
SpotWeb: Running Latency-sensitive Distributed Web Services
on Transient Cloud Servers

Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek Sharma*, Prashant Shenoy
UMass Amherst, *Indiana University

{ahmeda,jwestin,binwang,shenoy}@cs.umass.edu,*prateeks@iu.edu

ABSTRACT
Many cloud providers offer servers with transient availability at
a reduced cost. These servers can be unilaterally revoked by the
provider, usually after a warning period to the user. Until recently,
it has been thought that these servers are not suitable to run
latency-sensitive workloads due to their transient availability. In
this paper, we introduce SpotWeb, a framework for running latency-
sensitive web workloads on transient computing platforms while
maintaining the Quality-of-Service (QoS) of the running applica-
tions. SpotWeb is based on three novel concepts; using multi-period
optimization—a novel approach developed in finance—for server
selection; transiency-aware load-balancing; and using intelligent
capacity over-provisioning. We implement SpotWeb and evaluate
its performance in both simulations and testbed experiments. Our
results show that SpotWeb reduces costs by up to 50% compared to
state-of-the-art solutions while being scalable to hundreds of cloud
server configurations.

ACM Reference Format:
Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek Sharma*, Prashant
Shenoy. 2019. SpotWeb: Running Latency-sensitive Distributed Web Ser-
vices on Transient Cloud Servers. In The 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’19), June
22–29, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3307681.3325397

1 INTRODUCTION
Cloud computing has become a popular paradigm for a wide range
of applications ranging from online web services to scientific work-
loads. Application providers find cloud platforms attractive for
hosting their applications since they can request and relinquish
resources on demand and use a pay-as-you-go model to pay for
their usage. Since customer demand for cloud servers can fluctuate
over time, cloud data centers are provisioned for peak demand. As
a result, the average utilization of the data center tends to be low
(~20% [19]). To improve utilization and revenues, cloud providers
have begun to offer idle servers at significant discounts under a re-
vocation model—these servers, referred to as transient servers, often
cost 70-90% less than traditional on-demand servers, but may be
unilaterally revoked when needed [37]. Transient servers increase

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3325397

cloud provider revenues while retaining the ability to reclaim these
resources and offer them to higher priority customers.

Since transient servers incur a fraction of the cost of non-revocable
cloud servers, they have become popular for running disruption
tolerant applications such as scientific batch jobs or data intensive
workloads [32, 34, 39, 40] using techniques such as checkpointing
and live-migration to mitigate the impact of revocations [18, 35].
A common use case is to acquire hundreds of transient servers for
distributed processing of a very large dataset (e.g. using Hadoop,
Spark or distributed machine learning).

Due to their revocable nature, transient servers have not been
considered suitable for running interactive and latency-sensitive
applications such as web services and interactive data anlytics. Such
applications have service level objectives (SLOs) that must be met,
but transient server revocations can result in downtimes and SLO
violations. In this paper, we ask an interesting research question: is
it feasible to reliably run latency-sensitive distributed applications on
transient cloud servers despite their revocable nature and yet provide
SLO guarantees? We use clustered web services as a canonical
representative of latency-sensitive distributed applications for this
paper; however our approach is general and is applicable to other
latency-sensitive distributed applications for scientific computing.

Our work builds on two recent research efforts in making tran-
sient servers more useful to applications. The recent ExoSphere
work [33] proposed the notion of server portfolios—groups of differ-
ent transient server types—and judicious portfolio server selection
to reduce the chances of correlated server revocations; each revoca-
tion event only preempts a fraction of the servers in the portfolio,
rather than all of them, enabling the distributed application to con-
tinue execution but with fewer resources. However, ExoSphere does
not incorporate the notion of SLOs into its portfolio selection and
is unaware of an application’s SLO needs. Tributary [15], on the
other hand, addresses this issue by performing SLO-aware selection
of a mix of transient servers. Neither ExoSphere nor Tributary are
explicitly designed for latency sensitive clustered web servers and
hence do not exploit application semantics. Further, both efforts
use past historical knowledge for transient server selection and do
not fully exploit future knowledge or predictions, if available, to
guide their decision making.

Our approach, which we call SpotWeb, is based on multi-period
portfolio theory from the domain of finance and can incorporate
both past knowledge and future predictions into decision mak-
ing. Knowledge of future predictions can often be used to improve
the decision making— for instance, knowledge of future workload
changes or price changes over a time horizon can yield better over-
all decisions when choosing transient servers. Multi-period portfo-
lio theory incorporates predictions over a finite future time hori-
zon into its decisions. In our case, predictions of future workload

https://doi.org/10.1145/3307681.3325397
https://doi.org/10.1145/3307681.3325397
https://doi.org/10.1145/3307681.3325397

Request
Arrival

Load Balancer

Front end
Tier

Backend
Tier

Logic Tiers

Figure 1: Multi-tier web architecture.
changes, price changes or future server demand can be incorporated
into the server selection algorithm. Our approach combines SLO-
aware provisioning of web servers with SLO-aware transient server
selection to determine an appropriate selection of heterogeneous
servers and the degree of over-provisioning. SpotWeb also includes
a transiency-aware cluster load-balancer and prediction algorithms
to mask the impact of server revocations on applications.

In designing and implementing SpotWeb, our paper makes the
following contributions:

• We develop a new framework based on multi-period port-
folio optimization, a novel approach from economics and
finance, for running clustered web services on transient
servers while enforcing SLOs, reducing provisioning costs,
and decreasing latency.

• We present transiency-aware load-balancing and transiency-
aware prediction algorithms and showhow adding transiency-
awareness to traditional load balancers and prediction algo-
rithms is crucial for maintaining high QoS and low latency
in clustered web services.

• We implement a full prototype of SpotWeb and deploy it on
real cloud platforms. We open source our code and data to
enable other researchers to build on our work.

• We evaluate SpotWeb extensively in a real testbed and in
a simulated environment. We show how SpotWeb saves up
to 50% of the costs compared to state-of-the-art techniques
while reducing or completely eliminating SLO violations.

2 BACKGROUND
Transient Cloud Servers. Traditional cloud platforms have of-
fered servers to customers on an on-demand basis—such servers
can be requested by a customer at any time and are assigned to
the customer until relinquished (i.e. they are non-revocable). More
recently, cloud providers have begun to offer surplus server capac-
ity (i.e. idling servers) in the form of transient servers. Transient
servers are offered at deep discounts (70-90% cheaper than on-
demand servers [14]) but are revocable by the cloud provider. Thus,
when the demand for higher priced on-demand servers rises, the
cloud provider can unilaterally preempt transient servers and offer
them to higher paying customers. Typically the cloud providers
offers an advance warning (e.g. 30s to 2min) to a transient server
prior to terminating it; this advance warning allows for graceful
saving of application state and application shutdown prior to server

termination. Today, major cloud providers offer transient servers in
the form of Amazon EC2 Spot Instances, Azure Low-priority Batch
VMs, and Google Preemptible VMs.
Transient Server Characteristics.A typical cloud provider offers
servers with many different hardware configurations (CPU cores,
memory size, disk type and capacity, etc.). A cloud customer is ex-
pected to choose the appropriate configuration for their application.
The number of different configurations continue to grow—Amazon
EC2 offers over 160 different server types, while Google Cloud Plat-
form offers more than 30 standard machine types, but also allows
the user to custom-build a VM configuration. Most server configura-
tions are offered in the form of on-demand and transient instances.
The demand for different server configurations fluctuates over time
based on variations in demand from customers for that server type.
Thus, each cloud server configuration forms a market that sees
varying demand. The revocation probability of a market is based
on the demand dynamics of the market [2]. Previous work looked
at the problem of bidding and capacity provisioning for clusters
running on transient servers [8, 9, 23].
Multi-tier Web Servers and Elastic Scaling.Modern web appli-
cations employ a multi-tier architecture comprising of a front-end
application tier containing the application logic, and a back-end
data tier containing application data. The front-end application tier
may also employ a microservices model where functionality is split
into smaller microservices that collectively implement the font-end
logic. Modern designs keep microservices stateless, to the extent
possible, and persist application state (e.g. session state) as well as
application data in the back-end tier, often using databases [25].

