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ABSTRACT
�e declining cost and rising penetration of solar energy is poised
to fundamentally impact grid operations, as utilities must con-
tinuously o�set, potentially rapid and increasingly large, power
�uctuations from highly distributed and “uncontrollable” solar sites
to maintain the instantaneous balance between electricity’s supply
and demand. Prior work proposes to address the problem by design-
ing various policies that actively control solar power to optimize
grid operations. However, these policies implicitly assume the pres-
ence of “smart” solar modules capable of regulating solar output
based on various algorithms. Unfortunately, implementing such
algorithms is currently not possible, as smart inverters embed only
a small number of operating modes and are not programmable.

To address the problem, this paper presents the design and im-
plementation of a so�ware-de�ned solar module, called Helios.
Helios exposes a high-level programmatic interface to a DC-DC
power optimizer, which enables so�ware to remotely control a
solar module’s power output in real time between zero and its
current maximum, as dictated by the Sun’s position and weather.
Unlike current smart inverters, Helios focuses on enabling direct
programmatic control of real solar power capable of implementing
a wide range of control policies, rather than a few highly-speci�c
operating modes. We evaluate Helios’ performance, including its
latency, energy usage, and �exibility. For the la�er, we implement
and evaluate a wide range of solar control algorithms both in the
lab, using a solar emulator and programmable load, and outdoors.
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1 INTRODUCTION
Due to its continuously declining cost, solar generation capacity
is rapidly expanding, with the aggregate amount increasing 50%
worldwide in just the last year from 50GW to 76GW [16]. �e
increase is largely due to a steady drop in the cost of solar mod-
ules, which decreased by 2⇥ from 2009 to 2015 (from ⇠$8/W to
⇠$4/W) [7]. Utilities and governments are responding to rising
solar penetration in multiple ways. Since solar is typically installed
“behind themeter” and, similar to demand, viewed as uncontrollable,
many utilities are altering their generation portfolio to include more
small “peaking” generators with fast start-up times and high ramp
rates to be�er compensate for large solar �uctuations. Unfortu-
nately, these peaking generators are much less e�cient—in terms
of both cost and carbon emissions—than intermediate and baseload
generators. In parallel, governments are de�ning complex intercon-
nection policies that determine who can connect solar modules to
the grid. In the U.S., these policies vary widely by state, but gen-
erally place hard caps on the total solar capacity that can connect
to the grid. A�er reaching these caps, users can no longer connect
solar to the grid until the caps are raised, which may take months-
to-years. For example, homeowners in Hawaii were recently barred
from connecting solar for more than two years [5, 10].

Rather than prevent users from connecting solar to the grid, an
alternative approach is to let anyone connect solar to the grid, and
then actively regulate or control the solar power fed into the grid
in real time. �is approach is reminiscent of congestion control
in the Internet, which enables anyone to connect, but then rate-
limits tra�c, using transport protocols such as TCP, to ensure the
network does not collapse and users receive their fair share of the
bandwidth. Such an approach, when applied to solar rate control,
e�ectively transforms solar modules into small “dispatchable” gen-
erators similar to fuel-based mechanical generators, albeit with
some important di�erences. For example, while solar enables more
precise and rapid control than mechanical generators, its maximum
capacity is not static, but is a function of the time and weather.
�ere has been a signi�cant amount of recent prior that has argued
for such dynamic solar congestion control algorithms in the context
of smart solar arrays. �is ensemble of work proposes mechanisms
and policies that use dynamic solar power curtailment to meet
a variety of di�erent objectives, including maintaining constant
power [13, 14], providing voltage/frequency stability [12, 15], im-
proving grid reliability under high solar penetration [8], ensuring
fairness [3, 4, 13], and preserving energy data privacy [11].

However, these policies implicitly assume the presence of “smart”
solar modules or arrays capable of regulating their output program-
matically in real time based on well-de�ned algorithms. Unfortu-
nately, there is currently no way to implement such algorithms, as
smart inverters embed only a small number of operating modes,
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primarily focused on improving AC power quality and grid relia-
bility, and are not programmable. �us, the policies above were
evaluated in simulation and never implemented.

