× b× k) (7)

In addition, we must also consider the number of replicas
when deriving the overall cost C by multiplying by (k + r)
servers rather than the k servers in Equation 4, as shown below.

C = (1− f)× c× T × (k + r) (8)

Figure 6 then plots the speedup (top) and cost (bottom) of
executing our parallel job on transient servers with different
numbers of replicas as k increases. Note that r = 0 repre-
sents using BSP on transient servers with no replicas and is
equivalent to Figure 4’s speedup and cost. The graph shows
that spawning backup replica tasks improves both speedup and
cost relative to not using replicas. In addition, unlike with no
replicas, backup replica tasks enable the speedup to exceed
1×. However, replicas introduce some interesting tradeoffs. As
expected, using more replicas always increases the speedup,
as shown in the top figure, but the number of replicas that
minimizes the cost is unclear, as r = 4 replicas is cheaper than
both r = 1 replica and the extreme case of r = k replicas.
Overall, using replicas widens the values of k that yield both
a speedup and cost advantage compared to not using replicas.
Result: Increasing the degree of parallelism k when using
transient servers with BSP and backup task replicas strictly
improves the speedup and cost compared to not using replicas,
and enables speedups greater than 1.
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Fig. 6. The speedup (top) and cost (bottom) of executing our representative
parallel job with different numbers of backup replica tasks using BSP on
transient cloud servers as the degree of parallelism increases.

D. Bounded Staleness on Transient Servers

Another approach for mitigating the impact of stragglers
is to enable threads to perform a bounded amount of work
past each barrier [14], [13], [4]. This approach reduces the
time that fast tasks wait for slow ones, and can also reduce
communication costs, as it effectively reduces the number of
“real” barriers. The tradeoff is that, for distributed ML in
particular, some tasks may access “stale” global parameter
values that do not reflect all tasks’ updates, which may impact
a job’s algorithmic convergence time and accuracy. As stated
in Section II, our model does not capture these algorithmic
tradeoffs, which can affect running time and cost.

There are many variants of this general approach with
slight differences in the context of distributed ML, includ-
ing Arbitrarily-sized BSP (A-BSP) [14], stale synchronous
processing (SSP) [13], and the bounded delay model [4].
However, as we discuss, in the context of our simplified
model, these variants are equivalent. We model this approach
by simply introducing a staleness parameter d, similar to the
one in [13], that reduces the number of barriers by a factor
d. As a result, the expected running time T is the same as in
Equation 5 but substituting b

d for b, as shown below. The cost
C is the same as Equation 2, but includes the T below.

T =
W (1 + k)

k
+ (n× b

d
× k) (9)

Figure 7 illustrates bounded staleness: typically, the barriers
would be defined by when the slowest task, in this case
D, completes its work, indicated by the vertical line in D’s
progress bar. However, with bounded staleness, the other tasks
may perform a bounded amount of work past the barrier, which
has the effect of making the effective barrier intervals longer.
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Fig. 7. Parallel job using bounded staleness on transient servers.
Figure 8 shows the speedup (top) and cost (bottom) as the

degree of parallelism changes under bounded staleness with
different staleness parameters d. As expected, increasing the
staleness parameter increases the speedup and decreases the
cost by reducing the communication delays. However, even for
the maximum value of d = 500, resulting in a single barrier,
there is never a speedup compared to using a single on-demand
server, and the cost becomes higher once k > 8. Bounded
staleness is also worse in terms of both speedup and cost when
compared to using backup replica tasks.

Bounded staleness is really only effective at mitigating the
impact of stragglers that are rare and temporary. In these
scenarios, the expected case is similar to using BSP with on-
demand servers. Bounded staleness enables tasks to reduce (or
eliminate) any waiting and waste that might occur due to a few
temporary stragglers. In contrast, when analyzing our model
of transient servers, stragglers are the expected case and thus
the fast tasks always must eventually wait for the stragglers
after proceeding a bounded amount past a barrier. In this
case, bounded staleness provides little benefit beyond reducing
communication delays related to the number of barriers, which
are not dominant at values of k ≤ 32 in the graph.
Result: Increasing the degree of parallelism k when using
transient servers with BSP under bounded staleness is worse
in terms of speedup and cost than using backup replica tasks.