The web application is assumed to be clustered to scale applica-
tion capacity—the front-end tier is replicated on multiple servers
and a load balancer is used to distribute requests among front-end
tier replicas [42] (see Figure 1). The load balancer is assumed to
be capable of distributing the incoming requests across a heteroge-
neous front-end cluster via schemes like weighted round robin. The
load balancer node is also assumed to run on a non-revocable cloud
server. The back-end tier may be clustered as well (i.e. replicated
or partitioned databases). For the purpose of this work, we assume
that the back-end tier is well provisioned for peak and its capac-
ity does not need to change dynamically. Since the back-end tier
is responsible for storing data and state, we also assume that the
back-end tier runs on non-revocable (i.e. on-demand) cloud servers.
The front-end nodes on the other hand can run either on transient
or on-demand servers and the servers can be heterogeneous.

Since web requests need to be serviced with low latencies to
ensure good user-perceived performance, web applications specify
these performance requirements in terms of Service Level Objec-
tives (SLO). The SLO objectives may specify a target mean service
time, an upper bound on the tail latency, a threshold on SLO vi-
olations, or other similar criteria. Web workloads are known to
be dynamic in nature and exhibit fluctuations over multiple time
scales—such as time of day effects and workload spikes [1, 5]. Since
the performance SLO requirements need to be met in the presence
of these fluctuations, there has been significant research on elastic
scaling (also referred to as dynamic capacity provisioning) which in-
volves varying the application (i.e. front-end tier) server capacity to
respond to workload changes [12, 17, 28, 29]. Broadly, elastic scaling
techniques can either be proactive, where predictive methods are

used to predict future peak workloads and capacity is provisioned
proactively for these peaks, or reactive, where provisioning actions
are taken in response to currently observed workload changes [30].

3 THE CASE FOR MULTI-PERIOD
PORTFOLIO SELECTION

To reliably run a multi-tier web application on transient servers,
our approach, SpotWeb, incorporates the following ideas:
Diversified Server Selection. Intelligent transient server selec-
tion is a key requirement. Intuitively, we should choose transient
servers that belong to stable markets and have the least preemp-
tion probability (i.e. high MTTFs). At the same time, since cost is
a consideration as well, the normalized cost (e.g. cost per request)
should also be as low as possible. However, if we provision all front-
end servers with a single transient server type, a revocation event
can cause all front-end replicas to fail simultaneously, resulting in
application downtime.

To avoid losing the entire cluster of front-end nodes. A second
requirement is to employ diversification of the server pool by choos-
ing transient servers of different types such that their demand is
uncorrelated. In that case, revocations of one configuration will not
impact other markets and the application will only lose a fraction
of its nodes. The greater the diversification, the lower the risk of
concurrent revocations. This idea was posed as a portfolio selection
problem in ExoSphere [33], where a heterogeneous portfolio of
servers was chosen to minimize risk-adjusted cost.
Judicious capacity over-provisioning. A clustered web applica-
tion running on transient servers sees two types of dynamics. First,
temporal changes in workload requires the resource allocation to
change over time. Second, transient server revocations and price
dynamics cause supply changes over time. While elastic scaling
approaches have long studied the problem of handling workload
dynamics, they do not address the issue of capacity changes caused
by transiency dynamics. The two types of dynamics have similar
effects—workload increases can cause the desired capacity to exceed
provisioned capacity while revocations can cause the provisioned
capacity to fall below the desired capacity—both resulting in SLO vi-
olations. Thus, intelligent capacity provisioning entails judiciously
over-provisioning the chosen portfolio of servers so as to handle
both workload spikes and revocation-driven capacity drops.
SLO-awareness. Since the overarching goal is to provide SLO
guarantees, both server portfolio selection and provisioning server
capacity for a chosen portfolio must be SLO-aware.
Exploiting FutureKnowledge.Webworkloads often exhibit tem-
poral trends such as time of day effects or steady growth that are
amenable to future predictions. Proactive autoscaling methods have
employed future workload prediction techniques to forecast future
workloads to auto provision capacity with the future prediction
in mind. Portfolio selection methods for transient servers, on the
other hand, have exploited past histories of prices and revocation
rates to construct server portfolios that do not explicitly utilize
future knowledge of workloads, or other factors, for decision mak-
ing. A key insight of this work is that future predictions of workload,
price, or failure rates, when available, should be exploited for choosing
SLO-aware portfolios and provisioning servers for the chosen portfolio
mix.

Application-awareness. Transiency dynamics can typically be
handled either at system-level or application-level. Prior work on
batch workloads has demonstrated the benefits of making applica-
tions such as Spark distributed data processing transiency-aware
[32]. Building on this insight, we argue that latency-sensitive ap-
plications such as multi-tier web applications also benefit from
awareness of transiency dynamics. In particular, the load balancer
for the clustered front-end tier should be aware of revocation of
servers within the cluster, and should mitigate the impact of such
revocations on user requests/sessions.

3.1 Limitations of Prior Approaches
There are a number of prior research efforts that address various
facets of the above requirements, but each has shortcomings ne-
cessitating a new approach. The significant body of research on
predictive (aka proactive) autoscaling has exploited future work-
load knowledge for decision making [12, 17, 41], but autoscaling
research only addresses workload dynamics and does not address
transiency dynamics or the issue of cloud server selection [30].

The ExoSphere effort proposed the notion of server portfolios
and mitigating revocation risk via diversification (and use of het-
erogeneous mixes to avoid concurrent revocations). ExoSphere was
however designed for batch-style distributed applications such as
Spark and is not SLO-aware—a key need for interactive web ser-
vices. Whereas ExoSphere targets short-lived applications (running
time of a few hours) and provides them with static portfolios, web
applications are continuously running, and require dynamic port-
folios. Moreover, ExoSphere is purely backward-looking, and does
not attempt to forecast application load and server prices, which is
essential in the context of long-running applications.

More recently, Tributary builds on ExoSphere portfolio notion
and proposes a method for SLO-aware portfolio selection with
scaling. While Tributary is the closest to our SpotWeb work, it is not
designed specifically for multi-tier web applications and thus does
not incorporate or exploit application-awareness for transiency
dynamics. Furthermore, Tributary’s server selection policy’s time
complexity is exponential, making it unsuitable for large public
clouds that have a large number of markets. Tributary aims to
predict future preemptions by predicting the market price of an
instance, it does so with the aim of making use of markets that
are about to fail to get “free” resources. This is based on AWS’s
obsolete cost model which was to refund the user if the spot market
price of an instance exceeds the bid price during its first hour.
The predictions are nevertheless not used to calculate the optimal
diversification in terms of per-request costs, failure costs, or SLO
violation costs. Both approaches use past histories of prices and
revocations to make an intelligent decision for the next time step—
they do not use a longer time horizon of the future for decision
making.

Finally Qu’s work uses [29] a user-specified threshold for the
number of concurrent failures to determine the degree of over-
provisioning of heterogeneous transient servers. Tributary as well
as our approach only requires SLOs and determining the failure
probabilities as part of the decision making. Table 1 provides a
comparison of various approaches.

ExoSphere Tributary Qu et al. SpotWeb
Heterogeneous
Servers Yes Yes Yes Yes

SLO-awareness No Yes Indirect Yes
Auto-scaling No Yes Yes Yes
Exploit Future
Forecast No Partially No Yes

Latency-aware
provisioning No No Yes Yes

Table 1: Comparison between different approaches

3.2 SpotWeb System Overview
The SpotWeb approachmeets the above requirements and addresses
the limitations of prior work by combining three key ideas: (i) multi-
period optimization of portfolio selection over future horizons,
(ii) a transiency-aware load balancing algorithm, and (iii) a set of
predictors to predict the dynamics in the system.

