
Cloud-scale VM Deflation for Running Interactive Applications
On Transient Servers

Alexander Fuerst

Indiana University

alfuerst@iu.edu

Ahmed Ali-Eldin
∗

University of Massachusetts Amherst

ahmeda@cs.umass.edu

Prashant Shenoy

University of Massachusetts Amherst

shenoy@cs.umass.edu

Prateek Sharma

Indiana University

prateeks@iu.edu

ABSTRACT
Transient computing has become popular in public cloud environ-

ments for running delay-insensitive batch and data processing ap-

plications at low cost. Since transient cloud servers can be revoked

at any time by the cloud provider, they are considered unsuitable

for running interactive application such as web services. In this

paper, we present VM deflation as an alternative mechanism to

server preemption for reclaiming resources from transient cloud

servers under resource pressure. Using real traces from top-tier

cloud providers, we show the feasibility of using VM deflation as

a resource reclamation mechanism for interactive applications in

public clouds. We show how current hypervisor mechanisms can be

used to implement VM deflation and present cluster deflation poli-

cies for resource management of transient and on-demand cloud

VMs. Experimental evaluation of our deflation system on a Linux

cluster shows that microservice-based applications can be deflated

by up to 50% with negligible performance overhead. Our cluster-

level deflation policies allow overcommitment levels as high as 50%,

with less than a 1% decrease in application throughput, and can

enable cloud platforms to increase revenue by 30%.

ACM Reference Format:
Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma.

2020. Cloud-scale VM Deflation for Running Interactive Applications On

Transient Servers. In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’20), June 23–
26, 2020, Stockholm, Sweden. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3369583.3392675

1 INTRODUCTION
Transient computing is becoming commonplace in cloud environ-

ments. Today, all major cloud providers such as Amazon, Azure,

and Google offer transient cloud servers in the form of preemptible

instances that can be unilaterally revoked during periods of high

server demand. Transient computing resources enable cloud providers

to increase revenue by offering idle servers at significant discounts

∗
Also with Chalmers University of Technology

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC ’20, June 23–26, 2020, Stockholm, Sweden
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7052-3/20/06. . . $15.00

https://doi.org/10.1145/3369583.3392675

(often 7-10X cheaper) while retaining the ability to reclaim them

during periods of higher demand.

While transient cloud servers have become popular due to their

discounted prices, their revocable nature has meant that users typ-

ically limit their use for running disruption-tolerant jobs such as

batch or data processing tasks. They have traditionally not been

used for online web services due to potential downtimes that occur

when the underlying servers are revoked.

In this paper, we present virtual machine (VM) deflation as an al-

ternative mechanism for reclaiming resources from transient cloud

servers. We argue that VM deflation is more attractive than out-

right preemption for applications, since they continue to run, albeit

more slowly, under resource pressure rather than being terminated.

Deflation simplifies application design since they no longer need

to implement fault tolerance approaches such as checkpointing to

handle server preemptions. Deflation also expands the classes of

applications that are suitable to run on transient cloud servers—

even web services can utilize such servers since downtimes from

preemptions are no longer a risk; with the exception of mission

critical web workloads, less critical web applications that are will-

ing to tolerate occasional slowdowns can run on such servers at a

much lower cost than on traditional cloud servers.

The notion of resource deflation was first proposed as a cascade

deflation approach [38] that collaboratively reclaimed resources

from the application, the OS, and the hypervisor. Cascade deflation

requires cooperation from the OS and the application and is im-

practical in public clouds that treat VMs as “black boxes.” Instead,

a hypervisor-only approach to deflation that requires no support

from the application or OS is better suited to Infrastructure as a

Service (IaaS) public clouds—the key focus of our work.

By fractionally reclaiming resources from applications instead of

outright preemption, VM deflation reduces the risk of downtimes

for interactive applications, with a modest decrease in application

performance. In designing and implementing our hypervisor-only

deflation approach, our paper makes the following contributions.

We demonstrate the feasibility of using VM deflation as a re-

source reclamation mechanism in public clouds using real CPU,

memory, disk, and network traces from two top-tier cloud providers

(Azure and Alibaba). Our analysis shows that cloud VMs running

interactive applications have substantial slack and can withstand

deflation of 30-50% of their allocated resources with less than a 1%

performance impact.

We then show how current hypervisor mechanisms such as hot-

plug and throttling can be used to implement VM deflation. We

https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675

also present several cluster-wide policies for VM deflation-based

resource reclamation. Our policies present different tradeoffs and

capabilities while attempting to minimize the performance impact

of VM deflation.

We implement a prototype of our VM deflation mechanisms

and policies on a virtualized Linux cluster and evaluate its efficacy

using realistic web applications as well as other workloads. We also

conduct a trace-driven evaluation of our policies using VM-level

workloads from a cloud provider. Our results show that:

(1) The resource utilization of cloud VMs is low, which makes de-

flation a viable technique for transient resources.

(2) Deflation can be implemented with hypervisor and guest-OS

level overcommitment. These deflation mechanisms can reclaim

large amounts of resources in a black-box manner, with minimal

performance degradation. For interactive microservice based

applications, even 50% deflation results in negligible reduction

in performance.

(3) Our cluster-level deflation policies make deflation an effective

technique for increasing cluster overcommitment (the ratio of

committed VM allocations to cluster hardware availability) by

up to 50%; nearly eliminates the risk of preemptions; and results

in less than 1% drop in application throughput.

The rest of this paper is structured as follows. Section 2 presents

background on transient computing and deflation. Section 3 presents

our feasibility analysis of VM deflation in public clouds. Section 4

and 5 present VM deflation mechanisms and cluster-wide deflation

policies, respectively. Section 6 and 7 present our implementation

and experimental results. Finally, Section 8 and 9 present related

work and our conclusions.

2 BACKGROUND
In this section, we provide background on transient cloud comput-

ing, and VM deflation.

Transient computing. Our work assumes a cloud data center

where applications run on traditional (“on-demand”) servers or

transient servers. Both types of servers are provisioned using vir-

tual machines, and cloud applications run inside such VMs. Cloud

offerings such as Amazon spot Instances [10], Google Preemptible

VMs [3], and Azure batch VMs [5] are examples of transient servers.

Transient cloud servers represent surplus capacity that is offered

at discounted rates but these resources can be reclaimed under

resource pressure (e.g., higher demand for on-demand servers).

Batch-oriented applications are particularly well suited for tran-

sient computing. Such applications tend to be both delay and disrup-

tion tolerant and can handle longer completion times. In the event

of a preemption, they can simply be restarted from the beginning

or restarted from a checkpoint if the application is amenable to

periodic checkpointing. Consequently, transient cloud servers have

become popular for running large batch workloads at a substantial

discount over using on-demand servers [39].

Deflation. While current transient servers implement resource

reclamation in the form of preemptions—where the VM is unilat-

erally revoked by the cloud provider—our work explores the use

of VM deflation as an alternative approach for resource reclama-

tion under pressure. Although deflation frees up fewer resources

than preemption (which frees up all of the VM resources), it en-

ables applications to continue execution and eliminates application

Server

Hypervisor

Guest OS

Application

Cluster Management Software

Deflation Aware Bin-Packing

Deflation Policy

VM Deflation Module

Application Manager (Mesos etc)/Load balancer

New VM Request

Deflate VM

Notification

Resource Allocations

Figure 1: Overview of our deflation system.

downtimes due to preempted servers [38]. Our hypothesis is that

occasional performance degradation, rather than termination and

downtime, is more acceptable to many interactive and web applica-

tions, except the most critical ones, making transient computing

feasible for a broader class of applications.

Since modern hypervisors allow resource allocation of resident

VMs to be increased or decreased dynamically, VM deflation can be

realized using current hypervisor mechanisms, such as ballooning

[47], hotplugging, changing CPU shares, etc. While any of the exist-

ing techniques can be used to implement VM deflation mechanisms,

the challenge lies in the design of judicious policies on when and

what to deflate and by how much, while minimizing the impact

of deflation on application performance. We note that while VM

deflation mechanisms are similar to elasticity (e.g., vertical scaling)

mechanisms, our goal is to focus on cluster-wide deflation policies

for resource reclamation, a different problem than elastic scaling as

discussed in Section 8.

Figure 1 gives an overview of our deflation system—the cluster

manager implements the global VM deflation and placement poli-

cies (Section 5) and places new VMs onto servers. The hypervisor

implements local deflation policies (also in Section 5), and uses

VM deflation mechanisms (Section 4). The hypervisor also sends

notifications to the application manager (such as a load balancer),

which can help applications respond to deflation.

