
GeoScale: Providing Geo-Elasticity in Distributed Clouds

Tian Guo Prashant Shenoy
College of Information and Computer Sciences

University of Massachusetts Amherst
{tian,shenoy}@cs.umass.edu

Hakan Hacigümüş†

NEC Laboratories America
Cupertino CA, USA

hakan@nec-labs.com

Abstract—Distributed cloud platforms are well suited for
serving a geographically diverse user base. However traditional
cloud provisioning mechanisms that make local scaling deci-
sions are not well suited for temporal and spatial workload
fluctuations seen by modern web applications. In this paper,
we argue the need of geo-elasticity and present GeoScale,
a system to provide geo-elasticity in distributed clouds. We
describe GeoScale’s model-driven proactive provisioning ap-
proach and conduct an initial evaluation of GeoScale on
Amazon’s distributed EC2 cloud. Our results show up to
31% improvement in the 95th percentile response time when
compared to traditional elasticity techniques.

Keywords-Distributed Clouds; Resource Management

I. INTRODUCTION

Today’s cloud platforms provide a key benefit, in the
form of elasticity, to help applications handle a time-varying
workload. However, cloud applications that service a geo-
graphically diverse user base not only experience temporal,
but also spatial workload variations. Such spatial variations
can be caused by reasons such as applications are more
popular in one region (e.g. country) than another or regional
events (e.g., local festivals or local news stories). Unfortu-
nately, due to this new spatial dynamics, traditional dynamic
provisioning techniques that focus on providing elasticity
within a single data center are not sufficient. Concurrently,
cloud platforms are becoming increasingly distributed and
offer a choice of multiple geographic sites and data centers.
Therefore, we propose to implement a geographic-aware
elasticity mechanism (geo-elasticity) in distributed cloud
platforms to meet the resource needs of above applications
with geo-dynamic workloads.

Towards this end, we design a system called GeoScale that
enables distributed clouds to autonomously vary the cloud
locations as well as the number of servers at each location
to handle both temporal and spatial variations in application
workload. In designing and implementing GeoScale, our
paper makes the following three contributions.
• We identify and outline three challenges in designing

geo-elasticity for distributed cloud platforms. Essen-
tially, GeoScale needs to monitor and obtain global

This work was supported by NFS grants #1229059, #1345300 and
#1422245; and a gift from NEC Labs.

† The author is currently affiliated with Google.

client workload distributions and provision server re-
sources in suitable set of cloud locations by taking into
account the workload intensity and server capability.

• We present a new geo-elasticity technique that can
handle dynamics in both the volume and geographic
distribution of application workloads. At the core of our
approach is a queuing-theoretic model that is seeded
with empirical measurements to determine the server
capacity needed at each cloud location.

• We conduct an initial evaluation of GeoScale by run-
ning representative applications on Amazon distributed
cloud platforms. Our experimental results show 13% to
40% improvement in the 95th percentile response time
when compared to traditional elasticity techniques.

II. BACKGROUND AND PROBLEM STATEMENT

A. Background

Our work assumes an Infrastructure-as-a-Service (IaaS)
public cloud that comprises data centers from different
locations and allows customers to rent virtualized resources
in the form of virtual machines (VMs). Customers do not
have direct access to the underlying hypervisor on a physical
server and must manage their VMs through the cloud’s APIs,
such as start and terminate servers at a specific location.

Our work targets replicable multi-tier web-based applica-
tions that service a distributed diverse client base. Each VM
replica hosts either front or back tier or both and we assume
applications maintain data consistency of backend replicas
using any methods that suits its need [1], [2]. In addition,
application providers are assumed to specify performance
metrics of interests such as Service Level Agreement (SLA)
and request rates. SLA is usually specified in the form
of high percentile response time and is used for deriving
server capacity in proactive provisioning; while request rates
can be monitored for any threshold violations in reactive
provisioning.

B. GeoScale Overview

Figure 1 depicts GeoScale’s architecture that breaks down
into three key components based on their functionalities.
Currently, we design GeoScale as a middleware layer that
uses public cloud APIs to programmatically manage virtual-
ized resources on behalf of cloud applications. However, our

mailto:tian@cs.umass.edu

Monitoring

Profiling

Forecasting

Reactive Provisioning

Copying

EnginesAlgorithms

Cloud1 Cloud2 Cloud3

Distributed Cloud

Proactive

Trigger

Workload Provisioning
 VMs

......