Server portfolio selection is based on the problem of choosing
a financial portfolio comprising of various asset classes such as
stocks, bonds, etc. so as to maximize risk-adjusted returns. The key
insight is that choosing an uncorrelated mix of assets can insulate
the overall portfolio when one asset class (e.g. stocks) experiences
large declines. ExoSphere [33] leverages a well known optimization
approach from economics and finance called Modern Portfolio The-
ory [22], first proposed in 1952, for choosing an optimal portfolio
of transient servers. However, such a "single period" portfolio selec-
tion approach uses past histories of prices, and price correlations
across markets when choosing a mix. Economists have observed
that rebalancing the portfolio periodically (as asset prices change)
incurs transaction costs and can lead to suboptimal decision mak-
ing. For instance, if a forecast calls for a decline in one asset class
(e.g. stocks) since it is overvalued, such future knowledge should
be exploited for better decision making.

The same insight applies to server portfolio selection as illus-
trated by the following example.
Example 1: Consider a web application that has a choice of two
server types—a small server that can service 10 req/s and a large
server that can service 100 req/s. Let the costs of these servers be 2
c/hour and 15 c/hour respectively. Suppose that the web application
is initially provisioned using two small servers and the incoming
request rate for the next hour is 25 req/s. Single-period optimization
will then provision a third small server yielding a capacity of 30
requests. However, if workload forecasts show that a prediction
of 25 for the next hour rising to 110 requests for the following
hour, a better choice would be to provision the third server as a
large server since it yield a lower cost overall and also there are
fewer "transactions" in terms of starting and stopping servers in
the portfolio. Thus, any type of future knowledge over a finite time
horizon can be useful for better decision making. This motivates
the need for multi-period portfolio selection approach employed
by SpotWeb.

Similarly application-awareness of transiency dynamics can help
mitigate the impact of server revocations on SLO violations. In the
case of multi-tier web applications, this can be done by making the
load balancing algorithm transiency aware since transient server
revocations include an advance warning (of 30-120s) from the cloud,
passing this warning to the load balancing algorithm allow for a

graceful "failover" of user sessions from the servers to other cluster
servers with spare capacity. Since the system is over-provisioned for
both peak workload and server revocations, transient revocations
may often occur at times other than peak load duration, allowing
for spare capacity on other servers to absorb load from revoked
servers. Of course, revocation during peak load duration may lead
to some SLO violations and can be mitigated by appropriate level of
over-provisioning. Having provided the intuition for our approach
we now present the design of SpotWeb.
Components Overview Our SpotWeb system has four main com-
ponents that implement the above key ideas (see Figure 2). The four
components are:

(1) Transiency-aware Load Balancer. Load balancers are a
crucial component of any web system that directly affect
the overall latency of the requests [42, 43]. Deploying web
clusters on heterogeneous resources is challenging as most
available load balancers do not necessarily handle resource
heterogeneity well [13]. Running web-clusters on Spot in-
stances adds evenmore complexity as resource heterogeneity
will depend on the market mix and the workload dynamics.

(2) Load Monitoring. SpotWeb’s optimization depends on ac-
curate and up-to-date measurement data from the transient
cloud. The monitoring system collects data on the failure
probabilities, and the price changes of the different markets.
In addition, the monitoring system polls data from the load
balancer on the average and tail response times of the service
requests, and on the request arrival rate.

(3) Transiency-aware predictors. SpotWeb uses three predic-
tors to predict failure probability, per request price changes,
and request arrival rates.

(4) MPO Optimizer. The central component of SpotWeb is the
multi-period portfolio optimizer to calculate an optimal re-
source allocation that considers both past trends and future
predictions to select a portfolio of servers. The optimizer
uses the outputs from the predictors along with data from
the monitoring system to choose the optimal portfolio allo-
cation.

4 SPOTWEB DESIGN
To better understand how SpotWeb works, we discuss and explain
how the optimizer, the load balancer, and the predictors are de-
signed. The core of SpotWeb’s functionality is the optimizer which
is responsible for the server portfolio selection based on the system
dynamics. In this Section, we start with an overview of modern
portfolio theory, and then present SpotWeb’s portfolio selection
mechanism that exploits future knowledge over a time horizon. We
then explain the load balancer and prediction algorithms, and how
they integrate with the optimizer.

4.1 Overview of Portfolio Theory
Portfolio optimization theory was pioneered by Markowitz in his
seminal paper published in 1952, where he formulated the choice of
an investment portfolio as an optimization problem balancing off
risks and returns [4, 22]. The theory has since evolved and found
applications in many domains including computer science [16, 38]
where it has been used to solve problems related to scheduling in

scientific workflows [6], transient computing [33], and industrial
workflows [20].
Single Point Portfolio Optimization. The classical portfolio op-
timization problem – used by ExoSphere – seeks to select a portfolio
of financial assets, such as stocks and bonds, in order to maximize
risk-adjusted returns. The classical formulation of the problem
seeks to optimize the selection over a single time period, and is
thus referred to as Single Point portfolio Optimization (SPO). The
SPO problem can be formulated as follows:

Maximize E
[
Return

(
t
)]

−
(
cost

(
t
)
+ α(Risk

(
t
)
)
)
, (1)

E[Return] is the expected return from holding a portfolio for the
trading period duration t , cost is the cost of owning and holding a
portfolio plus any trading fees, Risk denotes the risk function which
is an estimate of the variance of the return as a function of the return
covariance of the different assets, and α denotes the risk aversion
parameter. The risk aversion parameter quantifies the investor’s
attitude towards risk. There is a rich theory on how to choose and
calculate α for financial portfolios [10]. Note that the optimization
chooses an optimal portfolio for the next interval t based on current
and past information, but does not use any predictions.

Since asset prices fluctuate over time, a given portfolio will be-
come sub-optimal over a longer time horizon beyond the interval t ,
and will need to be adjusted. This can be achieved by re-running the
optimization periodically; however doing so may yield a completely
different selection of assets, resulting in significant churn and costs.
Further, the approach does not incorporate any future knowledge
even if available. Thus, if one asset class is overvalued and expected
to decline in the future, such knowledge is not explicitly used when
choosing the current portfolio.
Multi-period Portfolio Optimization (MPO) is an optimization
technique that is designed to avoid themain drawbackswith SPO [24].
In multi-period portfolio optimization, future predictions of the
market dynamics are used to select a portfolio. Instead of solving
the portfolio selection problem for time-window t as done by SPO,
MPO solves the portfolio selection problem over a planning hori-
zon, H , using future prediction values of various time-dependant
variables. In other words, we solve the portfolio selection problem
for time intervals: t , t + 1, t + 2, . . . , t + H − 1. By doing so, MPO
aims to reduce churn in the allocation while maximizing the best
future selection strategy.

MPO generalizes the SPO approach and calculates a portfolio
for each time interval over a horizon H :

Maximize
t+H−1∑
τ=t

E
[
Return

(
τ
)]

−
(
cost

(
τ
)
+ α(Risk

(
τ
)
)
)
. (2)

Clearly, MPO depends on the prediction accuracy of the time-
dependent variable of concern (e.g., prices). Since no predictor is
entirely accurate, and since prediction errors tend to increase with
the length of the prediction horizon, these errors propagate to the
portfolio selection. It is thus important to use a predictor that has
self-correcting capabilities (as discussed later in Section 4.3), and
to limit error propagation while selecting a portfolio. Therefore,
while all trades over the horizon H are computed, only the first
interval portfolio allocation is actually executed to limit error prop-
agation and allow the predictor to adjust to prediction errors. This
is repeated for every interval of time τ .

4.2 Intelligent Transient Server Selection
We now turn our attention to how SpotWeb uses MPO theory to
select a portfolio of servers. Consider a multi-tier web application
that needs to be provisioned in a cost-effective fashion on a cloud
platform. We assume that the load balancing node and the back-
end tier are provisioned on non-revocable on-demand servers and
adequately provisioned for worst-case peaks. The application tier,
on the other hand, can be provisioned using an arbitrary mix of
on-demand and transient servers of various configurations. The
application specifies a Service Level Objective (SLO) in terms of
a threshold on the high percentile of the service time and a per-
request penalty P for any SLO violations. We assume that both the
incoming workload to the application and the price of computing
resources fluctuate over time. Our goal is to adequately provision
capacity so as to handle workload dynamics and server revocation
dynamics while meeting SLO guarantees and reducing provisioning
costs.

Let λt denote the predicted peak request rate seen by the appli-
cation in time interval t . Since workload forecasting is well-studied
we assume any suitable workload predictor is used to forecast the
future workload in each time interval t over the future planning
horizon H .