E. Partial Barriers on Transient Servers

The previous approaches extend the BSP model to mitigate
stragglers. Prior work has also proposed “looser” synchroniza-
tion models that relax the strict barrier semantics of BSP [21].
As one example, partial barriers mitigates stragglers by
releasing the barrier once some number of tasks have reached
it, and then cancels (or drops) the other tasks and re-distributes
their work across all the servers. While prior work dynamically
determines this release point based on the arrival rate of tasks
to barriers, our model simply defines a drop parameter N , such
that we release the barrier once k −N tasks have reached it.

While such partial barriers are not applicable to all parallel
jobs, they are applicable to distributed ML, as well as other ex-
amples cited in prior work [21]. Unlike with prior approaches,
modeling partial barriers requires us to shift the cancelled work
of slow tasks to the next barrier interval. Thus, the amount of
work assigned to tasks per barrier interval increases as the
job progresses. Our model redistributes this cancelled work
equally across all servers in the next barrier interval. This
results in work from slow tasks being shifted to faster servers.
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Fig. 8. The speedup (top) and cost (bottom) of executing our representative
parallel job with different staleness parameters d under bounded staleness on
transient cloud servers as the degree of parallelism increases.

We derive the expected running time T to complete a
parallel job when using partial barriers as below.

T =
W (1 + k)

b× k × (1 +N)
× [

b∑
i=2

[b− (i− 1)](
N

k
)i−2]+

W (1 + k)

b× k
× [

b∑
i=1

(
N

k
)i−1] + (n× b× k) (10)

While we omit a full explanation due to space limitations,
the first additive (top) term of this equation is similar to
Equation 7 for the expected time when using backup replica
tasks. Essentially, by dropping slow tasks, the overall speed
becomes a function of the slowest non-dropped task, which is
dictated by N (as opposed to r in Equation 7). However, unlike
with backup replicas, we must account for the dropped work,
which gets added to the work done next barrier interval and
is equally distributed across all servers. The summation in the
first term is the sum of the expected work that gets shifted to
each barrier interval. The second additive term represents the
expected running time required to finish the job after the final
barrier, which is dictated by the speed of the slowest server,
as we do not permit slow tasks to be dropped after the final
barrier. This is why there is no N in the second additive term.
The last term is the same communication delay as before.

The expected cost C is simply (1 − f) × p × T × k as in
the basic model, as this approach, unlike with replicas, uses no
additional servers. Figure 9 illustrates this approach for k = 4,
where the slowest task is dropped at the first barrier and its
work is shifted to the next interval, as indicated by the red term
added to the work that interval. In this case, the additional
work shifted is W/4b since this was the work assigned to
D in the first interval. The figure shows a different task being
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Fig. 9. Parallel job using partial barriers on transient servers.

cancelled in the second barrier interval to emphasize that these
are expected speeds, and the actual speed of a transient server
is probabilistic and can change (based on its revocations).
Thus, the “slow” server may differ each interval.

Figure 10 shows the speedup (top) and cost (bottom) of
using partial barriers on transient servers for different values
of N . N defines a tradeoff such that higher values increase the
speed of the “slowest” server that reaches the barrier before
it is released, but it requires cancelling and re-executing more
work in the next barrier interval, which increases resource
waste. In this case, the extreme points (N = 0 and N = k−1)
result in nearly the same speedup and cost, while setting
N = 1 improves both the speedup and cost. As shown,
N = k/2 results in the optimal speedup and cost, which are
comparable to the speedup and cost when using the optimal
number of backup replica tasks (see Figure 6). Since N = 0
represents using BSP on transient servers, partial barriers
offers a clear advantage in terms of speedup and cost, similar
to using backup replica tasks.