3 FEASIBILITY OF DEFLATION IN PUBLIC
CLOUDS

Before presenting our deflation techniques, we examine the effi-

cacy and feasibility of deflating public cloud applications. We use

publicly-available resource usage traces from two top-tier cloud

providers, Azure [14] and Alibaba [15]. The goal of our analysis is

to understand the feasibility of deflating CPU, memory, disk, and

network allocations of real cloud applications, and specifically in-

teractive web applications, under time-varying workloads that they

exhibit. We seek to answer two key research questions through our

feasibility analysis: (1) How much slack is present in cloud VMs

and by how much can these VMs be safely deflated without any

performance impact? (2) How does workload class and VM size

impact the deflatability of VMs?

3.1 Application Behavior under Deflation
We first present an abstract model to capture the performance

behavior of an application under different amounts of resource

P
er

fo
rm

an
ce

Slack

Knee
Linear

Deflation %

Figure 2: Application behavior under different levels of de-
flation.

0 20 40 60 80 100
Deflation %

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

No
rm

al
ize

d
Pe

rfo
rm

an
ce SpecJBB

Kcompile
Memcached

Figure 3: Application performance when all resources (CPU,
memory, I/O) are deflated in the same proportion.

deflation. Figure 2 illustrates this behavior. We assume that an ap-

plication running inside a cloud VM will have a certain amount

of slack—unused CPU and memory resources. Reclaiming these

unused resources represented by the slack will typically have negli-

gible performance impact on the application since they are surplus

resources; the behavior in this operating region is depicted by the

horizontal portion of the performance curve labelled slack in Figure

2. Once all of the slack has been reclaimed by deflating the VM, any

further deflation will actually impact performance. We assume that

initially this performance impact is linear with increasing amounts

of VM deflation. For some applications, this behavior can even

be sub-linear, which means that a certain reduction in allocated

resources yields proportionately less performance slowdown. For

less elastic applications, however, the impact can be super-linear.

In either case, beyond a certain point—represented by the knee

of the curve—the performance drops precipitously, implying that

allocated resources are insufficient for satisfactory performance.

This abstract model captures the three regions with varying per-

formance impacts on applications due to deflation. Clearly, deflating

slack is the simplest approach since it usually has little or no perfor-

mance impact. When additional resources need to be reclaimed, the

deflation policy should ensure that such deflation minimizes the

performance impact and does not push application performance

beyond the knee of the curve.

Figure 3 depicts this behavior for three different applications. As

can be seen, different applications have different amounts of slack

(with SpecJBB not exhibiting any slack at all in this example), and

the size of the linear performance degradation region also varies

from application to application. The figure illustrates the need to

take application’s characteristics into account when reclaiming its

allocated resources using deflation.

3.2 Usage-based Feasibility Analysis
3.2.1 CPU Deflation. We analyze VM traces of CPU utilization in

the Azure dataset to quantify their deflation capability. The dataset,

which includes data from 2 million VMs, provides CPU utilization

Time

R
e
so

u
rc

e
 U

se
 a

n
d
 A

llo
ca

ti
o
n

Deflated Allocation

Resource Use

Total underallocation

Time underallocated

Figure 4: Deflation can result in underallocated resources.

time series for each VM at 5-minute granularity. Importantly for us,

each VM trace is partitioned into one of three classes—interactive,

delay-insensitive, and unknown—depending on the type of applica-

tion resident in the VM. We analyze all three classes of VM traces

but pay particular attention to interactive applications, which tend

to be dominated by web-based services. To analyze the impact of de-

flation, we assume that the CPU allocation of the VM is reduced by

a certain percentage and calculate the percentage of time for which

the maximum CPU usage over each interval in the original trace

exceeds this value. We observe that as long as the CPU utilization is

below this deflated allocation, there will be no performance impact

on the application. However, during periods where the utilization

exceeds the allocation under deflation (i.e., underallocation), the

application will experience a slowdown.

As shown in Figure 4, the resource utilization and deflation

determine howmuch time a VM is underallocated. The total amount

of under-allocation (area of the utilization curve above the deflated

allocation) is the decrease in application throughput. We want to

quantify the slack in the VMs under different levels of deflation

such that there is no performance impact on the application.

Figure 5 shows a box plot of the fraction of time spent by VMs

above the deflated resource allocation (i.e., underallocated) for all 2

million VMs. Even at high deflation levels (50%), the median VM

spends 80% of the time below the deflated allocation. This result

indicates that even high deflation levels of as much as 50% do not

lead to significant resource bottlenecks for applications.

Since the Azure dataset labels each VM trace with the class of

application hosted by the VM, we break down the overall result

in Figure 6 by application type. Figure 6 depicts a box plot of the

fraction of time that VMs of different application classes exceed

their deflated allocations under different levels of deflation. The

figure shows that interactive applications, which include web work-

loads, tend to have lower overall utilization and hence more slack

than delay insensitive batch workloads (presumably since they are

over provisioned to handle unexpected peak loads). Consequently,

interactive application VMs are more amenable to deflation of their

surplus (slack) capacity. Thus, for any given deflation level, inter-

active VMs see significantly less impact in terms the CPU usage

exceeding the deflated allocation. The percentage of time when the

interactive VMs get impacted ranges from 1% to 15%, as deflation

percentage is varied from 10% to 50%. In contrast, batch jobs see 1%

to 30% impact. This result shows that interactive applications and

web workloads can be subjected to deflation just like, and perhaps

more so, than delay-insensitive batch applications.

Figure 7 examines whether the VM size has an impact on its

ability to be deflated. Based on the trace we partition VMs into 3

groups – small VMs with 2 GB RAM or lower, medium VMs with

up to 8 GB RAM, and large VMs with more than 8GB RAM, and

examine the percentage of time the VM CPU usage exceeds the

Figure 5: Fraction of time (i.e. probability) of CPU usage of
VMs being higher than different deflation targets.
deflated allocation within each group. The figure shows that VM

size has no direct correlation to the deflatability of a VM, and all

VMs see a similar performance impact under different deflation

levels regardless of VM size. The result implies that VMs of all sizes

are more or less equally amenable to deflation.

Finally, Figure 8 examines the deflatability of VMs for VMs with

different peak loads. We compute the 95
th

percentile of CPU usage

for all VMs and partition VMs into four classes; those with low peak

utilization of less than 33%, those with moderate peak load between

33% and 66% peak utilization, those with higher load between 66%

and 80% utilization and finally, the rest with high peak loads above

80%. As shown in the figure, higher peak loads implies that VMs see

greater impact when deflated since the peak will exceed the deflated

allocation for longer durations. Interestingly, for deflation levels

of up to 20%, all VMs, except the ones with peak load exceeding

80%, have enough slack to see minimal impact. The figure generally

indicates that the peak load, represented by a high percentile of the

utilization distribution is a coarse indicator of the “deflatability”’ of

the VM; VMs with lower peak loads are more amenable to deflation.

3.2.2 Memory and I/O Deflation. We also analyze the memory,

disk, and network deflation feasibility based on Alibaba’s resource

traces [21] [15], that provide a time series of resource utilization

for their internal container-based interactive services. Note that

VM-based applications have a higher deflation potential because

they are overprovisioned and must include additional resources for

the guest OS; thus this container-level analysis of Alibaba’s cloud

applications provides a very conservative (lower-bound) estimate

of the actual deflation potential.

Memory. We analyze the memory usage of the applications under

different deflation levels in Figure 9. Interestingly, as shown, the

fraction of time that the application spends above different deflation

thresholds is generally high. At first glance, this might suggest that

the high memory utilization leaves little slack to deflate memory

(e.g., even at 10% memory deflation, the applications would spend

more than 70% time underallocated).

However, further analysis of the memory usage traces indicates

that this is not really the case. First, the Alibaba memory traces

provide the total memory usage and do not provide a fine-grain

breakdown of memory usage, such as such as working set size,

page-cache and disk-buffer pages. Over 90% of the applications in

Alibaba trace are JVM-based services that overallocate memory

(for the heap) to reduce the garbage collection overhead. As is well

known, modern applications and operating systems aggressively

used unallocated RAM for purposes of caching and buffering. Hence,

the total memory usage shown in Figure 9 is not a true measure of

deflation potential of applications.

Conventional wisdom holds that application performance will

be affected when the memory is deflated below its working set

size, and deflation of other memory used for caching or garbage

collection should have a lesser impact on performance. In fact,

our experiments have shown that, even when memory is deflated

below the working set size, the performance degradation, while

noticeable, is not serve. For instance, Figure 3 shows the resilience

of Memcached, a highly memory-dependent application. Figure 14

shows that even SpecJBB (which is representative of the JVM-based

applications that comprise the trace) can have its memory deflated

by up to 30% without significant drop in performance.