To understand how SpotWeb provisions a multi-tier web appli-
cation on transient servers, consider a cloud platform that offers
different server configurations. Each server configuration is offered
as a non-revocable on-demand server and a revocable transient
server, yielding a total of N = 2S choices. Each server configuration
si can serve up to r i requests with no SLA violations.

Let priceit denote the price of a server configuration, i ∈ N , over
time interval t . On-demand servers have fixed prices and priceit for
an on-demand server is constant. Some cloud providers offer fixed
discounts for transient servers and priceit will be constant for such
servers. Other providers (e.g. EC2 spot servers) see fluctuations in
prices. If a price predictor is available, then priceit will vary over the
time horizonH . If price prediction is unavailable, a fixed priceit may
be used (in which case the algorithm will optimize for workload
and/or failure dynamics but not price dynamics).

Let f it denote the mean expected revocation probability over
each interval t. On-demand servers are non-revocable f it = ∅ for
such servers. For transient servers, Amazon publishes expected re-
vocation probabilities using Spot Instances Advisor 1. Tributary [15]
uses an LSTM neural network model to predict f it for the next in-
terval t + 1. Such models can be extended to make predictions over
a time window t + H . We assume a covariance matrix M which
capture pairwise covariance in revocation events.

The SpotWeb algorithm aims to choose a subset of server con-
figuration from N choices (the portfolio) as well as the number of
servers of each chosen configuration for each time interval t over
the horizon H so as to:

• Handle the expected peak workload λt in each interval while
minimizing penalty P from SLO violations.

• Minimizes the cloud costs incurred based on server prices
P it based on the risk the application is willing to tolerate.

1https://aws.amazon.com/ec2/spot/instance-advisor/

• Reduce the frequency of revocation as well as the probability
of concurrent revocation across different configurations.

The algorithm employs multi-period optimization that is SLO-
aware and optimizes risk-adjusted cost over a time horizon H . The
objective is to optimize the risk-return trade-offs by deploying a
number of servers nit of server type si , such that, the total number
of servers deployed is sufficient to serve all the request λt at any
given time, with minimal or no SLA violations. The number of
requests served by a server of type si is ri .

The cost of provisioning is the cost associated with acquiring
a certain server type to serve the workload. While we can use
the server prices, priceit , we note that a server can be cheaper in
price, but serve a limited number of requests per second due to
its configuration. The price should therefore be adjusted to the
servers’ ability to serve requests. LetCit represent the adjusted cost
of service per request on a given server configuration si . The per
request average cost of service can be calculated asCit = price

i
t ÷r i .

As we use a weighted round robin algorithm for load-balancing
the requests across the cluster, the fraction of the total number
of requests allocated to all servers of type si is Ait = nit ri/λt . For
an over-provisioned system,

∑
i A

i
t > 1, while for a system that is

under-provisioned
∑
i A

i
t 1 < 1.

The cost of provisioning for the next time unit is thus,

Cost of Provisioningit = Aitλ
p
t+1C

i
t = n

i
t
ri
λt

λ
p
t+1C

i
t , (3)

where λpt+1 is the predicted workload at time t + 1. If the workload
is static, λt = λ

p
t+1 and Equation 4.2 is the cost of renting the servers

using the portfolio allocation.
In addition to the provisioning costs, we need to account for

SLA violation costs. These costs occur due to; a) capacity shortages
when the number of deployed servers is less than the actual de-
mand due to a misprediction by the predictor, b) the percentage of
requests L dropped when an instance is revoked because they were
not migrated to another instance before the warning period expires.
Capacity shortages due to mispredictions can be calculated a poste-
riori as λt+1 − λ

p
t+1. As the cost is calculated a priori, we need to

account for this value by keeping track of the mean-absolute-error
over a window of some recent predictions.

The number of requests dropped due to the failure dynamics
of transient resources depends on the percentage of long running
requests that can not be migrated within the warning period when
a transient failure occurs L, the number of requests running on the
failing server Ait+1λt+1, and the probability that a server fails f it+1.
Therefore, the SLA violation costs are represented by ,

SLACost it =

{
PAit+1(f

i
t+1λt+1L + λt+1 − λ

p
t+1), if λt+1 − λ

p
t+1 > 0

PAit f
i
t λt+1L, otherwise

.

(4)
In this formulation, we assume that there is penalty associated with
not serving a request due to lack of capacity needed at t + 1, but
no extra penalty (besides the provisioning costs) for having some
extra capacity. While the model supports adding such a penalty, for
most latency-critical workloads, under-provisioning is more costly
compared to over-provisioning.

Finally, the risk associated with a certain portfolio can be repre-
sented in different ways (see [3] for example risk representations).

A common way for representing a given portfolio’s risk is the tra-
ditional quadratic risk measure, which we model as,

Riskit = α(Ait)⊤MAit , (5)

where α is the risk aversion parameter as discussed earlier, and
M is the covariance matrix of pairwise market revocation events
which can be inferred from the changes in the failure probability
over time.

The optimization can then be formulated to,

Maximize
t+H−1∑
τ=t

E[Return] − (Cost of Provisioningiτ+

SLA Violations costsiτ + Risk
i
τ)

(6)

such that,

Ait ≥ 0, (7)∑
i
Ait ≥ AMin . (8)∑

i
Ait ≤ AMax (9)

Ait ≤ aMax (10)

AMin is the minimum percentage of requests that need to be
served without violating and SLA, AMax is the maximum percent-
age of requests that can be served by an allocation when a spike
occurs, and amax is the maximum percentage of requests served
by any server type. In other words, AMin provides the application
owner with the ability to allow for some under-provisioning,AMax
sets the maximum over-provisioning allowed in the system, and
aMax allows the application owner to influence the diversification
by setting the maximum requests directed to any server configura-
tion. If aMax is set to 1, the system relies on the optimizer only to
choose the diversification level of the portfolio. If some applications
need to control the maximum allocation per server type, aMax is
set to the maximum fractional allocation.

We set E[Return] to zero. As previously stated, E[Return] is the
expected return from holding a certain portfolio for the duration
of a “trading period t”. Setting E[Return] to zero turns the main
objective of SpotWeb’s optimization to a cost minimization problem.

4.3 Intelligent over-provisioning
Since revocations and failures are sure to occur, SpotWeb needs
to mitigate for these failures by over-provisioning the resources
allocated in order to handle failures when they occur. Nevertheless,
SpotWeb should ensure that the cost of running the cluster does not
increase significantly. Similar to traditional scalingmechanisms that
correct prediction error by adding extra capacity or “padding” [36],
it is crucial for SpotWeb to over-provision the system intelligently
depending on both the predicted workload, prediction errors, and
server revocations.

Web workload prediction and auto-scaling has been well studied
in the literature [1, 12, 36]. Recent work has shown that no single
workload prediction algorithm is accurate for all workloads [17, 28].
SpotWeb’s predictor is based on the workload prediction algorithm
introduced in [1], where the authors used a combination of cubic
spline regression, and outlier detection to predict web workloads.

The authors’ algorithm nevertheless does not support multi-horizon
predictions. Cubic splines are a popular form of non-linear regres-
sion [31]. A spline is a piece-wise polynomial where a number of
base functions are connected between “knots” or joints, with the
coefficients of each function fixed between the knots, and with the
derivatives of the right and left piece-wise polynomials being equal
at the connecting knots.

In SpotWeb, we base our predictor on [1] and extend it to support
transiency, multi-period predictions, and handling larger workload
spikes. We train a cubic spline function using a moving window of
two weeks, predicting the workload for the next time unit. Spline
predictors with a moving window are adequate for modeling and
predicting repeating trends in the workload, e.g., predicting the diur-
nal patterns, but they provide a poor prediction for non-repetetive
patterns such as spikes. For spike prediction, [1] uses an Auto-
Regressive Model (AR) model with lag structure one. We found that
their model is sufficient for predicting small spikes but underesti-
mates the amount of over-provisioning required to handle server
revocations or larger spikes.