GeoScale

Figure 1: GeoScale Design and Basic Operation.

proposed techniques are easily integrated into cloud platform
fabric. The workload engine is responsible for monitoring
the incoming client requests, creating a geographic profile
of the workload distribution, and employing forecasting
techniques such as time-series forecasting to predict future
workload based on recent history. GeoScale supports both
proactive and reactive provisioning algorithms to handle
long-term variations based on predictions and short-term
dynamics including workload spikes and forecast errors.
Specifically, our proactive algorithm uses queueing-models
to provision sufficient resource to meet application-specific
SLA. Finally, provisioning and copying engines are in
charge of deploying required resources at new cloud sites
or making resource adjustments to existing sites.

III. PROVIDING GEO-ELASTICITY USING GEOSCALE

In this section, we first outline three challenges and our
propose approaches in designing geo-elasticity; then we
explain our proactive provisioning algorithm in detail.

First, GeoScale needs to monitor and predict global
workload distribution. To do so, GeoScale monitors appli-
cation’s incoming requests at each data center location by
collecting request logs from server replicas. These request
logs contain information such as a time-stamp, client IP
address, requested URL, service time and response time
seen by that request. GeoScale then determines the workload
volume seen by each data center by mapping clients to
their closet data centers. The distance between a client
and a data center location is estimated by leveraging IP
geolocation techniques. If a data center does not receive
sufficient traffic (justifying deployment of an application
replica), it is removed from the candidate data center set.
GeoScale iteratively refines the set until all data centers in
the set have at least a threshold amount of traffic mapped
onto them. Based on an application’s workload distribution,
GeoScale determines the future (peak) workload that will
be seen by each cloud site by using forecasting techniques
such as ARIMA.

Second, GeoScale has to figure out where and how many
resources to provision corresponding to the geo-dynamic

workload. To do so, GeoScale provisions server capacity
for each cloud site with queueing-based proactive as well as
agile reactive provisioning methods. Proactive provisioning
operates at longer time scales and handles long-term work-
load trends observed at these time scales; while reactive
provisioning makes agile changes to current provisioned
server capacities. Essentially, GeoScale varies the number
of cloud locations based on workload spatial variations
predicted; and determine the server capacity (i.e., number
of servers) required at each location using our proactive
algorithm in Section III-A.

Third, GeoScale is expected to execute provisioning
promptly and configure new replicas to work with the
entire application. To do so, GeoScale uses public Cloud
APIs to start new servers from local VM images based on
above geo-elastic provisioning decisions. In scenarios where
provisioning processes involve cross-data center copying,
GeoScale employs three optimizations that reduce provision-
ing latencies: (1) pre-copying large VM images, (2) selecting
data center pairs based on available bandwidth, and (3) using
a faster storing service [3].

A. Proactive Geo-Elastic Provisioning

Our proactive provisioning algorithm is responsible for
determining which cloud sites to host application replicas
and how many server resources are needed.

Proactive provisioning uses workload predictions to drive
the provisioning algorithm. When workload is observed near
a new cloud location, our algorithm makes decisions to
start up one or more servers at this new location. Similarly
diminishing workload near an existing cloud site may cause
servers to be shut down, with the residual traffic from that
region redirected to another close cloud location hosting
replicas. In this way, proactive provisioning provides geo-
elasticity by using observed changes in the spatial distribu-
tion of the workload to vary the number of cloud locations
that house replicas of the application. This is in addition
to handling changes in the temporal distribution in load at
existing locations, which is handled by scaling the number
of servers at those sites up or down.

Next, GeoScale employs a model-driven approach to
determine the server capacity (i.e., number of servers) re-
quired at each location. Let λ

p
j denote the peak workload

that will be seen by this location j as per the workload
forecasting engine. We employ a G/G/1 queueing model of
an individual server to determine the maximum request rate
λ c

j that can be serviced by a single cloud server without
violating the application’s SLA. We use the Kingman’s
theorem [4] for G/G/1 queue under heavy traffic that states
waiting time W is an exponential distribution with mean
E[W] =

σ2
a+σ2

b
2(1

λ
−x̄)

; where σ2
a and σ2

b denote the variance in

the requests inter-arrival time and service time, and λ and
x̄ represent the request arrival rate and mean service time

seen by this queueing system. Suppose SLA y is defined as
the 95th percentile of server response time, we derive the
upper bound on the maximum rate λ c

j under heavy traffic as
shown in Equation 1.