To address the problem, this paper presents the design and im-
plementation of a programmable so�ware-de�ned solar module,
called Helios. Helios exposes a high-level programmatic interface
to a DC-DC power optimizer, which enables so�ware to remotely
control a solar module’s power output between zero and its current
maximum, which is dictated by the Sun and weather. Unlike current
smart inverters, Helios focuses on enabling direct programmatic
control of real solar power capable of implementing a wide range
of control policies and protocols, rather than a few highly-speci�c
operating modes. �e operating modes implemented by smart in-
verters typically focus on improving AC power quality and grid
reliability, and are not related to current policies for managing so-
lar penetration. Note that Helios’ solar control is not intended to
replace the use of energy storage. However, in most case, energy
storage remains too expensive to install and maintain at most small-
scale solar sites. Helios is orthogonal to existing demand response
programs that regulate loads to balance grid supply and demand.
Helios e�ectively enables similar capabilities for solar.

We implement a Helios prototype, which includes a library that
exposes a simple programmatic interface and enables �ne-grained
control of solar module output. Helios is self-powered using power
harvested from the solar module. We describe the programmatic
interface in detail in §3. We evaluate both Helios’ platform perfor-
mance and its �exibility. Our performance evaluation focuses on
Helios’ basic functions, including its energy usage and response
latency. To evaluate �exibility, we implement multiple solar control
policies proposed in prior work, including constant power genera-
tion [13, 14], Weighted Power Point Tracking (WPPT) [13], and load
imitation for privacy [6, 9, 11], as well as develop and implement
new algorithms, such as constant net metering and ramp rate con-
trol. We show that Helios admits simple implementations for each
these algorithms. Our hypothesis is that Helios is simple, reliable,
and cheap, and its interface enables the implementation of a wide
range of solar control algorithms. In evaluating our hypothesis, we
make the following contributions.
Solar Control Background. We describe the basic functions He-
lios uses to enable solar control. We then outline the potential
bene�ts of dynamic solar control to grid operations, and place
Helios in context with emerging work on smart inverters, which
leverage inverters to improve grid reliability and power quality.
Helios Design and Implementation. We present Helios’ design
and implementation, which exposes a simple programmatic API
that applications use to control solar output. We then describe the
implementation of multiple solar control algorithms atop this API.
Experimental Evaluation. We evaluate Helios’ performance and
energy usage, as well as the algorithms we implement. To enable
repeatability, in addition to outdoor experiments, we also use a solar
array simulator (the Chroma 62000H-S), which mimics solar’s cur-
rent response to voltage changes and replays solar I-V curves from
weather data traces. Our results show that Helios consumes li�le
energy (<1.6W), is able to precisely and nearly instantly control
solar output, enabling a wide range of higher-level applications.

2 BACKGROUND
Grid-tied solar deployments consist of multiple solar modules wired
together and interconnected with the grid via one or more inverters,
which convert the low-voltage DC power generated by the mod-
ules to the higher voltage (120V) AC power of the grid. Most solar
deployments use inverters to connect to the grid, since this enables
them to feed surplus solar energy into the grid and relieves them of
having to locally balance electricity’s supply and demand. In con-
trast, standalone solar deployments that are not grid-tied require
energy storage, generally in the form of a ba�ery, to store surplus
solar energy and balance supply and demand. Since ba�eries are
expensive to install and maintain, there are few standalone solar
deployments with ba�eries. In addition, most solar deployments
consist of arrays of multiple connected solar modules. �e output
of these modules is dependent, not only on the solar irradiance
incident on them, but also the module wiring and the placement
of the inverters. In particular, solar deployments generally include
electronics that perform Maximum Power Point Tracking (MPPT)
algorithms, which dynamically adjust the operating voltage to ex-
tract the maximum power from the module (or array).
MPPT and Solar Array Architectures. �e power output of a
photovoltaic (PV) panel is governed by its I-V curve, which de�nes
the relationship between a solar module’s output current (I) and
its operating voltage (V), as depicted in Figure 1. Any operating
voltage, up to the maximum shown, can be chosen to operarate
the panel, and the I-V curve dictates the current output for that
operating voltage, which in turn determines the power that will be
generated by the panel. �e nature of the I-V curve is such that, as
the operating voltage increases, the output current remains steady
up to a knee point, a�er which it begins to decrease. Since the
output power generated is the product of voltage and current, the
power produced for di�erent operating voltages, depicted by the I-V
curve in Figure 1 , increases monotonically until the knee, which
represents the maximum possible power that the solar module
can generation, which is referred to as the maximum power point
(MPP). Importantly, the MPP is not static, since a module’s I-V curve
continuously changes based on the incident solar irradiance, which
is a function of many factors, including weather, time, temperature,
shading, dust, snow, etc. In addition, a solar array’s I-V curve can
be highly complex, as it is an additive combination of the I-V curves
of the underlying modules. Nearby modules may also experience
di�erent conditions that cause their I-V curves to di�er signi�cantly,
e.g., such as a shadedmodule next to amodule without shade, which
also contributes to the complexity.