To calculate the over-provisioning required, SpotWeb calculates
the 99th% confidence interval around each prediction. The 99th%
confidence interval is a range where the probability of a predicted
value lying within that range is 0.99. It has two bounds, an upper
bound, and a lower bound. The upper bound is then used to provide
the over-provisioning required by SpotWeb, and to set the predicted
required capacity in the MPO algorithm. We note that SpotWeb can
integrate any other predictors out-of-the-box.2

4.4 Transiency-Aware Load-Balancer
Running web-clusters on Spot instances requires more complex
load-balancers that are transiency-aware. Besides server utilization,
server revocations and changes in the portfolio should dictate how
the load-balancing is performed. Server revocations require the
load-balancer to adapt quickly to failures, ceasing to send requests
to the revoked servers, and possibly migrating workloads running
on the revoked servers to other servers. SpotWeb’s load balancer im-
plements a novel adaptive weighted round robin (WRR) algorithm
to handle transiency and dynamic heterogeneity.

The total server capacity is provisioned using the workload pre-
dictor and the multi-period portfolio optimizer to handle peak work-
loads and expected revocations in each interval. Whenever a revoca-
tion occurs, the cloud VM receives an advance revocation warning
signal before termination. SpotWeb monitors such signals and re-
lays them to the load balancing algorithm. The transiency-aware
load-balancer exploits the warning periodW for load redistribution
and capacity reprovisioning.

On load redistribution, the load balancer migrates all user ses-
sions on the revoked server to the remaining servers while directing
new request to the non-revoked servers. Since capacity is overpro-
visioned, the non-revoked servers will usually have idle capacity
to absorb the load from the revoked servers. In such cases, no SLO
violation will occur, since the transiency aware load balancer seam-
lessly switch over all sessions within the revocation warning period

2For example, our implementation of other predictors:
https://github.com/ahmedaley/Autoscalers

W prior to the termination. Of course, this only occurs under the as-
sumption that application servers or microservices running on each
frontend node are stateless, which allows requests and sessions to
move to a different node.

Note that such a seamless switch-over with no SLO violation
may not always be feasible. For example, If the application sees
peak workload, server utilization in the cluster will be high and
the remaining servers may not have adequate headroom to ab-
sorb the load from revoked servers. Further, despite attempting
to minimize concurrent revocation across server types (markets)
such revocation may still occur (since predicted correlation may
not always be accurate). Concurrent revocation further reduces
cluster capacity and can cause SLO violation. When a revocation
occurs, the load-balancer communicates the failure to the workload
predictor. If there is not enough resources to handle these failures
via redistribution, the predictor decides to reprovisions capacity,
starting new VMs to handle the load on the revoked VMs. These
VMs need to be started as quickly as possible in order to migrate
the load of the revoked machines to these new machines. In some
cases, the start-up time for the new servers can be longer than the
revocation warning period. In such cases, the load-balancer acts as
an admission controller, dropping or delaying requests that can not
be served without overloading the running servers to protect the
remaining servers from becoming overwhelmed.

When the MPO algorithm changes the portfolio, adding or re-
moving new instance types to the mix, the load balancer needs to
adapt to these changes. The newly added instance type(s) might
have different capacities from the old instance types of the previous
portfolio. On each new portfolio selection, the MPO algorithm up-
dates the load balancer with the new portfolio, adapting the weights
of the round robin algorithm to reflect the new portfolio allocation.
5 SPOTWEB IMPLEMENTATION
Wenow turn our attention to amore detailed description of SpotWeb’s
implementation. As already mentioned, SpotWeb’s code and data
are open-source 3.

5.1 Architecture Overview
SpotWeb’s system architecture is shown in Figure 2 with its four
main components (the yellow boxes). The main user-facing compo-
nent is the load-balancer. Similar to any web cluster, user requests
are directed to the load balancer to decide which server in the clus-
ter should serve that request. From a user-perspective, SpotWeb’s
load-balancer behaves similar to any traditional load-balancer, con-
cealing the transiency behavior from the user.

The load-balancer also collects application level monitoring data,
monitoring the response time distribution, the request arrival rate,
the system throughput, the queue lengths of the servers, and the
dropped request rate. This data is exposed via a REST interface to
the workload predictor, and is used to predict the future workload.
Similarly, SpotWeb’s System Monitoring component monitors vi-
tal system metrics, namely, the market prices, and the revocation
probability of a server, and feeds this data to the price and failure
predictors. We have found that for almost all markets, there is no,
to very little dynamics, in the revocation probability. The failure

3Code repo: https://github.com/ahmedaley/SpotWeb

Failure

predictor

W
orkload

predictor

Price

predictor

SpotWeb Optimizer

SpotWeb
Core

Transient Cloud

Transient server
Pool Type 1

Transient server
Pool Type 2

Transient server
Pool Type n

Pr
ice

 D
at

a

Pro
vis

ion
ing

 ac
tion

s

SpotWeb

Load Balancer

wo
rk

loa
d

 St
at

ist
ics

SpotWeb system Monitoring

Failure Data

Request
Arrival

Request
Assignment

Figure 2: SpotWeb System Architecture.
predictions in our experiments are thus done reactively, i.e., we
assume that for the next time unit, the failure probability will be
equal to the measured probability now.

SpotWeb’s optimizer runs periodically to compute an optimal
portfolio of servers. When the optimizer runs, it polls the predictors,
to get new predictions for the future request arrival rates, failure
rates, and the future per request price. Once a new portfolio is
calculated, the optimizer starts the new machines and updates
the load-balancer with the new portfolio. As we show later (see
Figure 7(b)), SpotWeb’s optimizer is scalable, requiring subseconds
to 5 seconds to calculate a portfolio, thus allowing us to run the
optimizer frequently. That being said, there are reasons to run the
optimizer on longer time-scales. First, starting a transient server and
initializing the application can take seconds to minutes depending
on the time taken to get the spot VM, but also to load the application
and reconfigure it to join the cluster. Second, while most cloud
providers have moved to a per-second billing model, some cloud
providers, such as Microsoft Azure, support only hourly billing.

5.2 Implementation Considerations
SpotWeb is implemented in Python and R. The design is modular
allowing the user to use either all the components of SpotWeb, or
some of them with, e.g., different predictors or load-balancers.
SpotWeb Optimizer is the main component that implements the
MPO logic described in Section 4.2. It is implemented in Python 2.7
with more than 1500 LOCs, and is based on CVX-Portfolio [3]. The
optimizer is designed to enable users to easily integrate new costs
models, constraints, and risks functions. For solving the optimiza-
tion problem, we use CVXPY [7] with the SCS solver [26, 27]. The
optimizer runs periodically with a configurable parameter for the
period length. On initialization, the user specifies the look-ahead
period length, and the constraints to be used,
SpotWeb’s Load-BalancerTo implement SpotWeb’s load balancer,
we havemodifiedHAProxy, awidely used open-source load-balancer,
to enable transiency awareness. We chose HAProxy as it works as

both a level-4 (TCP) and a level-7 (HTTP) load-balancer. In addition,
HAProxy implements weighted round robin as one of four main
load balancing algortihms. It does not nevertheless provide an in-
terface to change the weights for the different server types online.
We have thus implemented a wrapper around HAProxy’s Weighted
Round Robin Algorithm changing the weights online. The wrapper
provides a REST interface that gets called by the optimizer to reset
the weights after each new portfolio is calculated. The weights are
set to be equal to the relative weight of a market within the portfolio.
HAProxy provides halog, a tool for reporting service statistics. We
use this tool to get updates monitoring data by exposing the tool
via a REST interface that can be called by the workload predictor
to get up to date performance statistics, in addition to the request
arrival rate. The load balancer changes are implemented in Python
and Kotlin in a total of around 300 LOCs, and are wrapped in a
Docker container.
SpotWeb’s system monitoring. The system monitoring compo-
nent keeps track of all price changes, failure probability changes,
and the warning periods for any revoked machines. On a revocation
warning, the monitoring system forwards it to the Load balancer.
In addition to data collection, the system monitoring component
also does some data cleaning and conversions. For example, as the
AWS EC2 posted prices are posted per machine type, the system
monitoring component calculates the per-request price. The time-
series for failure probability and prices are polled by the predictors
periodically. We implemented the system monitoring component
for EC2 in Python in around 300 LOCs.
SpotWeb’s predictors The predictors are implemented in both
R and Python 2.7, using RPY2 for interfacing. The predictors are
mainly used by the MPO algorithm to predict future request arrival
rates, future price dynamics, and future revocation probability.