To further analyze the true memory deflation potential, we we

use the memory-bus bandwidth used by the different applications

as a proxy metric for memory usage. As shown in Figure 10, we

see that the memory bandwidth usage is very low, with the mean

memory bandwidth utilization across all containers being less than

one-tenth of one percent, while the maximum is only 1%. This

indicates that the applications are not reading/writing to the RAM

in proportion to their memory allocations, and that the memory

deflatability should be significantly higher than what is indicated

by Figure 9 alone.

Disk and Network. Finally, we examine the deflatability of disk

and network bandwidth in Figures 11 and 12 using the Alibaba trace.

We see that the usage of both I/O resources is very low. The boxplot

of application’s disk bandwidth that rises above various deflation

thresholds is given in Figure 11. The percentage of time the actual

disk bandwidth usage rises above various deflated allocations is

low, indicating there is ample room to deflate the allocated I/O

bandwidth. Even at a high deflation level of 50%, containers are

underallocated less than 1% of the time.

Network usage (sum of normalized incoming and outgoing traf-

fic) is also low: in Figure 12 we can see that even this combined

network bandwidth is not impacted by even at high (70%) deflation

levels, only suffering underallocation 1% of their lifetime. Below

50% deflation, the impact is near-zero and cannot be plotted.

Our analysis shows that low-priority VMs can be shrunk to fit

incoming VMs without preemption. Deflation allows providers to

continue offering high-priority traditional VMs, and sell unused

server space for low-priority VMs that can be deflated. This allows

consumers to still have fully-resourced VMs available for a variety

of applications. Because the average resource utilization is low, it

makes sense for cloud providers to offer low-priority VMs.

4 DEFLATABLE VIRTUAL MACHINES
In this section we describe how VM deflation mechanisms can be

implemented using existing hypervisor mechanisms.

4.1 VM Deflation Mechanisms
VM deflation requires the ability to dynamically shrink the re-

sources allocated to the VM. Modern hypervisors expose interfaces

to determine the current resource allocation of a VM and to dy-

namically modify this allocation. A cluster or cloud management

framework can use these hypervisor APIs to implement VM defla-

tion mechanisms.

Our system implements two classes of deflation mechanisms—

transparent mechanisms, which transparently shrink the VM’s re-

source allocation, and explicit mechanisms, where the deflation

is performed in a manner that is visible to the guest OS, (and by

extension, to the applications and the application cluster manager).

In the former case, the guest OS and applications are unaware of the

Figure 6: Fraction of time that the CPU
usage of VMs is higher than different
deflation targets.

Figure 7: Breakdown of deflatability by
VM memory size.

Figure 8: Breakdown of deflatability by
their 95-th percentile CPU usage.

Figure 9: Memory usage of
applications.

Figure 10: Memory band-
width usage.

Figure 11: Disk bandwidth
deflation feasibility.

Figure 12: Network band-
width deflation feasibility.

deflation and the VM simply runs “slower” than prior to deflation.

In the latter case, since deflation is visible to the guest OS and/or

applications, they can take explicit measures, if wanted, to deal

with deflation. We describe each mechanism and a hybrid approach

that exploits the key benefits of both approaches.

4.2 Transparent VM Deflation
Since hypervisors offer virtualized resources to virtual machines,

they can also overcommit these resources by multiplexing virtual

resources onto physical ones. Transparent VM deflation is imple-

mented using these hypervisor overcommitment mechanisms. For

example, the hypervisor allows virtual CPUs (vCPUs) of the VM to

be mapped onto dedicated physical CPU cores. Such an allocation

can be deflated by remapping the vCPUs onto a smaller number

of physical cores using the hypervisor’s CPU scheduler. Thus the

guest OS and applications inside the VM still see the same number

of vCPUs, but these vCPUs run slower.

In the case of memory, hypervisors allocate an amount of physi-

cal memory to a VM and multiplexes the VM’s virtualized memory

address-space onto physical memory, via two-dimensional paging.

Memory deflation thus involves dynamically reducing the physical

memory allocated to a VM.

In the case of network, one or more logical network interfaces

of a VM are mapped onto one or more physical NICs and a certain

bandwidth of the physical NICs is allocated to each vNIC by the

hypervisor. Network deflation involves reducing the physical NIC

bandwidth allocated to the VM. Finally, in the case of local disks,

the I/O bandwidth allocated to each VM can be throttled.

With the above hypervisor level transparent techniques, the VM

and applications are oblivious of the deflation, which is done at the

hypervisor level outside of the VM. The VM may get scheduled at

a lower frequency or have less physical memory, etc. Our deflation

framework has been implemented in KVM and Linux using Linux’s

cgroups facility. By running KVM VMs inside of cgroups, we can

control the physical resources available for the VM to use. For

deflating CPUs, we use CPU bandwidth control by setting the CPU

shares of the deflatable VM. The memory footprint of a deflatable

VM is controlled by restricting the VM’s physical memory allocation

by setting the memory limit in the memory cgroup. Similarly for

disk and network I/O, we use the respective I/O cgroups to set

bandwidth limits.

4.3 Explicit Deflation via Hotplug
Modern virtualization environments now support the ability to

explicitly hot plug (and unplug) resources from running guest oper-

ating systems. Explicit deflation mechanisms use these hot unplug

techniques to reduce the VM’s allocation in a manner that is vis-

ible to the guest OS and the applications. In the case of CPU, if a

VM has n vCPUs allocated to it, its CPU resources are reclaimed

by unplugging k out of n vCPUs. Hot plugging and unplugging

requires guest OS support, since it must reschedule/rebalance pro-

cesses and threads to a smaller or larger number of cores. Thus, the

deflation is visible to the guest OS and applications. In the case of

memory, we use memory unplugging to inform the OS and applica-

tions of the resource pressure, which allows them to return unused

pages, shrink caches, etc. Explicit unplugging of NICs and disks is

generally unsafe, and we rely on the transparent hypervisor-level

mechanisms for these.

Hot unplugging has a safety threshold—unplugging too many

resources (e.g., too much memory) beyond this safety threshold can

cause OS or application failures. Furthermore, hot unplug can only

be done in coarse-grained units. For example, it is not possible to

unplug 1.5 vCPUs.

4.4 Hybrid Deflation Mechanisms
Both transparent and explicit deflation have advantages and dis-

advantages. Explicit deflation—by virtue of being visible, allows

the OS and applications to gracefully handle resource deflation.

However, deflation can only be done in coarse-grained units and

has a safety threshold. Transparent deflation can be done in more

fine-grained slices and has a much broader deflation range than

explicit deflation. It does not require any guest OS support but can

impose a higher performance penalty since the OS and applications

do not know that they are deflated.

Our hybrid deflation technique combines both mechanisms to

exploit the advantages of each. Initially, a VM is deflated using ex-

plicit deflation until its safety threshold is reached for each resource.

From this point, transparent deflation is used for further resource

reclamation to extract the maximum possible resources from the

VM under high resource pressure. Figure 13 presents the high-level

pseudo-code of our hybrid deflation approach. The key challenge is

to determine the hot unplug safety threshold so as to switch over

from explicit to transparent deflation.

1 def d e f l a t e _ h y b r i d (t a r g e t) :
2 ho t p l u g_ v a l = max (g e t _hp_ th r e sho l d () , round_up (t a r g e t))
3 d e f l a t e _ h o t p l u g (ho t p l u g_ v a l)
4 d e f l a t e _mu l t i p l e x i n g (t a r g e t)

Figure 13: Pseudo-code for hybrid resource deflation.
For deflating CPUs, we first set the hotplug target by rounding up

the target number of vCPUs (line 2 in Figure 13). Then the cgroups

based CPU multiplexing deflation can deflate the VM the rest of the

way. The hotplug operation may not always succeed in removing all

the CPUs requested—the guest OS unplugs the CPU only if it is safe

to do so. If the number of reclaimed CPUs via hotplug is less than

the number requested, then the multiplexing-based CPU deflation

takes up the slack. When deflating memory, we set the hotplug

threshold by using the guest OS’s resident set size (RSS)—since

unplugging memory beyond the RSS results in guest swapping, and

we presume that it is safe to unplug as long as the VM has more

memory than the current RSS value.

Our hybrid deflation mechanisms can be used to reclaim signifi-

cant amounts of CPU, memory, and I/O resources from applications.