Since module and array dynamics are impossible to predict a
priori, MPPT algorithms continuously search for the operating volt-
age that yields the MPP. �e most common algorithm is Perturb
and Observe (P&O), which simply searches for the MPP by per-
turbing the operating voltage by a small amount and measuring
the current to compute a new power (P(t)). If this new power is
greater than P(t � 1), the algorithm changes the voltage again in
the same direction; however, if the new power is less than P(t � 1),
then the algorithm reverses the direction of change. While more
advanced MPPT algorithms that converge faster exist, in most in-
stances, P&O is fast enough, o�en converging in less than one
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Figure 1: Idealized I-V and P-V curves for a solar module.

cycle of the grid’s 60Hz frequency. As a result, most MPPT chips,
including the SM72442 that Helios uses, employ P&O for MPPT.

MPPT algorithms and inverters can be integrated into solar ar-
rays using multiple architectures. For example, the traditional con-
�guration directly wires solar modules together and connects them
to a centralized, i.e., string, inverter, which both executes MPPT and
converts solar’s DC input to AC output synchronized to the grid’s
frequency and phase. However, this approach is ine�cient as the
string inverter is only able to �nd the MPP of the entire array and
not each module. As a result, the current output of modules wired
in series will be limited by the current of the lowest producing
module, i.e., the most shaded module. �us, another approach is to
use microinverters at each module, which also execute MPPT as
well as convert DC to grid-synchronized AC. Microinverters are an
example of Module-Level Power Electronics (MLPE) that improve
e�ciency, since they enable each module to independently optimize
its own MPP. However, microinverters are expensive, especially
for large-scale deployments, as they replicate the complex inverter
electronics across every module. Microinverters are also viewed as
less reliable, since, unlike with a string inverter, which is typically
placed inside, they are a�ached to the module and subject to harsh
weather conditions. �us, another architecture has emerged that
uses DC power optimizers, which, like microinverters, enable each
module to operate at its MPPT. However, unlike microinverters,
DC power optimizers only execute MPPT and do not convert DC
to AC, instead relying on a separate, o�en centralized, inverter.

�ere are numerous tradeo�s between solar architectures based
on string inverters, microinverters, and DC power optimizers. We
chose to design Helios as a programmable DC power optimizer for
multiple reasons. First, power optimizers are simpler, cheaper, and
more reliable than microinverters because they have fewer sensitive
electronic components, and perform a narrower set of functions.
In addition, power optimizers are not grid-facing and capable of
controlling solar output independent of grid-quality metrics, which
are the focus of much of the existing work on smart inverters. �at
is, power optimizers are orthogonal to, and do not interfere with,
many of the grid power quality optimizations being implemented
in smart inverters. �ere are many grid-quality support functions
inverters can provide, such as reactive power compensation and
voltage/frequency ride through, that are not related to regulating
solar power output. In the U.S., many of these functions are strictly
regulated by local ISOs and RTOs. Since power optimizers are not
grid-facing and focus on real power, they are not subject to the
same regulations as smart inverters, i.e., IEEE 1547-2018 [1].
Helios Motivation. Helios’ basic approach leverages the same
voltage control mechanisms as the MPPT algorithms already in-
cluded in DC power optimizers. However, rather than search for

the voltage that yields the MPP, Helios enables applications to set
the output voltage such that it yields any power point between zero
and the maximum power. Since only solar’s MPP is intermi�ent,
based on environmental conditions, Helios enables applications to
precisely and rapidly control power output below the MPP.