Compared to using backup replica tasks, partial barriers
offer a slightly lower maximum speedup (∼2.5× versus
∼3.5×) for a marginally lower cost (∼0.75× versus ∼1×).
As we discuss later, using backup replica tasks offers a better
speedup/cost tradeoff at low values of k, while partial barriers
is better at higher values of k. However, one advantage of
partial barriers over using backup replica tasks is that the latter
is speculative, and requires jobs to first identify slow tasks,
while the former is not. Our model in Section III-C assumes
an ideal case where jobs can immediately identify slow tasks
and replicate them. Thus, in practice, the speedup and cost
of using replicas is likely to be worse than in our idealized
model. However, one disadvantage of partial barriers is that it
may require algorithmic and implementation changes, since it
alters the synchronization model.
Result: Increasing the degree of parallelism k when using
transient servers with partial barriers strictly improves the
speedup and cost compared to BSP, and enables speedups
greater than 1. The approach has a comparable speedup and
cost as using backup replica tasks.

F. Flexible Synchronization on Transient Servers

Recent work has introduced a flexible synchronous pro-
cessing model [22]. FSP proposes a synchronization model
that initiates synchronization barriers dynamically based on
the progress of the tasks. Thus, if it identifies stragglers,
FSP can dynamically initiate a synchronization barrier, and
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Fig. 10. The speedup (top) and cost (bottom) of executing our representative
parallel job using partial barriers for different numbers of dropped slow tasks
N as the degree of parallelism increases.

allow the fast tasks to continue execution. We model FSP
similar to partial barriers, but where jobs do not have to
re-execute the work of “dropped” tasks at each barrier. In
this case, once k − N tasks have reached a barrier, the job
initiates synchronization among all k tasks, allowing all tasks
to proceed past the barrier. The remaining work of these slow
tasks is then re-distributed across all the servers. We note that
the original FSP model does not redistribute work, since it
targets “naturally occurring” stragglers that are temporary and
rare. Since stragglers due to transient servers are expected and
frequent, we must distribute each interval to gain any speedup.
Thus, using FSP in practice on transient servers would require
some changes. As with partial barriers, prior work on FSP uses
a more sophisticated approach that dynamically determines
barrier points by monitoring task progress.

Figure 11 illustrates using FSP on transient servers with
N = 1. The figure is the same as with partial barriers
(Figure 9) except that the additional work shifted to the next
barrier interval is lower, since not all the work has to be
redone. In both cases, the expected case is that half the work
assigned to the N slowest servers is completed. Thus, the
expected running time below is equivalent to that of partial
barriers (from Equation 10), except that FSP only has to
shift and re-distribute the remaining half of the work to be
completed in the next barrier interval. This is the reason for
the additional 2 in the denominator compared to Equation 10.

T =
W (1 + k)

b× k × (1 +N)
× [

b∑
i=2

[b− (i− 1)](
N

2k
)i−2]+

W (1 + k)

b× k
× [

b∑
i=1

(
N

2k
)i−1] + (n× b× k) (11)
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Fig. 11. Parallel job using FSP on transient servers.

Figure 12 shows the speedup (top) and cost (bottom) of
using FSP on transient servers for different values of N . Of
course, FSP is strictly better than partial barriers because it is
equivalent, except that it does not waste resources re-executing
work. In addition, FSP offers a maximum speedup near that of
using backup replica tasks, but for a lower cost (see Figure 5).