When deflating memory, hybrid deflation allows the guest OS to

hot-unplug unused memory, which can improve performance, as

shown in Figure 14. The figure shows the mean response time with

the SpecJBB 2015 benchmark, and we see that the performance

with both transparent and hybrid deflation is largely unaffected

up to 40% deflation, and hybrid deflation improves performance by

about 10%. Additional results with CPU deflation and with other

applications are presented later in Section 7.

5 CLUSTER DEFLATION POLICIES
In this section, we describe how the mechanisms discussed in the

previous section can be used to implement cluster-level deflation

policies. We assume a cloud resource management framework that

multiplexes physical servers in the cluster across two pools of VMs:

non-deflatable higher-priority VMs and deflatable lower-priority

VMs. When there is surplus capacity in the cluster, the cloud man-

ager allocates these resources to lower priority VMs (without deflat-

ing them). When demand from higher-priority VM causes resource

pressure, resources from lower priority VMs are reclaimed using de-

flation and re-assigned to higher priority VMs. Below, we describe

policies for doing so that determine how much each VM is actually

deflated by, and under what conditions. Our policies assume the

worst-case linear correlation between deflation and performance,

as shown by Figures 3 and 4. Which policy to apply we leave up

to cloud providers as they have different trade-offs and capabil-

ities that we discuss in Section 7.4. The policies we propose are

0 5 10 15 20 25 30 35 40 45

Memory Deflation %

0. 9

1. 0

1. 1

1. 2

1. 3

1. 4

1. 5

1. 6

1. 7

S
p

e
cJ

B
B

 M
e
a
n

 R
e
sp

o
n

se
 T

im
e

(N
o
rm

a
liz

e
d

 t
o
 n

o
 d

e
fl

a
ti

o
n

)

Hybrid

Transparent

Figure 14: Performance of SpecJBB 2015 with transparent
and hybrid memory deflation.

implemented at the level of a physical server. That is, the deflation

of a VM is determined by the “local” conditions and the resource

profiles of co-located VMs.

5.1 Server-level Deflation Policies
Our system uses three policies for deflation–proportional, priority-

based and deterministic—that we describe below.

5.1.1 Proportional Deflation. In the simplest case, we assume that

all VMs that fall into two broad classes: high-priority non-deflatable

VMs (aka on-demand), and low-priority deflatable VMs. A server

may host VMs of both classes.

Proportional deflation involves deflating each low priority VM

in proportion to its original maximum size. More formally, sup-

pose we need to reclaim R amount of a particular resource (CPU,

memory, etc.) from n deflatable VMs, and supposeMi is the orig-

inal undeflated allocation of that resource allocated to VM i . The
proportional deflation policy reclaims xi amount from each VM i:

xi = Mi − α1 ·Mi , (1)

where α1 is determined by the constraint that

∑
xi = R, and is

given by α1 = 1 − (R/
∑n
i Mi). Intuitively, we want VMs to deflate

in proportion to their size, to avoid excessively deflating small VMs.

Note that a new incoming VM may be deflatable, and is included in

the pool of n deflatable VMs, and can thus start its execution in a

deflated mode under high resource pressure conditions.

This simple proportional deflation policy forms the basis of more

sophisticated policies for addressing various cluster management

requirements. For instance, some VMs may have a “limit” to their

deflatability or QoS minimum requirements if deflated by more

than, say, 80%. Applications can provide these requirements to the

cluster on provisioning. The cluster manager enforces the minimum

resource allocation (mi) with proportional deflation policy, and

reclaim resources from each VM using the following relation:

xi = (Mi −mi) − α2 · (Mi −mi) (2)

The proportional deflation is performed for each resource (CPU,

memory, disk bandwidth, network bandwidth) individually. Enforc-

ing the minimum resource allocation limits can minimize applica-

tion performance degradation, but can reduce the overcommitment

(and possibly revenue) of cloud platforms.

5.1.2 Priority-based Deflation. Since the impact of deflation is ap-

plication dependent, a cloud platform can offer multiple classes of

deflatable VMs. These priority levels influence how much each VM

is deflated by, and can be offered by cloud providers at different

prices. These priority classes can be chosen by the user based on

their price sensitivity and application characteristics.

The proportional deflation policy (Equation 1) can be extended

to incorporate priorities through a weighted proportional deflation

framework. Let πi ∈ (0, 1) be the priority level of VM-i . Then,

xi = Mi − α3 · πi ·Mi , (3)

where low πi values indicate lower priority and higher deflatability.
VM priorities can also be applied to determine the minimum

resource allocation levels (mi) of the VMs. Intuitively, VMs with

a higher priority (πi) have a lower deflation tolerance, and thus

largermi values. For instance, cloud platforms can determine the

VM’s minimum resource allocation level as:mi = πi ·Mi , and we

can then extend the minimum-level-aware deflation (Equation 2)

with weighted proportional deflation:

xi = (Mi − πiMi) − α4 · πi (Mi − πiMi) (4)

5.1.3 Deterministic Deflation. With the above proportional defla-

tion policies, a VM’s deflation level is determined dynamically based

on the local resource pressure on the server. In some cases, cloud

platforms and applications may require a more deterministic de-

flation policy, that only deflates VMs to a pre-specified level. VM

priorities can be used for determining the deflation levels of VMs—

with higher priorities (πi) indicating lower deflation. In this case,

deflation is binary: either the deflatable VMs are allocated 100%

of their resource allocation (Mi), or πi · Mi . In case of multiple

deflatable VMs on a server, VMs are deflated in decreasing order of

πi ’s until sufficient resources are reclaimed to run the new VM.

Reinflation: Both our proportional and priority-based policies can

also reinflate previously deflated VMs when additional resources

become available. When R
free

additional resources have become

available, we reinflate VMs proportionally by setting R = −R
free

in

equations 1, 2, 3, 4, and effectively run the proportional deflation

backwards in all the cases. For deterministic deflation, the highest

priority VMs are reinflated first.

5.2 Deflation-aware VM Placement
The initial placement of VMs onto physical servers also affects

their deflation. Conventionally, for non-deflatable VMs, bin-packing

based techniques are used by cluster managers to place VMs onto

the “right” server in order to minimize fragmentation and total

number of servers required. This is often solved through multi-

dimensional bin-packing lens. The VM’s CPU, memory, disk and

network resource needs as well as the resources available on each

server are multi-dimensional vectors. Policies such as best-fit or

first-fit can be used to choose a specific server. We use the notion of

“fitness” for placing VMs onto a server. Similar to [19], we use the

cosine similarity between the demand vector and the availability

vector to determine fitness: fitness(D,Aj) =
Aj ·D
|Aj | |D |

. Here, D is the

demand vector of the new VM, and Aj is the resource availability
vector of server j. If Aj = 0, i.e. there are no available resources,

a small value ϵ can be added to it, or the server can be removed

from consideration, to prevent division by 0. The availability vector

is given by Aj = Totalj − Usedj + (deflatablej/overcommittedj),

where deflatablej is the maximum amount of resources that can

be reclaimed by deflation and overcommittedj is the extent of the

deflation already done. By evaluating all severs and considering

their level of overcommitment, this approach prefers servers with

lower overcommitment, and thus achieves better load balancing.

5.2.1 Placement With Cluster Partitions. The above VM placement

approach results in VMs of different priority levels sharing physical

servers. This “mixing” can be beneficial and improve overall cluster

utilization, since lower priority VMs can be deflated to make room

for higher priority VMs. However, increasing the number of co-

located deflated VMs can potentially result in higher performance

interference (aka noisy neighbor effect).

While performance interference can bemitigated through stronger

hypervisor and hardware-level isolation techniques, it can also be

addressed by VM placement. The key idea is to partition the cluster

into multiple priority pools, and only place VMs in their respective

priority pools. Within a pool, we use the bin-packing approach for

deflatable VMs and continue to use either proportional or deter-

ministic deflation policies on the individual servers. The size of the

different pools can be based on the typical workload mix.

Thus, higher priority VMs will generally run on servers with

lower overcommitment and lower risk of performance interference,

and lower priority VMs face higher risk of overcommitment. This

approach also allows cloud operators to limit and control the distri-

bution of overcommittment of different servers, which reduces the

risk of severe performance degradation due to overcommitment.

A possible downside of cluster partitions is that if a partition

becomes “full” even after deflating all its VMs to their maximum

limits, newVMsmay have to be rejected using the admission control

mechanism. This can reduce cluster overcommitment and revenue.