For cost and arrival rate predictions, we mainly use the predictor
described in Section 4.3. Our implementation is around 200 LOCs for
the predictor. In addition, we provide implementations of multiple
state-of-the-art open sourced prediction algorithms that can be
used instead of our predictor.

6 EXPERIMENTAL EVALUATION
For evaluating SpotWeb, we run both testbed experiments and
extensive simulations with multiple workloads and SpotWeb con-
figurations. The testbed experiments run on Amazon’s EC2 spot
markets using up to 36 spot markets. For the simulations, we de-
velop a discrete-event simulator in Python which enables us to test
SpotWeb more extensively. We run testbed experiments to evaluate
latency related performance of SpotWeb, while we use simulations
to evaluate long-term cost savings for large-scale clusters with
many markets, and large numbers of instances.
Workloads. Figure 3 shows the workload traces we use in our
experiments. The first workload is a 3 weeks trace of the request
arrival rate on the English Wikipedia for the first 3 weeks of June
2008 (Figure 3(a)). The second trace is a 3 weeks long trace from
TV4, a major Swedish Video-on-Demand (VoD) service provider,
detailing the requests issued by the premium service subscribers to
TV4’s VoD service in January, 2013. The first workload has very few
spikes, while the second one has multiple, hard to predict spikes. As

(a) Three weeks trace from Wikipedia (Time in
hours)

(b) Traces from a major European Video-on-
Demand provider (Time in hours).

Figure 3: Workload traces used in our experiments.

the revocation probability and the price per request data are recent,
we assume the same time period for all three, i.e., November 2018.
Testbed Application. For our testbed experiments, we assume
that the web cluster is a wiki cluster running the Mediawiki soft-
ware and hosting the whole German Wikipedia which we replicate.
MediaWiki is a custom-made, free and open-source wiki software
platform written in PHP and JavaScript. Mediawiki is a traditional
LAMP stack software, running on Linux, Apache web-server, de-
ploying a MySQL database to store the data, and written in PHP.
LAMP stack based software are prevalent in today’s web [21]. Our
setup also uses Memcached [11] for caching database objects in
memory. SinceWikipedia in general receives far more read requests
to articles than edit or write requests, making the workload read
heavy, we replicate both the database and the Mediawiki software
in each virtual machine, and experiment only with read requests.
Baseline comparisons. In our experiments we mainly take Exo-
Sphere (using SPO) as our baseline for comparison. As noted by
the authors of Tributary, Tributary’s extra savings over ExoSphere
are mostly due to making use of “free-hours”, a pricing model that
no longer exists in any major cloud provider, and since Tributary’s
does not scale beyond a very small number of markets, we decided
against comparing SpotWeb to Tributary.
SpotWeb’s configuration. There are three main configurable pa-
rameters used in SpotWeb, namely, the penalty for delayed request
P , the percentage of long running requests L, and the risk aversion
parameter α . While we ran experiments with a large set of param-
eters, unless otherwise stated, the evaluation results here are for
experiments where P = 0.02, L = 0, and α = 5. P is set such that
dropping a request carries a penalty of double the maximum cost
to serve a request (which is 0.01 on the x1e.16xlarge market). If the
penalty is set lower that the cost of serving a request, the optimizer
might favor dropping all requests over serving them as this will
be “cheaper”. L is set to zero as our testbed application, Wikipedia,
has an average response time of less than 0.5 seconds, much lower
than the warning period. Finally,M is chosen based on correlation
between the failure probabilities matrix.

6.1 Transiency-aware load balancing Efficacy
When no revocations occur, SpotWeb’s load-balancer is identical to
vanilla HAProxy. However, when revocations occur, the transiency-
aware aspects of SpotWeb’s load-balancer are activated. SpotWeb’s
load-balancer actions to revocations are based on the overall system

utilization, and the expected load on the system. On revocation and
receiving a warning, SpotWeb’s load-balancer checks if;

(1) The overall system utilization is low or medium, and the
load can be migrated to the other running instances with no
degradation in the SLOs.

(2) The system utilization is high, and new instances can be
started within the warning period, with the load migrated
to the newly started instances.

(3) The system utilization is high, and new instances can not
be started within the warning period. Load will be migrated
to the other running instances, or dropped until the new
instances are available.

We have evaluated all of the different scenarios. As the first one
is trivial and the last one is dependant on the time taken for the
instance to start, we show results for the second scenario only.

In our first experiment, we run 6 machines on Amazon’s US-
east-1 datacenter, with two m4.xlarge, two m4.2xlarge, and two
m2.4xlarge machines. The average utilization of the machines is
kept between 70 and 95%with an average load of 600 requests/second.
We induce correlated failures on the m4.2xlarge, and the m4.4xlarge
machines 3 minutes into the experiment triggering SpotWeb’s load-
balancer to reactively start 4 new machines instead of the ones
that we revoked. The new machines are started within the warning
period.

Figure 4(a) shows a boxplot of the latencies reported at the load-
balancer. The average response time is wells below 200 milliseconds
during normal operation. Right after the revocation warning arrives
at the 3rd minute, and four new machines are started. We measured
the machine start-up time to be less 1 minute. Once the new ma-
chines are started, SpotWeb’s load balancer migrates the load from
the failing machines to the new ones. The new machines start with
cold caches as Memcached is initialized with an empty cache. We
have measured the cache warm-up period for one of the servers to
be between 30 to 90 seconds. SpotWeb managed to bring down the
90%ile response time to less than 700 ms with no requests dropped.
In contrast, unmodified HAProxy drops 85% of the requests within
a few seconds after revocations, and the resulting average response
time jumps to 2 seconds for the served requests.

6.2 Intelligent over-provisioning
In order to quantify how effective SpotWeb’s padding is, we test
the prediction accuracy using the approach used in [1] versus
SpotWeb’s predictions. Figure 4(b) shows a 3 weeks workload trace
which we use to test the two approaches. We compare the two
algorithms calculating the relative prediction error using the trace
and plotting the error distribution histograms. Figure 4(d) shows
the error distribution histogram using SpotWeb’s predictor, while
Figure 4(c) shows the same distribution for the algorithm in [1]. The
positive error in the figure represents cases where the prediction
algorithm over-provisions the resources, while the negative error
is when it under-estimates the load (under provisions). We also
plot a fitted normal distribution to the prediction errors. Clearly,
SpotWeb tends to over-provision resources, reducing the under-
provisioning error and adding enough padding for revocations.
We found that SpotWeb on average over-provisions the resources
by 15% compared to the actual needed capacity, with a maximum

(a) Transiency aware load balancing rapidly
reacts to revocations, which occur at around
the 3 minute mark.

(b) Three weeks of the total workload on the
English Wikipedia website (Time in hours).

(c) Prediction error relative to the current
number of servers when predicting for 1
time unit ahead using [1].

(d) Prediction error relative to the current
number of servers when predicting for 1
time unit ahead and using the upper limit
of the 99% confidence interval as the predic-
tion.

Figure 4: SpotWeb’s transiency-aware load balancing, and intelligent over-provisioning together help eliminate SLO violations.

(a) The per-request price for each market. (b) Zoomed-in Wikipedia workload. (c) Constant portfolio with autoscaling. (d) Portfolio chosen with MPO.

Figure 5: Having a constant portfolio with autoscaling fails to make use of price changes that occur in different markets
over-provisioning of 40% extra resource. On the other hand, the
maximum under-provisioning error is less than 3.2% and it occurs
for very brief periods, i.e., we never have capacity shortage of more
than 3.2% while we have an SLO allowing for up to 5% of the re-
quests to be served with some delay. We also note that our portfolio
approach seldom chooses a portfolio with a probability of failure
greater than 0.1. The prediction error using the algorithm in [1] is
much worse, with the maximum under-provisioning error reaching
16.1% while the average and maximum over-provisioning being
0.03% and 17.3%, respectively. In addition to proactive padding,
SpotWeb implements a reactive algorithm to handle any observed
SLO violations that go beyond the predicted padding. Reactive pro-
visioning involves requesting on-demand servers of one or more
types within the chosen portfolio configuration to add additional
capacity to the cluster for the remainder of the interval t .