λ
c
j <

[
x̄ j +

3(σ ja
2 +σ jb

2)

2(y− x̄ j)

]−1

(1)

GeoScale uses empirical measurements from workload
monitoring component to drive the above queueing models:
estimating inter-arrival times variance σ ja

2 and service times
variance σ jb

2. The request service times x̄ j at location j can
be computed from server logs or measured by profiling the
application on the server; if location j is a new location
with no previous history, the observed service time from
an existing nearby cloud location can be used as the initial
estimate. The SLA y is specified by the application provider
as the upper bound of response time that should not be
violated, in our case 95th percentile of server response time.
Since all terms of Equation 1 are either known or empirically
measured, we successfully obtain the maximum request rate
λ c

j that can be handled by a single server.
Last, we calculate the number of servers S j required

at location j to handle a peak request rate of λ
p
j with

S j =

⌈
λ

p
j

λ c
j

⌉
. If S j is greater than the current number of

servers Ŝ j provisioned at location j, then the provisioning
algorithm needs to scale up capacity by allocating (S j− Ŝ j)
additional servers. If S j < Ŝ j, then capacity is scaled down
by deallocating (Ŝ j−S j) servers. If Ŝ j = 0, this is a newly
chosen cloud location for the application, and S j new servers
need to be started up at this location j. At the end of
proactive provisioning, Ŝ j is set to S j.

IV. EXPERIMENTAL EVALUATION

We evaluate the efficacy of GeoScale’s queueing-based
capacity model and proactive provisioning approach. Our
evaluation demonstrate the accuracy of models for a set
of cloud locations, and benefits of using geo-elasticity in
improving end-users response time.

A. Experiment Setup

We run our system GeoScale as a middleware on top of
Amazon’s distributed cloud platforms. GeoScale uses APIs
provided by Amazon EC2 and can manage server resources
in eight data center locations. We use a java implementation
of TPC-W as a representative multi-tier web application
for benchmarking both model validation and GeoScale’s
ability to handle geo-dynamic client workload. Here, TPC-
W benchmark emulates an online bookstore and employs
a two-tier architecture, a web server tier based on Apache
Tomcat and a database tier based on MySQL. We run each
TPC-W replica inside small server instances and employ
eventual consistency model across replicas. We run TPC-W
client workload generators on PlanetLab nodes to simulate

VA IRL CA SGP OR JAP BRZ AUS

Cloud Locations

0

5

10

15

20

25

30

R
e
q

.
P

e
r

S
e
c
.

GeoScale Measurement

Figure 2: Comparisons of GeoScale’s capacity modeling
with empirical measurement for small server instances.

a geographically diverse workload. For each experiment
run, we monitor and measure system-level statistics such as
request rates required by capacity model as well as response
time perceived by the clients.

B. Capacity Model Analysis

We empirically evaluate our queueing-based model by
comparing measured server capacity to model prediction.
For each run, we host TPC-W on a small server instance
in one of the cloud locations and start clients on a nearby
PlanetLab node. We warm-up the application for five min-
utes and then steadily increase the workload until GeoScale
detects SLA violations (i.e. 95th percentile response time is
greater than 1 second). We record the corresponding request
rate as the server capacity. Concurrently we collect required
system-level statistics and calculate server capacity based on
queueing model described in Section III-A. We repeat above
setup for 5 times for all eight cloud locations and plot the
average results and 95th confidence interval.

Figure 2 compares GeoScale’s predicted server capacity
with the empirically measured ones for each cloud location.
The measured server capacity varies across cloud locations,
with up to a 12% difference in capacity across locations for
the same type of server. Because data centers were built in
different years, we attribute these difference to variations
in the underlying server hardware deployed at different
locations. Figure 2 also emphasizes the need for a sepa-
rate location-specific model to fully capture the hardware
idiosyncrasies across location for the same type of server.

C. Geo-elastic Proactive Provisioning Benefits

We compare GeoScale’s proactive provisioning approach
with two variants of local elasticity where the choice of
cloud locations is made manually: (i) single-site elasticity
(SSE) and (ii) multi-site elasticity (MSE). SSE is a cen-
tralized approach that hosts all application replicas at a
single cloud location, while MSE houses replicas at a pre-
determined static set of locations. We assume all three pro-
visioning approaches employ the queuing model described
in Section III-A to handle temporal workload fluctuations.

We run TPC-W clients on PlanetLab nodes from three
locations: Pennsylvania and California in the USA and

Timeline (50 Mins)
0

10

20

30

40

50

60
R

e
q

.
p

e
r

S
e
c
.