While FSP offers the best performance and cost, it does
pose some challenges. In particular, FSP was developed in
the context of distributed ML, and, as with bounded stale-
ness and partial barriers, may impact algorithmic convergence
time and accuracy, which we do not model. In addition, as
with partial barriers, FSP is a new synchronization model
that likely requires algorithmic and implementation changes.
Prior work has only applied FSP to specific problems, e.g.,
Expectation-Maximization (EM) [22] and Stochastic Gradient
Descent [24]. As a result, FSP’s generality is not yet clear.
Result: Increasing the degree of parallelism k when using
transient servers with FSP yields the best speedup and cost
among the straggler mitigation techniques we model.

G. Summary

Our analysis shows that users must jointly consider both
speedup and cost when deciding whether and how to use tran-
sient servers for parallel jobs. While different users may value
speedup and cost differently, Figure 13 plots the speedup/cost
ratio for all of the straggler mitigation techniques above as the
degree of parallelism k increases Since a large speedup and
a low cost are preferable, higher values of the speedup/cost
ratio indicate a better “bang for your buck” for parallel jobs.
Interestingly, using BSP with on-demand servers is not the
worst option, as using BSP with transient servers and no
replicas has a lower speedup/cost for all but the smallest values
of k, despite their high discount. Using partial barriers and
using backup replica tasks offer a speedup/cost ratio in the
middle. In this case, we use parameter values of N = k/2 and
r = k, respectively, which yield the maximum speedup/cost
ratio for these techniques. At lower values of k, backup replica
tasks offer a higher speedup/cost ratio, while at larger values
of k ≥ 16 partial barriers yield a higher ratio.

As mentioned above, using FSP with transient servers yields
the highest speed/cost ratio across all values of k. In addition,
since the use of backup replica tasks is not mutually exclusive
to using FSP, we were interested in whether combining these
techniques offered any advantage. We omit the equation for
T for this hybrid technique, as it is complex, but show the
result in Figure 14 for different combinations of N and r. In
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Fig. 12. The speedup (top) and cost (bottom) of executing our representative
parallel job using flexible synchronous processing (FSP) for different numbers
of dropped slow tasks N as the degree of parallelism increases.

all cases, we set N = k− 1, since it is optimal, as there is no
reason for any task to ever wait with FSP. The result shows
that using backup replicas in combination with FSP does not
offer an advantage in overall speedup/cost. Replicas only add
an additional cost, but offer no advantage in terms of running
time, since FSP need not wait on stragglers anyway.

IV. DISCUSSION AND FUTURE WORK

Transient servers increase the severity and frequency of
stragglers, making them expected rather than rare, as implicitly
assumed in prior work [10], [6], [7]. Our analysis also differs
from prior work on straggler mitigation in its focus on cost
as a primary metric, in addition to performance. We view our
model and analysis as only a starting point in understanding
how to optimize the use of transient servers for parallel
jobs, such as distributed ML. Our model is imperfect and
does not account for the effect on the total work W (and
its accuracy) from using different synchronization models,
particularly for distributed ML. This effect is important, since
without it, the optimal approach is to simply run parallel
jobs asynchronously, which some frameworks do [3], [11].
However, this effect is difficult to analytically model because
it varies, in part, based on the characteristics of a job’s input
data and initial conditions, as well as other algorithm-specific
parameters, such as the mini-batch size. Instead, such effects
must be evaluated empirically as done in prior work [4], [13],
[14]. While we intend our model to only highlight high-level
differences between straggler mitigation techniques, as part
of future work, we plan to refine and validate our model via
experimentation on real cloud platforms.

Our analysis is sensitive to the simple uniformly random
model of transient server performance s we use. A different
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Fig. 13. The speedup/cost ratio for executing our baseline parallel job for
different straggler mitigation techniques on on-demand and transient servers.

distribution of s may change our findings. For example, an
average s higher than 0.5, which would result from lower
revocation rates, would increase the benefit of using transient
servers for all techniques relative to using a single on-demand
server. Similarly, a heavy-tailed distribution of s with a higher
likelihood of selecting a high performing transient server may
yield lower expected costs, especially for small values of k.
Since deriving simple closed-form equations for running time
T under arbitrary distributions may not be possible, we plan
to compare approaches empirically via randomized simulation.
Similar randomized simulations could also be applied to dis-
tributions derived from real revocation data, if cloud platforms
were to release such data. Even so, transient server revocation
characteristics may vary across different cloud platforms and
data centers, and yield different tradeoffs. Note that, as more
users optimize for and use transient servers, the revocation
rates may also change due to second order effects.