6.3 Benefits of Price-awareness
The ability to vary the portfolio mix over times enables Spotweb
to exploit pricing changes over time which a fixed portfolio with
autoscaling is unable to do. To show the benefit of price aware-
ness, we compare Spotweb with ExoSphere and an auto-scaling
algorithm that chooses a fixed portfolio and uses an auto-scaler
to adjust the number of servers of each type. To show why it is
important to recompute a new portfolio periodically, we run an
experiment where we use three server markets on Amazon’s US-
east-1 datacenter, namely, r5d.24xlarge, r5.4xlarge, and r4.4xlarge
markets, capable of serving 1920, 320, and 320 request per second
respectively. We use pricing data for the three markets between 25

and 28, September, 2018 and assume that the all the servers have
equal failure revocation probabilities of lower than 5%. Figure 5(a)
shows the per request price dynamics for the three markets during
the first 20 hours in this period. We can clearly see that the cheapest
market changes with time.

We run an experiment where a fixed portfolio is chosen with
an auto-scaler adjusting the number of servers, and compare it
to SpotWeb. Figure 5(c) shows server allocation when a constant
portfolio is set based on the market prices after 2 hours of running
(marked with the vertical line) and with the allocation adjusted
based on an oracle auto-scaler. Since at t=2 the r5d.24xlargemachine
has the cheapest per request price, along with the r4.4xlarge, the
autoscaler increases and decreases the allocation within these two
markets only. The allocation by SpotWeb is shown in Figure 5(d),
where we see that SpotWeb adjusts the portfolio according to pric-
ing data, switching the portfolio allocation to cheaper markets.

Figure 6(a) shows the cost savings when using SpotWeb relative
to using a constant portfolio with an auto-scaler with a short pre-
diction horizon of 2, or a longer prediction horizon of 4. SpotWeb’s
cost is 37% lower than using a constant portfolio. We note that in
this experiment we assumed an oracle predictor, thus this cost does
not include any SLO costs, or any costs for over-provisioning.

6.4 Exploiting Future Workload Knowledge
Now that we have established that simply using a constant portfolio
with auto-scaling is not enough to provide optimal cost savings,
we show why simply using ExoSphere in a loop, re-evaluating the
portfolio in every time step based on the current load, and the price

(a) SpotWeb versus constant portfolio with
an auto-scaler.

(b) SpotWeb versus running ExoSphere in a
loop.

Figure 6: SpotWeb provides up to 50% cost savings compared
to state-of-the-art techniques to handle transiency.

and failure hisotry. In this experiment, we choose the portfolio
from 36 markets offered by Amazon’s US-east-1 datacenter. We use
pricing and revocation probability data that covers a period of 2
months. We note that these 36 markets cover most of the markets
that mainly offer conventional x86 CPUs, i.e., no GPUs. For this
experiment, we use the Wikipedia workload.

Figure 6(b) shows the cost saving of using SpotWeb with a look-
ahead period of 2, 4, 6, and 10, versus using ExoSphere to calculate
a new portfolio periodically. SpotWeb saves up to 50% of the costs
compared to running ExoSphere in a loop. The Figure also shows
other interesting aspects of SpotWeb. First, increasing the num-
ber of markets truly increases the expected savings from using
SpotWeb compared to a limited number of markets. This result is
repeated consistently across our experiments. As more choices are
available with different market dynamics, future knowledge truly
helps to decide the best portfolio. In our data, we saw that this is
especially true when multiple markets appear to have the same
price per request at one time point while having the same revoca-
tion probability, SpotWeb’s predictions of future prices enables it
to have a better “tie-breaking” mechanism than ExoSphere.

Second, as one can see in this Figure, in most of our experiments,
we consistently saw that using longer look-ahead windows does
not necessarily lead to better decision making. In most cases, the
improvements where not significant or did not exist at all. As longer
term predictions are usually less accurate than short term predic-
tions, this result actually means that SpotWeb’s savings are possible,
even with simple, but accurate, future predictions.

When using the TV4 workload, the cost savings compared to
ExoSphere where around 25% with similar behaviour, longer look-
ahead horizons do not have a significant improvement over shorter
ones. We omit the results due to lack of space.

Comparing ExoSphere’s latency versus SpotWeb’s latency in the
testbed experiments, we saw that ExoSphere has on average 10 to
15% requests that are severely delayed (taking over 5 seconds on
average) even when ExoSphere is integrated with our transiency
aware load-balancer. On the occurance of large spikes, ExoSphere
can have up to 25% of the requests dropped. SpotWeb on the other-
hand maintain’s a 99% response time below 1 second end-to-end.
We omit the Figure due to lack of space.

(a) SpotWeb’s cost savings depend on the
predictor accuracy.

(b) SpotWeb is highly scalable requiring less
than 4 seconds to reach a new allocation.

Figure 7: Left: SpotWeb’s sensitivity to predictor accuracy.
Right: SpotWeb’s scalability.
6.5 Impact of Prediction Accuracy
The cost savings using SpotWeb depends on multiple factors, but
one major factor is the prediction accuracy of the system dynamics.
To quantify the effect of predictor accuracy, we run an experiment
where we change the prediction error of the predictors relative
to using a reactive predictor, i.e., relative to predicting that the
workload, failure, and price for the next time step will be equal
to the current values. Figure 7(a) shows the savings as a function
of the prediction accuracy. As the prediction accuracy decreases,
the savings decrease. Nevertheless, even when the error is large,
there are still some significant savings using SpotWeb. To give some
perspective, SpotWeb’s predictor has a 3-5% prediction error.

6.6 Scalability of our Approach
One of themain drawbacks of Tributary is the computation tractabil-
ity of theAcquireManager component. On the other hand, SpotWeb’s
algorithm is highly scalable. SpotWeb’s tractability is a function of
the number of markets considered and the look-ahead horizon of
MPO. To evaluate the scalability of SpotWeb, we ran multiple exper-
iments with SpotWeb, varying the number of markets considered,
and the length of look-ahead horizon, measuring the time required
by SpotWeb to calculate the new optimized allocation. These ex-
periments use the Wikipedia workload shown in Figure 3(a).

Figure 7(b) shows a box-plot of the time taken by SpotWeb to
calculate an optimal new portfolio allocation with different num-
ber of markets and look-ahead horizons. Our results indicate that
SpotWeb scales sub-linearly with increasing the number of mar-
kets, or increasing the look-ahead horizon. Doubling the number
of markets does not lead to doubling the time needed to compute
the optimal portfolio. This is one of the main features of SpotWeb,
its ability to consider large numbers of markets compared to other
current approaches.

7 DISCUSSION
When to use longer look-ahead. There are some cases where we
found that the longer prediction horizon improved the performance
of SpotWeb. The case where we saw the most savings is when the
time it takes to start the new instance is longer than the period be-
tween two predictions. This situation can arise in transient servers
when the cloud provider can not fulfill resource requests immedi-
ately due to resource pressure. This situation also occurs when the
application running requires a longer start up time before it can

serve requests or when there is a cache warm-up period before the
machine can meet the required SLOs. We omit these results due to
space limitations.
Other Cloud providers.While our experiments are based on mea-
surements from different AWS data centers, our results hold true for
other cloud providers as our solution is not dependant on anything
particular to AWS. For example, in the Google Cloud, while prices
are constant, both the workload variations, and the probability of
preemption – which varies between 0.05 and 0.15 – will lead to
cost savings. In addition, since all instances are terminated after
running for 24 hours on the Google Cloud, SpotWeb can utilize its
transiency-aware load-balancer to relinquish the resources.