5.2.2 Pricing Considerations. Our work assumes that deflatable

VMs are priced differently from traditional on-demand VMs. Similar

to preemptible VMs, a cloud provider may choose to offer deflatable

VMs at fixed discounted prices (e.g., at 60-80% discount). The cloud

provider may also price deflatable VMs based on priority levels,

where the priority level determines the proportion by which VM

can be deflated and also the discount in the price. Finally, the cloud

provider may use variable pricing where the deflatable VM is billed

based on the actual allocation of resources over time, with lower

prices charged during periods of deflation. The different pricing

policies, when combined with placement and server-level deflation

policies, result in different levels of application performance, clus-

ter utilization, and revenue. These tradeoffs are presented in the

evaluation section.

6 IMPLEMENTATION
We have implemented all the deflation mechanisms and policies

discussed in Sections 4-5 as well as deflation-aware web applica-

tions, as part of a deflation-aware cluster manager framework. Our

system is comprised of two main components (see Figure 1). A cen-

tralized cluster manager implements and invokes the VM placement

policies and generally controls the global-state of the system. In

addition, we run local deflation controllers that run on each server.

These local controllers control the deflation of VMs by responding

to resource pressure, by implementing the proportional deflation

policies described in section 5. Both the centralized cluster manager

and the local-controllers are implemented in about 4,000 lines of

Python and communicate with each other via a REST API.

Deflation Mechanisms. Our prototype is based on the KVM hy-

pervisor [26], and uses the libvirt API for running VMs and for

dynamic resource allocation required for deflation. Our hybrid

resource deflation mechanisms presented in section 4 are imple-

mented by the per-server local controller. CPU and memory hot-

plugging (and unplugging) are performed via QEMU’s agent-based

hotplug. Hotplug commands are first passed to the user-space

QEMU agent, which then forwards them to the guest OS kernel.

Thus, the guest OS is made aware of the deflation attempt, and

knows the unplug is not due to hardware-failure, and allows the

hotplug to be “virtualization friendly”. For example, if the guest

kernel cannot safely unplug the requested amount of memory, the

hot unplug operation is allowed to return unfinished. In this case,

the memory reclaimed through hot plug will be lower, but the safety

of the operation is maintained.

For hypervisor level multiplexing of resources, we run KVM

VMs inside cgroups containers, which allows us to multiplex re-

sources. For CPU multiplexing, we adjust the cgroups cpu shares

of the VM through libvirt’s cgroups API. For transparent memory

deflation, we adjust the VM’s physical memory usage by setting

the memory usage of the cgroup (mem.limit_in_bytes). Disk and

network bandwidth are also dynamically adjusted via libvirt API’s.

Deflation Policies. The server-level deflation policies are imple-

mented by a local deflation controller on each server, which main-

tains and manager all aspects of the server’s resource allocation

state, and determines deflation amounts of different VMs. Each

server updates the central master about all changes in server uti-

lization after every deflation event. New VMs are placed on servers

using a three-step approach. First, the centralized cluster manager

finds the “best” server for the VM based on the VM size and utiliza-

tions of all servers. The second step involves the server computing

the deflation required to accommodate the new VM. If this violates

any resource constraint, then the server rejects the VM. Finally, the

actual deflation is performed and the VM is launched.

Deflation-aware Web Cluster: When running web clusters on

deflatable VMs, the load balancer can be made deflation aware for

improved performance. The load balancer can adjust the number

of requests sent to a VM based on its deflation level. We implement

a deflation-aware load-balancing policy in HAProxy [4]. We have

modified HAProxy’s Weighted Round Robin algorithm by dynami-

cally changing the weights assigned to the different servers based

on the current deflation level, which adjusts the number of requests

sent to each server based on the “true” resource availability. The

load balancer changes are implemented in Python and Kotlin in a

total of 300 LOCs and are wrapped in a Docker container.

7 EXPERIMENTAL EVALUATION
In this section, using testbed experiments and simulation, we show

the performance of deflatable VMs, and focus on answering the

following questions:

(1) What is the performance of interactive applications when

deployed on deflatable VMs?

(2) What is the impact of deflation policies on cluster utilization,

application throughput, and cloud revenue?

7.1 Evaluation Environment
7.1.1 Web-based interactive applications. We use two interactive

applications to evaluate deflation on real-world web workloads:

Wikipedia:We replicate the GermanWikipedia on our local testbed.

We choose the German Wikipedia as it is the second most popular

Wikipedia in terms of number of views—with more than 720000

Figure 15: The micro-service architecture of the social net-
work application used in our evaluation (Courtesy of [17]).
page views per hour—, and the fourth most in terms of number of

articles—with more 2.25 Million articles [1]. We setup a KVM VM

with MediaWiki, MySQL database, Apache HTTP webserver, and

Memcached. Our workload generator randomly selects from the

top 500 largest pages (page sizes ranging from 0.5–2.2 MB).

DeathStarBench is a recently released benchmark that imple-

ments different applications using themicroservice architecture [17].

We evaluate the benchmark’s social networking application, which

consists of 30 microservices (Figure 15) built using Redis, Mem-

cached, MongoDB, RabbitMQ, Nginx, Jaeger, and other custom

made services that provide the required functionality. We run each

micro-service runs in a separate Docker container using using

Docker swarm. We use a workload generator based on wrk2
1
for

evaluating the overall application performance.

7.1.2 Cluster-level simulation framework. To analyze various cluster-
level deflation policies, we have developed a trace-driven discrete

event simulation framework that allows us to understand the impact

on application and cloud-level metrics. The simulation framework

is written in Python in about 2000 lines of code, and implements

our VM deflation and pricing policies, and allows large-scale simu-

lations with different policy and workload combinations. We use

the Azure VM-level dataset to determine the starting and stopping

times of VMs, their size (aka resource vectors), and CPU utilization

history. We also use the VM metadata such as VM category (batch,

interactive, unknown), and the 95-th percentile CPU utilization to

determine priority levels for our priority-based deflation policies.

The simulation framework allows us to determine the deflation

levels of VMs, preemptions in the cluster, and also correlate VM’s

dynamic resource allocation with its CPU utilization time-series to

determine the performance impact of deflation. For the simulation-

based cluster-level experiments, we primarily focus on the effect of

deflation on the cloud provider. This complements our application-

focused performance evaluation done using web services in the

next subsection, as well as prior work on deflation [38] that looked

at performance of distributed applications under deflation.

Given our focus on deflatability of interactive applications, we

assume that the interactive VMs in the trace are deflatable, while the

unknown and batch VMs are non-deflatable (“on-demand”). This

translates to roughly 50% of the VMs being deflatable. We consider

each VM’s CPU core count and memory size for bin-packing as

well as all deflation policies. We determine VM priorities based on

their 95-th percentile CPU usage and use 4 priority levels. We show

results on a randomly sampled trace of 10,000 VMs, which require

a cluster of 40 servers each with 48 CPUs and 128 GB RAM. For

simulating varying degrees of cluster overcommitment, we first find

the minimum cluster size capable of running all VMs without any

1
https://github.com/giltene/wrk2

0 10 20 30 40 50 60 70 80 90 97
Deflation %

10−2

10−1

100

101

Re
sp

on
se

 T
im

e
(s

)

30 27 24 21 18 15 12 9 6 3 1
Number of Cores

Figure 16: Wikipedia response times
with CPU deflation.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 r

e
q
u
e
st

s
se

rv
e
d

Deflation %

Figure 17: Almost all Wikipedia re-
quests are served till 70% deflation.

 1

 10

 100

 1000

 10000

 100000

0 30 50 60 65

R
e
sp

o
n
se

 T
im

e
 (

m
s)

CPU Deflation %

Median 90th% 99th%

Figure 18: Response times for the so-
cial media application.

preemptions or admission-controlled rejections. We then vary and

increase the overcommitment by reducing the number of servers

and use the same VM-trace throughout for all the experiments. We

do not look at the impact on individual application performance

in a cluster settings for two reasons 1) the cluster level impact of

deflation was examined in [38] and 2) we want to focus on the effect

of our deflation policies on large-scale cluster management.

7.2 VM deflation of Web services
Our first set of experiments aim to measure the effect of transparent
deflation on the performance of different types of web services,

and how the reduction in resource allocation can be mitigated by

well-engineered web applications.