Helios is broadly related to solar and wind curtailment, which
focuses on disconnecting large solar and wind farms from the grid
during o�-peak times when their energy is not needed, i.e., when
prices go negative. However, solar and wind curtailment is gen-
erally a coarse mechanism used as a last resort to preserve grid
reliability. In contrast, Helios exposes mechanisms that enable �ne-
grained control of solar output at the module level. We initially
expect these mechanisms to be useful in se�ing solar net metering
policies. Current policies are static, and limit the aggregate capacity
of deployments that can connect to the grid, even though these
deployments rarely, if ever, generate their rated capacity. Helios
would enable new dynamic policies that actively rate limit the solar
power injected into the grid, as discussed in recent work [3].

In addition, the presence of rate-limited solar deployments oper-
ating below their MPP opens up a new high-quality form of reserve
capacity for the grid. �at is, the grid can call on this capacity
instantaneously, i.e., at sub-second scales, if necessary to satisfy
unexpected increases in demand. In this sense, solar represents
much higher quality reserve capacity than mechanical generators,
which may take minutes to tens of minutes to activate. In addi-
tion, mechanical generators operated as reserve capacity must be
constantly maintained and tested to ensure their correct operation.
Similar maintenance and testing for solar is less costly. In some
sense, Helios can be thought of as enabling the equivalent of de-
mand response for solar by exposing mechanisms for utilities (or
others) to remotely decrease (or increase up to the MPP) the solar
supply. However, unlike existing demand response resources, such
as air conditioners and heaters, solar control is transparent to users.

Current work on “smart” solar functions have focused on smart
inverters. However, there are no commercial o�erings similar to He-
lios that provide remote programmatic control of solar output. As
discussed earlier, smart inverter functions are governed by strict reg-
ulations, and generally focus on implementing speci�c approved op-
erating modes that support grid reliability. �ese operating modes
are generally not programmable, and target AC power quality func-
tions and not power generation. While the lack of programmability
is likely due to the stringent regulations around grid-facing equip-
ment, it does hinder grid innovation, especially as the grid evolves
into a more decentralized architecture. As we show, Helios is capa-
ble of implementing a wide range of solar control algorithms, and
also serves a platform for developing new algorithms.

3 HARDWARE AND SOFTWARE DESIGN
We describe both the hardware and so�ware design of Helios, our
programmatic so�ware-de�ned solar module, below.

3.1 Hardware Design
Our hardware design consists of four primary components: a pro-
grammatic MPPT chip (the SM72442), a DC-DC converter, a DC
power supply, and a processing and communication platform, as
shown in the block diagram in Figure 2(le�). �e output of the
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Figure 2: Helios block diagram (le�), board layout (middle), and circuit diagram (right).

solar module �rst connects to a DC-DC converter, which itself con-
nects to the MPPT chip. By default, the chip executes the MPPT
algorithm, which controls the DC-DC converter to maintain the
module’s operating voltage at the MPP, e.g., the knee of the curve
from Figure 1. While the DC-DC converter varies the operating
voltage, it maintains a �xed output voltage using a buck-boost
converter, enabling it to connect to other devices requiring a �xed
voltage, such as other modules, an inverter, or a ba�ery.

�e MPPT algorithm is embedded into the MPPT chip (the
SM72442), which also provides a programmatic interface to set
thresholds via registers for the module’s maximum output voltage
and current, as we discuss in §3.1.1. A network-connected embed-
ded processor connected to the MPPT chip is capable of controlling
these thresholds via so�ware using the chip’s low-level API.�e
platform need not be connected to external power as it runs on
power harvested from the solar module via a DC power supply. �e
design admits a compact implementation, intended to be encased
and installed in the rear of the panel. Figure 2(middle) shows the
board layout of our current prototype with the major components
labeled. We are currently fabricating a Printed Circuit Board (PCB),
which enables a more compact layout. Figure 2(right) shows the
circuit diagram with the precise connections between each of the
components. Below, we discuss each of the major components.