Most prior work on optimizing batch jobs for transient
servers has focused on configuring fault-tolerance techniques,
such as replication and checkpointing, to minimize the impact
of revocations on performance [23], [25], [26], [27], [28]. Our
model abstracts this problem away by only considering the
normalized speed s of a transient server after accounting for
any fault-tolerance overhead and re-execution of lost work,
which is strictly less than that of an on-demand server with an
equivalent resource capacity. As our work shows, accounting
for both a transient server’s price discount f and its lower
effective speed s when determining its overall cost savings to
execute some workload is important. Since different transient
servers may experience revocations at different times, clus-
ters of transient servers are highly heterogeneous, exhibiting
non-uniform performance. Thus, optimizing parallel jobs for
transient servers is related to optimizing them for highly
heterogeneous resources, which is a well-studied topic [10],
[29]. The primary difference in the cloud is accounting for
transient servers’ probabilistic speed and high cost discount.

Our work also highlights some of the disadvantages of
EC2’s recent change in their spot pricing algorithm for tran-
sient servers [20]. Before this change, users that bid the same
price on the same type of spot instances could guarantee they
had uniform revocation characteristics, and thus a uniform
normalized speed s, as revocations only occurred when the
spot price exceeded the bid price. The new spot pricing algo-
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Fig. 14. The speedup/cost ratio for executing our baseline parallel job for a
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rithm does not require users to bid, and decouples revocations
from the spot price, as the spot price only changes based
on long-term changes in supply and demand. EC2 made this
change to reduce revocation rates, as users out-bidding other
users resulted in excessive revocations that reduced transient
server performance. However, while the new approach reduced
revocations, and increased overall transient server perfor-
mance, it also eliminated useful knobs for users to control
revocation characteristics that were important in maximizing
performance. Thus, determining the best model under which
to offer transient servers remains an open question.

Our model is analytical and focuses on a parallel job
with the simplest possible structure. As part of future work,
we plan to extend the model to more complex and realistic
parallel jobs. For example, prior work [26] has shown that
some parallel tasks are more likely to cause cascading re-
computations, and so placing these tasks on more reliable on-
demand servers is important.

V. CONCLUSIONS

We analyze the speedup and cost of executing parallel
batch jobs, such as distributed ML jobs, on highly discounted
transient cloud resources using many different straggler mit-
igation techniques. We do so in the context of a simple
probabilistic model for transient server performance. Using
this model, we derive the expected running time and cost
for straggler mitigation techniques proposed in prior work
for a simple parallel job with synchronization barriers. A
key difference between our work and prior work on straggler
mitigation is our focus on cost, rather than performance, on
cloud platforms. Our analysis shows that i) transient servers
offer complex tradeoffs compared to using on-demand servers,
and can result in higher overall costs despite their highly
discounted price due to their probabilistic performance; ii)
common approaches to straggler mitigation, which is a well-
studied problem, are less effective using transient servers that
cause frequent and severe stragglers; and iii) a recent approach
to flexible synchronization [22], [24] offers the best speedup
per cost across all the techniques we study.
Acknowledgements. This work is funded by NSF grants
#1802523, #1815412, #1763834, #1836752, and #1405826, as
well as DOD ARL grant W911NF-17-2-019 and the Amazon
AWS Cloud Credits for Research program.



REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in MSST, May 2010.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
OSDI, April 2012.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale
machine learning,” in OSDI, November 2016.