Multi-tiered Applications. In order to evaluate the effects of de-

flation on the QoS of multi-tiered services, we use the German

Wikipedia replica running on a VM with 30 CPU cores, and 16 GB

of memory. We subject it to a mean load of 800 requests/s selected

randomly from the 500 largest pages. We set the request time out

period to 15 seconds, and consider that requests that take longer

are dropped, or no longer interesting to the users. We progressively

deflate the VM’s CPU for this CPU-bound application. Figure 16

shows a violin plot of the distribution of the response times of the

requests at each deflation level, with the y-axis in log-scale. As

shown, the response time does not increase significantly until the

deflation increases above 70%—even though the average CPU usage

at 50% deflation is 100%. We find that the average response time for

the application with no deflation is 0.3s, with 50% deflation is 0.45s,

and with 80% deflation is 0.6s—which is 2× the undeflated response

time. The 99th percentile response time is 6.8s for no deflation, and

increases by only 43% to 9.74s even at 80% deflation. We also find

that, even when deflated to a single core, the application did not

crash when serving a load of 800 req/s. This leads us to believe that

many well architected web services tolerate deflation well, with

a disproportionately small performance penalty. This observation

is further reinforced by Figure 17, which shows the percentage

of requests served with different deflation settings. Similar to our

previous result, we see that noticeable request loss rates occur only

after 70% deflation.

Micro-service based Applications.We next evaluate the impact

of transparent deflation on micro-service based applications. Fig-

ure 15 shows the architecture of the social networking application

described previously. The application microservices can be classi-

fied based on their functionality into three logical classes that are

similar to multi-tiered applications, namely, frontend microservices,

logic microservices, and finally, caching and storage microservices.

In the social networking service used, there are three frontend mi-

croservices, 15 logic microservices, and 12 backend microservices.

In our deflation experiment, we deflate all microservices except for

the databases, i.e., we deflate all frontend and logic microservices,

and the four memcached microservices from the backend, deflating

a total of 22 microservices out of 30. We start by allocating a maxi-

mum limit of 2 cores per microservice, and a minimum of 0.05 CPUs

for each container. Each container is allocated 800MB of memory.

We use the workload generator to generate 500 requests per second,

and deflate the 22 microservices by 30%, 50%, 60% and 65%. Figure 18

shows the median, 90th%, and 99th% response times in milliseconds.

We again see that the service can be deflated by up to 50% with no

performance losses. Beyond this level, the degradation in QoS and

response time is more abrupt than the the multi-tiered Wikipedia

case, likely due to the higher communication- and coordination-

intensive nature of the application.

7.3 Deflation-aware Web Load Balancing
Next, we evaluate the effect of explicit deflation on clustered web

services. To do so, we compare the performance of using vanilla

HAProxy [4] with our modified deflation-aware HAProxy. We

run three replicas of the German Wikipedia application behind

HAProxy. Each instance starts with 10 vCPU cores, and 10 GB of

memory. We assume that two of these instances are running on

deflatable VMs , and the third runs on a non-deflatable VM.

We generate an average load of 200 requests/s and deflate the two

deflatable VMs equally. Our deflation-aware load balancer attempts

to masks the impact of deflation by changing the server weights

based on the deflated number of vCPUs, causing more requests to

be sent to the third undeflated replica. Figure 19 shows the average

and 90th percentile response times for the unmodified and deflation-

aware load balancers. We see that the deflation-aware load balancer

yields 15 to 40% lower tail latency at high deflation levels of 40 to

80% when compared to vanilla load balancing; mean response times

are also lower or comparable as shown in the figure.

7.4 Impact Of Cluster Deflation Policies
We now evaluate the effect of VM deflation at a cluster level using

trace-driven simulations. We are interested in the differences with

current transient server offerings that rely on preemptions, and the

impact of the different deflation policies on cluster overcommitment,

VM performance, and cloud revenue.

7.4.1 Eliminating Preemptions. VM deflation is intended to elimi-

nate preemptions, which are detrimental to interactive applications

because they cause downtimes. Currently, cloud operators preempt

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50 60 70 80

R
e
sp

o
n
se

 T
im

e
 (

s)

Deflation %

90% RT deflation aware LB
90th% RT Non-deflation aware LB

Mean RT deflation aware LB
Mean RT non-deflation aware LB

Figure 19: Our deflation-aware load balancer yields lower re-
sponse times even at high deflation levels.

Figure 20: Failure probability with deflation remains very
low even for high cluster overcommitment.

Figure 21: Decrease in throughput of deflatable VMs is low
even at high overcommitment.

low-priority VMs when there is high resource pressure, which in-

creases at high cluster overcommitment levels. Figure 20 shows

the failure probability for low-priority VMs under different over-

commitment levels. Failure probability represents the probability

of failure to reclaim sufficient resources from deflatable VMs due to

"too much" overcommitment; for traditional preemptible instances,

it is same as preemption probability. Even at 70% overcommitment,

the failure probability is below 1% for proportional deflation, com-

pared to 35% for preemptible VMs. From a provider standpoint, this

implies that they can reclaim the desired amount of resources via de-

flation with >0.99 probability. The priority-based and deterministic

deflation policies have higher failure probability than proportional

but still below preemptible VMs. More broadly, this result shows

that a judicious choice of overcommitment level (of as much as 50%)

allows the provider to eliminate preemptions and use deflation to

reclaim the necessary resources under resource pressure.

Result: Deflatable VMs have very low probability of resource recla-
mation failure even when the overcommitment is as high as 50%
7.4.2 Throughput. While deflation can eliminate preemptions, it

comes with an important tradeoff: the reduction in resource alloca-

tion due to overcommitment can reduce application performance

and throughput. We examine the effect of deflation on VM perfor-

mance at a cluster level, using the CPU-traces of the Azure VMs.

Note that a VM’s deflation is dynamic and based on the time-varying

resource pressure conditions as VMs are launched and terminated.

At a given point in time, the performance depends on the deflation

and the VM’s resource utilization. Thus if the VM is deflated when

its resource (CPU) utilization is low, then we are reclaiming unused

resources (i.e., slack), and there should be no drop in throughput.

The loss in throughput only occurs when a VM is deflated below its

CPU usage, and is proportional to the total underutilization (area

under the curve of Figure 4 in Section 3. Based on this principle, Fig-

ure 21 shows the decrease in throughput for the different deflation

policies at varying overcommitment levels.

We see negligible reduction in throughput below 40% overcom-

mitment, and a 1% reduction at 50% overcommitment. Even at 80%

overcommitment, the loss in throughput is below 5% for all defla-

tion policies. We note that this is fundamentally due to the low

utilization of VMs of the Azure VMs (especially interactive VMs),

as was shown earlier in Figure 6. Additionally, the average VM

deflation is not equal to the cluster overcommitment but is signifi-

cantly lower. Our cluster was provisioned for the peak load, and

furthermore, deflatable VMs significantly improve the bin-packing

efficiency by allowing the cluster manager to slightly adjust VM

allocations to make room for new VMs that would have otherwise

not fit and required an additional server.

The priority-based and deterministic deflation policies take into

account the VM’s anticipated utilization levels by using their 95

percentile CPU usage to determine the deflation priority and the

minimum allocation levels. Thus, high utilization VMs are deflated

less, which reduces their loss in throughput compared to simple

proportional deflation. Thus, we see that adding priorities can re-

duce the loss in throughput by an order of magnitude. When we

place VMs into dedicated cluster partitions based on their priority

(as described in Section 5.2), Figure 21 also shows that incorpo-

rating partitioning does not significantly impact throughput loss.

Cluster-partitioning is thus a viable technique that can be used by

cloud operators to minimize the risk of performance interference

among deflatable VMs of different priorities.

Interestingly, deterministic deflation, which deflates VMs in

their priority order, has the lowest decrease in throughput. This

is because the proportional deflation policies (both the simple and

priority-based proportional) result in deflation of all VMs, even

though the magnitude of deflation of each VM is small. Thus, even

high priority deflatable VMs are deflated, and their throughput

will decrease if their CPU utilization is higher than the deflated

allocation. With deterministic deflation, the lower priority VMs

(with lower 95 percentile CPU usage) are penalized more, but the

average cluster-wide throughput loss is reduced.

Result: Deflatable VMs allow clusters to be overcommited by 80%,
and keep the performance degradation to less than 5%.
Impact onQuality of Experience.The low average loss in through-

put represents a low risk of QoS violations, since performance is

affected only when the application’s peak usage coincides with de-

flation. However, end-users of interactive applications may observe

a perceivable drop in their quality of experience due to the jitter

and the longer response times during deflation. Ultimately, evaluat-

ing the user experience with deflation requires user studies similar

0 10 20 30 40 50 60 70
Cluster Overcommitment %

0

10

20

30

40
In

cr
ea

se
 in

 R
ev

en
ue

 %

Static
Priority-based
Allocation-based

Figure 22: Increase in cloud revenue due to deflatable VMs.
to [12], and is a potential candidate for future work. End-users can

be alerted with a “degraded mode” warning during periods of high

deflation, similar to downtime indicators for popular web services.