VA VA VA VA VA

CA CA CA CA

IRL IRL IRL

Total

Figure 3: Illustration of client workload dynamics and
proactive provisioning in three data centers.

0 500 1000 1500 2000

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
D

F

Single-site Elasticity

Multi-site Elasticity

GeoScale

Figure 4: ECDF of client-perceived response time.

Germany in Europe. Pennsylvania clients starts sending
requests followed by California clients at t = 10 minutes and
Germany clients at t=20 minute. The aggregate application
workload is illustrated in Figure 3. All three proactive
approaches are able to scale up server capacity in response
to the workload increase. The main difference is where the
servers are provisioned. The SSE technique centralizes all
replicas at Amazon’s Virginia (VA) cloud location and scales
server capacity from 1 server to 3 servers at this site to
handle the workload increase. The MSE approach is config-
ured with replicas at Amazon’s VA and California (CA) data
centers and it provisions one server in CA and two servers
in VA to handle workload increase. GeoScale’s proactive
elasticity technique allocates one server in Amazon’s VA
data center to handle the Pennsylvania clients, followed by
another server in CA location to handle California traffic,
and a third server in Amazon’s Ireland (IRL) data center to
handle the traffic from Germany(Figure 3).

Figure 4 shows client response times CDF for all three
provisioning approaches. SSE has the highest response times
since it uses a single cloud location to serve global traffic,
causing distant clients to see worse response times. MSE
approach uses a couple fixed locations to host the application
and is able to direct clients to the closer of the two locations,
yielding better response times than SSE. GeoScale yields
the best response times since it is able to provision servers
that are closest to the clients. The 95th percentile response
time provided by GeoScale is around 1060 ms, a 31.17%
improvement over SSE and a 13.11% improvement when
compared to MSE.

V. RELATED WORK

Prior work [5]–[7] studied placing application services
closer to the end-users to reduce network latency, in the
context of one-time placement or static contents. Our focus
is on dynamic capacity provisioning to handle both temporal
and spatial workload variations by building on top of VM-
based elasticity techniques [8]–[10]. At the core of our
work is queueing-based models that estimate required server
capacities in different cloud locations, derived from previous
single data center models [11]–[14].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented challenges and approaches
for implementing geo-elasticity in distributed clouds. Our
system GeoScale employs a queueing model-driven proac-
tive provisioning technique. Our initial experiments using
Amazon’s distributed clouds showed average 88% model
accuracy and 31% user-perceived improvement. As part
of future work, we plan to conduct detailed evaluations
of GeoScale and integrate supports for vertical scaling of
heterogeneous resources.

REFERENCES

[1] T. Kraska et al., “Mdcc: Multi-data center consistency,” in
EuroSys, 2013.

[2] M. Patiño Martinez et al., “Middle-r: Consistent database
replication at the middleware level,” ACM TOCS, 2005.

[3] T. Guo et al., “Geoscale: Providing geo-elasticity in dis-
tributed clouds,” School of Computer Science, Univ. of Mas-
sachusetts at Amherst, Tech. Rep. UM-CS-2015-009, April
2015.

[4] J. F. C. Kingman, “The single server queue in heavy traffic,”
Math. Proc. Cambridge Philos. Soc., 1961.

[5] L. Qiu et al., “On the placement of web server replicas,” in
INFOCOM. IEEE, 2001.

[6] M. Satyanarayanan et al., “The case for vm-based cloudlets
in mobile computing,” Pervasive Computing, IEEE, 2009.

[7] “Content Delivery Network,” http://www.akamai.com/html/
resources/content-distribution-network.html.

[8] C. Clark et al., “Live migration of virtual machines,” in NSDI,
2005.

[9] T. Knauth et al., “Scaling non-elastic applications using
virtual machines,” in CLOUD, 2011.

[10] H. A. Lagar-Cavilla et al., “Snowflock: Rapid virtual machine
cloning for cloud computing,” in EuroSys, 2009.

[11] D. Gmach et al., “Workload analysis and demand prediction
of enterprise data center applications,” in IISWC, 2007.

[12] A. Gandhi et al., “Adaptive, model-driven autoscaling for
cloud applications,” in ICAC, 2014.

[13] S. J. Malkowski et al., “Automated control for elastic n-tier
workloads based on empirical modeling,” in ICAC, 2011.

[14] T. Guo et al., “Model-driven geo-elasticity in database
clouds,” in ICAC, 2015.

http://www.akamai.com/html/resources/content-distribution-network.html
http://www.akamai.com/html/resources/content-distribution-network.html