8 CONCLUSION
In this paper, we looked at how to run low-latency web-based appli-
cations on low-cost cloud transient servers. Our system, SpotWeb, is
able to provide low-cost, SLO-aware server provisioning and auto-
scaling for web clusters. SpotWeb builds on and extends portfolio-
based resource allocation, and uses multi-period portfolio optimiza-
tion that can effectively use of traffic and price predictors. Deploying
web applications on SpotWeb results in a cost savings of up to 90%
compared to conventional on-demand cloud servers, and up to 50%
when compared to state of the art transiency-specific systems.
Acknowledgements.We thank the anonymous reviewers for their
valuable comments. This research was supported by the Army
Research Laboratory under Cooperative Agreement W911NF-17-
2-0196, NSF grants 1763834, 1802523, 1836752, and 1405826, and
Amazon AWS cloud credits.

REFERENCES
[1] Ahmed Ali-Eldin et al. 2014. How will your workload look like in 6 years?

analyzing wikimedia’s workload. In IEEE IC2E. 349–354.
[2] Amazon. 2018. Spot Instance Interruptions. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/spot-interruptions.html.
[3] Stephen Boyd et al. 2017. Multi-period trading via convex optimization. Founda-

tions and Trends® in Optimization 3, 1 (2017), 1–76.
[4] Stephen Boyd, Mark T Mueller, Brendan O’Donoghue, Yang Wang, et al. 2014.

Performance bounds and suboptimal policies for multi–period investment. Foun-
dations and Trends® in Optimization 1, 1 (2014), 1–72.

[5] Giuliano Casale, Ningfang Mi, Ludmila Cherkasova, and Evgenia Smirni. 2008.
How to parameterize models with bursty workloads. ACM SIGMETRICS 36, 2
(2008), 38–44.

[6] Kefeng Deng, Junqiang Song, Kaijun Ren, and Alexandru Iosup. 2013. Exploring
portfolio scheduling for long-term execution of scientific workloads in IaaS
clouds. In SC. IEEE, 1–12.

[7] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. JMLR 17, 1 (2016), 2909–2913.

[8] Daniel J Dubois and Giuliano Casale. 2015. Autonomic provisioning and applica-
tion mapping on spot cloud resources. In ICCAC. IEEE, 57–68.

[9] Daniel J Dubois and Giuliano Casale. 2016. OptiSpot: minimizing application
deployment cost using spot cloud resources. Cluster Computing (2016), 1–17.

[10] Louis Eeckhoudt, Christian Gollier, and Harris Schlesinger. 2005. Economic and
financial decisions under risk. Princeton University Press.

[11] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 124
(2004), 5.

[12] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.
2012. Autoscale: Dynamic, robust capacity management for multi-tier data
centers. ACM TOCS 30, 4 (2012), 14.

[13] Anshul Gandhi, Xi Zhang, and Naman Mittal. 2015. HALO: Heterogeneity-Aware
Load Balancing. In IEEE MASCOTS. 242–251.

[14] Weichao Guo, Kang Chen, Yongwei Wu, and Weimin Zheng. 2015. Bidding for
highly available services with low price in spot instance market. In ACM HPDC.
191–202.

[15] Aaron Harlap et al. 2018. Tributary: Spot-dancing for elastic services with latency
SLOs. In USENIX ATC.

[16] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. 1997. An economics
approach to hard computational problems. Science 275, 5296 (1997), 51–54.

[17] Alexey Ilyushkin et al. 2018. An Experimental Performance Evaluation of Au-
toscalers for Complex Workflows. ACM TOMPECS 3, 2 (2018), 8.

[18] Qin Jia et al. 2016. Smart spot instances for the supercloud. In Workshop on
CrossCloud Infrastructures & Platforms. ACM Press.

[19] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-scale
computer. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 158–169.

[20] Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, and Alexandru Iosup. 2017.
ANANKE: a Q-Learning-Based Portfolio Scheduler for Complex Industrial Work-
flows. In ICAC. IEEE, 227–232.

[21] Anil Madhavapeddy, Richard Mortier, Ripduman Sohan, Thomas Gazagnaire,
Steven Hand, Tim Deegan, Derek McAuley, and Jon Crowcroft. 2010. Turning
Down the LAMP: Software Specialisation for the Cloud. HotCloud (2010).

[22] Harry Markowitz. 1952. Portfolio selection. The journal of finance 7, 1 (1952),
77–91.

[23] Michele Mazzucco and Marlon Dumas. 2011. Achieving performance and avail-
ability guarantees with spot instances. In HPCC. IEEE.

[24] Jan Mossin. 1968. Optimal multiperiod portfolio policies. The Journal of Business
41, 2 (1968), 215–229.

[25] Sam Newman. 2015. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.".

[26] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. 2016. Conic Optimization via Op-
erator Splitting and Homogeneous Self-Dual Embedding. Journal of Optimization
Theory and Applications 169, 3 (June 2016), 1042–1068.

[27] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. 2017. SCS: Splitting Conic Solver,
version 2.0.2. https://github.com/cvxgrp/scs.

[28] Alessandro Papadopoulos, Ahmed Ali-Eldin, Karl-Erik Årzén, Johan Tordsson,
and Erik Elmroth. 2016. PEAS: A performance evaluation framework for auto-
scaling strategies in cloud applications. ACM TOMPECS 1, 4 (2016), 15.

[29] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2016. A reliable and
cost-efficient auto-scaling system for web applications using heterogeneous spot
instances. JNCA 65 (2016), 167–180.

[30] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)
51, 4 (2018), 73.

[31] Christian H Reinsch. 1967. Smoothing by spline functions. Numerische mathe-
matik 10, 3 (1967), 177–183.

[32] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. 2016.
Flint: batch-interactive data-intensive processing on transient servers. In EuroSys.
ACM, 6.

[33] Prateek Sharma, David Irwin, and Prashant Shenoy. 2017. Portfolio-driven
resource management for transient cloud servers. ACM SIGMTERICS (2017).

[34] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy. 2015.
Spotcheck: Designing a derivative iaas cloud on the spot market. In EuroSys.
ACM, 16.

[35] Supreeth Shastri and David Irwin. 2017. HotSpot: automated server hopping in
cloud spot markets. In Symposium on Cloud Computing. ACM Press, 493–505.

[36] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
scale: elastic resource scaling for multi-tenant cloud systems. In ACM SoCC.

[37] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K.K. Ramakrishnan. 2014. Here
Today, Gone Tomorrow: Exploiting Transient Servers in Data Centers. IEEE
Internet Computing 18, 4 (July/August 2014).

[38] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla:
portfolio-based algorithm selection for SAT. Journal of artificial intelligence
research 32 (2008), 565–606.

[39] Fan Yang and Andrew A Chien. 2016. ZCCloud: Exploring wasted green power
for high-performance computing. In IPDPS. IEEE, 1051–1060.

[40] Fan Yang and Andrew A Chien. 2018. Large-Scale and Extreme-Scale Computing
with Stranded Green Power: Opportunities and Costs. IEEE TPDS 29, 5 (2018),
1103–1116.

[41] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. 2007. A regression-based
analytic model for dynamic resource provisioning of multi-tier applications. In
IEEE ICAC.

[42] Qi Zhang, Alma Riska, Wei Sun, Evgenia Smirni, and Gianfranco Ciardo. 2005.
Workload-aware load balancing for clustered web servers. IEEE TPDS 16, 3 (2005),
219–233.

[43] Tao Zhu et al. 2017. Limitations of load balancing mechanisms for n-tier systems
in the presence of millibottlenecks. In ICDCS. IEEE, 1367–1377.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://github.com/cvxgrp/scs

	Abstract
	1 Introduction
	2 Background
	3 The Case for Multi-Period Portfolio Selection
	3.1 Limitations of Prior Approaches
	3.2 SpotWeb System Overview

	4 SpotWeb Design
	4.1 Overview of Portfolio Theory
	4.2 Intelligent Transient Server Selection
	4.3 Intelligent over-provisioning
	4.4 Transiency-Aware Load-Balancer

	5 SpotWeb Implementation
	5.1 Architecture Overview
	5.2 Implementation Considerations

	6 Experimental Evaluation
	6.1 Transiency-aware load balancing Efficacy
	6.2 Intelligent over-provisioning
	6.3 Benefits of Price-awareness
	6.4 Exploiting Future Workload Knowledge
	6.5 Impact of Prediction Accuracy
	6.6 Scalability of our Approach

	7 Discussion
	8 Conclusion
	References