Finally, we note that distributed applications can also run on a

mix of non-deflatable and deflatable VMs with different priorities

(similar to [8]), and reduce the risk of QoS violations even further.

7.4.3 Cloud Revenue. We have seen how deflatable VMs can min-

imize preemptions and have negligible impact on performance

of interactive applications. Since deflation allows for increased

overcommitment, it provides cloud platforms the opportunity to

increase their revenue on low-priority resources. Figure 22 shows

the increase in revenue from the low-priority (i.e., deflatable) re-

sources, at different cluster overcommitment levels for different

combinations of deflation and pricing policies. For ease of expo-

sition, we assume that the static price of deflatable VMs is 0.2×

the on-demand price—corresponding to the discounts offered by

current transient cloud servers such as EC2 spot instances, Google

Preemptible VMs, and Azure Low-priority Batch VMs. For VMs

with different deflation priorities, we set their price equal to the

priority—i.e, priority-level 0.5 has price 0.5× the on-demand price,

etc. We also evaluate variable allocation-based pricing which con-

siders the actual resource allocation over time, and again price

resources linearly (i.e, VMs pay half price when at 50% allocation).

Figure 22 shows that as the cluster overcommitment increases,

the revenue with static-pricing VMs increases, and the cloud plat-

form can increase revenue by 15% at 60% overcommitment. Hav-

ing priority-based differentiated pricing significantly increases the

revenue, since higher priority VMs pay more. The priority-based

pricing (when used with priority-based deflation) increases the

revenue per server by 2× compared to simple static pricing.

Interestingly, the revenue with allocation-based pricing scheme,

which charges VMs what they were actually allocated, does not

increase with increasing overcommitment. This is because at low

overcommitment levels, VMs are not deflated and thus pay “full

price”, and as the overcommitment increases, there are more VMs

running per server, but they are highly deflated, and thus the total

revenue remains the same.

Policy Comparison: Deflation policies have different tradeoffs. Pro-
portional deflation minimizes resource reclamation failure, but pro-
vides lower revenues. Priority-based deflation and pricing increases
revenue, but also increases failure probability.

8 RELATEDWORK
VM deflation draws upon many related techniques and systems.

Systems for handling transient server revocation use a com-

bination of fault tolerance and resource allocation to mitigate the

performance and cost effects of preemptions. Priorwork has focused

on system [43, 45] and application [23, 30, 40, 41, 49, 51] support

for handling preemptions. We believe that deflatable VMs mini-

mize the need for such middleware, and can avoid the performance,

development, and deployment costs associated with preemption.

Resource overcommitmentmechanisms have been extensively
studied and optimized to allow for more efficient virtualized clus-

ters. Memory overcommitment typically relies on a combination

of hypervisor and guest OS mechanisms, and has received signifi-

cant attention [9, 42, 47]. Memory ballooning is another memory

overcommitment technique with generally inferior performance

to hotplug [29, 37]. Hotplug can also be used for reducing energy

consumption [52], since unused but powered-on RAM draws a

significant amount of energy. CPU hotplugging can also be used

to mitigate lock-holder preemption problems in overcommitted

vCPUs [16, 33]. Burstable VMs [2, 48] also offer dynamic resource

allocation, but are the “inverse” of deflatable VMs. The resource

allocation is high by default for deflatable VMs and only reduced

during resource pressure, whereas burstable VMs have low alloca-

tion by default and only ocassionally can be “inflated” to higher

allocations. Furthermore, burstable VMs have been restricted to

CPU and I/O bursting, whereas deflatable VMs also adjust memory.

Resource consolidation using dynamic resource allocation [46]

and VM migration [50] is common to increase cluster utilization.

VMWare’s distributed resource scheduler [20] uses per-VM reser-

vations (minimum limits) and shares for dynamically allocating

resources—similar to our resource-pressure based local deflation

policies. Many approaches for performance-sensitive resource al-

location among co-located VMs have been suggested [22, 24, 28,

32, 55], but they assume some application performance model,

which our work does not. VM memory allocations can be set us-

ing working-set estimation [13, 53, 54], utility-maximizing [25], or

market-based approaches [6, 11]. As noted earlier, deflation was

first proposed in [38] but required OS and application cooperation,

while we focus on a hypervisor-only deflation approach.

Vertical scaling with performance differentiation for a single

server under resource pressure due to increasing application load

and server overbooking has been well studied in the past [27, 34, 36].

All previous work we are aware of tackles the problem of perfor-

mance differentiation for a single server. Our work focuses on

cluster-wide performance optimization when resources are de-

flated across the whole cluster. Application performance mod-

els and workload prediction is a key component of elastic scal-

ing [7, 18, 31, 35, 44]. In contrast, deflation is a black-box, applica-

tion agnostic, and reactive technique for handling resource pressure.

Our deflatable VMs use a combination of overcommitment mecha-

nisms that are adapt to application resource usage, and we consider

the simultaneous deflation of all resources. Deflation also exposes

an explicit performance tradeoff, whereas elastic scaling approaches

typically only reclaim unused resources.

9 CONCLUSIONS
In this paper we proposed the notion of deflatable VMs for running

low-priority interactive applications. Deflatable VMs allow applica-

tions to continue running on transient resources, while minimizing

the risk of preemptions and the associated downtimes. Our VM

deflation mechanisms and cluster-level deflation policies reduce the

performance overhead of applications and allow cloud platforms to

increase cluster overcommitment and revenue. The performance of

deflatable VMs is within 10% of their undeflated allocation—making

them a viable alternative to current cloud transient VMs.

Acknowledgments. We wish to thank all the anonymous review-

ers and our shepherd Renato Figueiredo, for their insightful com-

ments and feedback. This research was supported by NSF grants

1836752, 1763834, and 1802523.

REFERENCES
[1] Wikipedia Statistics. Accessed: October, 2015, URL:

https://stats.wikimedia.org/EN/Sitemap.htm.

[2] EC2 Burstable Instances. https://aws.amazon.com/blogs/aws/low-cost-burstable-

ec2-instances/, 2014.

[3] Google preemptible instances. https://cloud.google.com/compute/docs/instances/

preemptible, September 24th 2015.

[4] Haproxy. https://www.haproxy.org, 2016.

[5] Azure low priority batch vms. https://docs.microsoft.com/en-us/azure/batch/

batch-low-pri-vms, June 2017.

[6] Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., and

Mu’alem, A. Ginseng: Market-driven memory allocation. In VEE (2014), ACM.

[7] Ali-Eldin, A., Tordsson, J., and Elmroth, E. An adaptive hybrid elasticity

controller for cloud infrastructures. In Network Operations and Management
Symposium (NOMS), (2012), IEEE, pp. 204–212.

[8] Ali-Eldin, A., Westin, J., Wang, B., Sharma, P., and Shenoy, P. Spotweb:

Running latency-sensitive distributed web services on transient cloud servers.

In HPDC (2019), ACM, p. 1âĂŞ12.

[9] Amit, N., Tsafrir, D., and Schuster, A. Vswapper: A memory swapper for

virtualized environments. VEE (2014).

[10] Barr, J. New - EC2 Spot Instance Termination Notices. https://aws.amazon.com/

blogs/aws/new-ec2-spot-instance-termination-notices/, January 6th 2015.

[11] Ben-Yehuda, M., Agmon Ben-Yehuda, O., and Tsafrir, D. The nom profit-

maximizing operating system. In VEE (2016), ACM.

[12] Chen, K.-T., Huang, C.-Y., Huang, P., and Lei, C.-L. Quantifying skype user

satisfaction. SIGCOMM (2006), 399–410.

[13] Chiang, J.-H., Li, H.-L., and Chiueh, T.-c. Working set-based physical memory

ballooning. In ICAC (2013), pp. 95–99.

[14] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., and Bian-

chini, R. Resource central: Understanding and predicting workloads for improved

resource management in large cloud platforms. In SOSP (October 2017).

[15] Ding, H. Alibaba production cluster trace data. https://github.com/alibaba/

clusterdata, 2018.

[16] Ding, X., Gibbons, P. B., Kozuch, M. A., and Shan, J. Gleaner: mitigating the

blocked-waiter wakeup problem for virtualized multicore applications. In 2014
USENIX Annual Technical Conference (USENIX ATC 14) (2014), pp. 73–84.

[17] Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A.,

Hu, J., Ritchken, B., Jackson, B., et al. An open-source benchmark suite for

microservices and their hardware-software implications for cloud & edge systems.