[4] M. Li, D. Andersen, J. W. Park, A. Smola, A. Ahmed, V. Josifovski,
J. Long, E. Shekita, and B.-Y. Su, “Scaling Distributed Machine Learn-
ing with the Parameter Server,” in OSDI, November 2014.

[5] L. Valiant, “A Bridging Model for Parallel Computation,” CACM,
vol. 33, no. 8, August 1990.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the Outliers in Map-Reduce Clusters
using Mantri,” in OSDI, December 2010.

[7] J. Dean and S. Ghemawatt, “MapReduce: Simplified Data Processing
on Large Clusters,” in OSDI, December 2004.

[8] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on 8,192
Processors of ASCI Q,” in SC, November 2003.

[9] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The Influence of
Operating Systems on the Performance of Collective Operations at
Extreme Scale,” in Cluster Computing, September 2006.

[10] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica, “Improving
MapReduce Performance in Heterogeneous Environments,” in OSDI,
December 2008.

[11] F. Niu, B. Recht, C. Re, and S. Wright, “HOGWILD!: A Lock-
Free Approach to Parallelizing Stochastic Gradient Descent,” in NIPS,
December 2011.

[12] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
Adam: Building an Efficient and Scalable Deep Learning Training
System,” in OSDI, November 2014.

[13] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More Effective Distributed ML via a
Stale Synchronous Parallel Parameter Server,” in NIPS, ser. NIPS, 2013.

[14] H. Cui, J. Cipar, Q. Ho, J. Kim, S. Lee, A. Kumar, J. Wei, W. Dai,
G. Ganger, P. Gibbons, G. Gibson, and E. Xing, “Exploiting Bounded
Staleness to Speed Up Big Data Analytics,” in USENIX ATC, June 2014.

[15] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan, “Here
Today, Gone Tomorrow: Exploiting Transient Servers in Data Centers,”
IEEE Internet Computing, vol. 18, no. 4, July 2014.

[16] S. Shastri, A. Rizk, and D. Irwin, “Transient Guarantees: Maximizing
the Value of Idle Cloud Capacity,” in SC, November 2016.

[17] “Microsoft Azure Low-priority VMs,” https://azure.microsoft.com/
en-us/pricing/details/batch/, May 2018.

[18] “Google Preemptible Instances,” https://cloud.google.com/compute/
docs/instances/preemptible, May 2018.

[19] “Amazon Spot Instances,” https://aws.amazon.com/ec2/spot/, May 2018.
[20] R. Pary, “New Amazon EC2 Spot pricing model: Simplified

purchasing without bidding and fewer interruptions,”
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/,
March 13th 2018.

[21] J. Albrecht, C. Tuttle, A. Snoeren, and A. Vahdat, “Loose Synchroniza-
tion for Large-scale Networked Systems,” in USENIX ATC, June 2006.

[22] Z. Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu, “FSP: Towards Flexible
Synchronous Parallel Framework for Expectation-Maximization based
Algorithms on Cloud,” in SoCC, September 2017.

[23] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers,” in EuroSys,
April 2016.

[24] G. Zhao, L. Gao, and D. Irwin, “Sync-on-the-fly: A Parallel Framework
for Gradient Descent Algorithms on Transient Resources,” in BigData,
December 2018.

[25] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “TR-
Spark: Transient Computing for Big Data Analytics,” in SoCC, October
2016.

[26] Y. Yang, G.-W. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho,
and B.-G. Chun, “Pado: A Data Processing Engine for Harnessing
Transient Resources in Datacenters,” in EuroSys, April 2017.

[27] P. Sharma, D. Irwin, and P. Shenoy, “Portfolio-driven Resource Man-
agement for Transient Cloud Servers,” in International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), June
2017.

[28] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “SpotOn: A
Batch Computing Service for the Spot Market,” in SoCC, August 2015.

[29] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar, “Tarazu:
Optimizing MapReduce on Heterogeneous Clusters,” in ASPLOS, April
2012.