In ASPLOS (2019), ACM, pp. 3–18.

[18] Gong, Z., Gu, X., andWilkes, J. Press: Predictive elastic resource scaling for cloud

systems. In 2010 International Conference on Network and Service Management
(2010), IEEE.

[19] Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., and Akella, A.

Multi-resource packing for cluster schedulers. In ACM SIGCOMM Computer
Communication Review (2014), vol. 44, ACM, pp. 455–466.

[20] Gulati, A., Holler, A., Ji, M., Shanmuganathan, G., Waldspurger, C., and

Zhu, X. Vmware distributed resource management: Design, implementation,

and lessons learned. VMware Technical Journal 1, 1 (2012), 45–64.
[21] Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., and Bao, Y. Who

limits the resource efficiency of my datacenter: An analysis of alibaba datacenter

traces. In International Symposium on Quality of Service (2019), IWQoS ’19, ACM.

[22] Gupta, V., Lee, M., and Schwan, K. Heterovisor: Exploiting resource heterogene-

ity to enhance the elasticity of cloud platforms. In VEE (2015), ACM, pp. 79–92.

[23] Harlap, A., Tumanov, A., Chung, A., Ganger, G. R., and Gibbons, P. B. Proteus:

Agile ml elasticity through tiered reliability in dynamic resource markets. In

EuroSys ’17 (2017), ACM, pp. 589–604.

[24] He, L., Zou, D., Zhang, Z., Chen, C., Jin, H., and Jarvis, S. A. Developing

resource consolidation frameworks for moldable virtual machines in clouds.

Future Generation Computer Systems 32 (2014), 69–81.
[25] Hines, M. R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., and Ben-Yehuda,

M. Applications know best: Performance-driven memory overcommit with

ginkgo. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on (2011), IEEE, pp. 130–137.

[26] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. kvm: the linux

virtual machine monitor. In Proceedings of the Linux symposium (2007), vol. 1,

pp. 225–230.

[27] Lakew, E. B., Klein, C., Hernandez-Rodriguez, F., and Elmroth, E.

Performance-based service differentiation in clouds. In CCGrid (2015), IEEE,

pp. 505–514.

[28] Liu, H., and He, B. Reciprocal resource fairness: Towards cooperative multiple-

resource fair sharing in iaas clouds. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (2014), IEEE
Press, pp. 970–981. Weighted DRF with resource trading among applications.

[29] Liu, H., Jin, H., Liao, X., Deng, W., He, B., and Xu, C.-z. Hotplug or ballooning:

A comparative study on dynamic memory management techniques for virtual

machines. IEEE Transactions on Parallel and Distributed Systems 26, 5 (2015),

1350–1363.

[30] Marathe, A., Harris, R., Lowenthal, D., De Supinski, B. R., Rountree, B., and

Schulz, M. Exploiting redundancy for cost-effective, time-constrained execution

of hpc applications on amazon ec2. In HPDC (2014), ACM.

[31] Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. Agile: Elastic dis-

tributed resource scaling for infrastructure-as-a-service. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 13) (2013), pp. 69–82.

[32] Nitu, V., Teabe, B., Fopa, L., Tchana, A., and Hagimont, D. Stopgap: elastic

vms to enhance server consolidation. Software: Practice and Experience 47, 11
(2017), 1501–1519.

[33] Ouyang, J., and Lange, J. R. Preemptable ticket spinlocks: improving con-

solidated performance in the cloud. In SIGPLAN Notices (2013), vol. 48, ACM,

pp. 191–200.

[34] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,

and Merchant, A. Automated control of multiple virtualized resources. In

EuroSys (2009), ACM, pp. 13–26.

[35] Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,

A., and Salem, K. Adaptive control of virtualized resources in utility computing

environments. In SIGOPS Operating Systems Review (2007), vol. 41, pp. 289–302.

[36] Rao, J., Wei, Y., Gong, J., and Xu, C.-Z. Qos guarantees and service differentia-

tion for dynamic cloud applications. IEEE Transactions on Network and Service
Management 10, 1 (2013), 43–55.

[37] Schopp, J. H., Fraser, K., and Silbermann, M. J. Resizing memory with balloons

and hotplug. In Ottawa Linux Symposium (OLS) (2006), pp. 313–319.
[38] Sharma, P., Ali-Edlin, A., and Shenoy, P. Resource deflation: A new approach

for transient resource reclamation. In Eurosys (March 2019).

[39] Sharma, P., Guo, T., He, X., Irwin, D., and Shenoy, P. Flint: Batch-interactive

data-intensive processing on transient servers. In Eurosys (April 2016).
[40] Sharma, P., Guo, T., He, X., Irwin, D., and Shenoy, P. Flint: batch-interactive

data-intensive processing on transient servers. In EuroSys (2016), ACM.

[41] Sharma, P., Irwin, D., and Shenoy, P. Portfolio-driven resource management

for transient cloud servers. In Proceedings of ACM Measurement and Analysis of
Computer Systems (June 2017), vol. 1, p. 23.

[42] Sharma, P., and Kulkarni, P. Singleton: system-wide page deduplication in

virtual environments. In HPDC (2012), ACM.

[43] Sharma, P., Lee, S., Guo, T., Irwin, D., and Shenoy, P. Spotcheck: Designing a

derivative iaas cloud on the spot market. In EuroSys (2015), ACM, p. 16.

[44] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. Cloudscale: elastic resource scaling

for multi-tenant cloud systems. In Symposium on Cloud Computing (2011), ACM.

[45] Subramanya, S., Guo, T., Sharma, P., Irwin, D., and Shenoy, P. SpotOn: A

Batch Computing Service for the Spot Market. In SOCC (August 2015).

[46] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes,

J. Large-scale cluster management at google with borg. In EuroSys (2015), ACM.

[47] Waldspurger, C. A. Memory resource management in vmware esx server. OSDI
(2002).

[48] Wang, C., Urgaonkar, B., Gupta, A., Kesidis, G., and Liang, Q. Exploiting spot

and burstable instances for improving the cost-efficacy of in-memory caches on

the public cloud. 620–634.

[49] Wieder, A., Bhatotia, P., Post, A., and Rodrigues, R. Orchestrating the

deployment of computations in the cloud with conductor. In NSDI (2012).
[50] Wood, T., Shenoy, P., Venkataramani, A., and Yousif, M. Sandpiper: Black-box

and gray-box resource management for virtual machines. Computer Networks 53,
17 (2009), 2923–2938.

[51] Yang, Y., Kim, G.-W., Song, W. W., Lee, Y., Chung, A., Qian, Z., Cho, B., and

Chun, B.-G. Pado: A data processing engine for harnessing transient resources

in datacenters. In EuroSys (2017), ACM, pp. 575–588.

[52] Zhang, D., Ehsan, M., Ferdman, M., and Sion, R. Dimmer: A case for turning

off dimms in clouds. In Symposium on Cloud Computing (2014), ACM, pp. 1–8.

[53] Zhang, Q., Liu, L., Ren, J., Su, G., and Iyengar, A. iballoon: Efficient vmmemory

balancing as a service. InWeb Services (ICWS), 2016 IEEE International Conference
on (2016), IEEE, pp. 33–40.

[54] Zhao, W., Wang, Z., and Luo, Y. Dynamic memory balancing for virtual ma-

chines. ACM SIGOPS Operating Systems Review 43, 3 (2009), 37–47.
[55] Zhou, W., Yang, S., Fang, J., Niu, X., and Song, H. Vmctune: A load balanc-

ing scheme for virtual machine cluster using dynamic resource allocation. In

International Conference on Grid and Cooperative Computing (GCC) (2010), IEEE.

https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://www.haproxy.org
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata

	Abstract
	1 Introduction
	2 Background
	3 Feasibility of Deflation in Public Clouds
	3.1 Application Behavior under Deflation
	3.2 Usage-based Feasibility Analysis

	4 Deflatable Virtual Machines
	4.1 VM Deflation Mechanisms
	4.2 Transparent VM Deflation
	4.3 Explicit Deflation via Hotplug
	4.4 Hybrid Deflation Mechanisms

	5 Cluster Deflation Policies
	5.1 Server-level Deflation Policies
	5.2 Deflation-aware VM Placement

	6 Implementation
	7 Experimental Evaluation
	7.1 Evaluation Environment
	7.2 VM deflation of Web services
	7.3 Deflation-aware Web Load Balancing
	7.4 Impact Of Cluster Deflation Policies

	8 Related Work
	9 Conclusions
	References