3.1.1 Programmable MPPT Chip. Many commercial integrated
circuits (ICs) implement MPPT, but few expose dynamic control
over a solar module’s output voltage and current. To the best of
our knowledge, TI’s SM72442 is the only MPPT controller IC that
exposes a programmatic interface that enables such control. TI
has an evaluation board (the SM3320) that uses the SM72442’s con-
trol interface as part of a ba�ery charge controller, which steadily
reduces current as the ba�ery voltage rises (indicating that it is
nearing full capacity). Other similar evaluation boards exist for
ba�ery charge controllers, which also enable se�ing current limits
based on voltage, but they do so in hardware, enforce only a single
limiting policy (for a particular ba�ery), and are not programmable.
�e SM72442 chip is also used for remote on/o� control and stan-
dard MPPT in some DC solar power optimizers. However, there are
no commercial products that expose the chip’s full functions for
dynamic control over a solar module’s output voltage and current.

�e key components of the SM72442 IC are its MPPT controller,
Analog-to-Digital Converter (ADC) controller, and I2C module,
which enables serial communication to con�gure the chip. �e
chip implements the P&O MPPT algorithm, which generates the

pulse-wide modulation (PWM) signal that varies the duty cycle of
the DC-DC converter (described below) to determine the module
operating voltage that maximizes solar power output. �e chip’s
digital controller logic also implements the voltage/current limiting
functions. �ese functions also generate a PWM signal, which
varies the duty cycle of the DC converter, but instead does so to
enforce a limit on current or voltage, rather than maximize power.
�e current and voltage limiting functionality requires an algorithm
similar to MPPT, as it must also vary the operating voltage as the
I-V curve changes to enforce the limit [13]. �us, the chip uses a
similar P&O algorithm as MPPT to maintain a current, voltage, or
power limit. If the maximum solar output falls below the power
limit, then the chip falls back to MPPT and maximizes power. �e
MPPT algorithm converges rapidly, and is able to track a module’s
MPP within 12ms, or less than the length of a single 60Hz AC cycle.

�e chip’s ADC controller controls an 8-channel, 12-bit ADC
used to sense the input and output voltage and current, as well as set
the chip’s con�guration. �e controller exposes four A/D channels
used to con�gure the maximum current and voltage thresholds, the
conditions at startup, and the output voltage slew rate, i.e., the rate
at which voltage is allowed to change. However, the I2C module
provides an interface to override these external A/D channels and
con�gure the chip using the SM72442’s internal registers. Our
design overrides the external A/D channels and programmatically
con�gures the chip using these registers. �ere is a 10-bit �eld in
the register for se�ing each of the maximum output voltage and
current thresholds. Similarly, all of the other se�ings for the MPPT
chip can be con�gured via these registers. �e chip’s API also
enables monitoring of the instantaneous input and output voltage
and current. As we discuss, our so�ware API includes functions
that expose these sensor values to higher-level applications.

3.1.2 DC-DC converter. Our DC-DC converter is a standard
buck-boost converter that can increase or decrease a solar module’s
output voltage to a desired output voltage. In addition, the converter
works in conjunctionwith the SM72442’s algorithm above to control
the module’s power output. In particular, the converter acts as
a load on the solar module, whose resistance can be controlled
between zero and 1 by varying the converter’s duty cycle. In
this case, a duty cycle of zero represents in�nite resistance and
voltage (resulting in zero output current and power), while a duty
cycle of one represents zero resistance and voltage (resulting in
short-circuit output current and zero power). �e SM72442’s MPPT
and limiting algorithm adjust the module’s voltage along the I-V
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curve by altering the DC-DC converter’s duty cycle between these
extremes, and observing the resulting current and power output.

�e core of the buck-boost converter is an inductor combined
with high frequency switches, which control the charging and
discharging of the inductor that ultimately dictates the resistance
and input/output voltage. We use IRF3205 N-channel MOSFETs as
switches. In our prototype, these have a current rating of 110A and
voltage rating of 50V, and thus can accommodate standard 300W
solar modules. However, the voltage level and current provided
by the SM72442 MPPT chip is not high enough to directly drive
the switches at high frequency. As a result, we also use a MOSFET
driver chip, the SM72295, to translate the 5V from the MPPT chip
(SM72442) to the 10V required to drive the switches and provide
high enough current for fast switching. In addition, the MOSFET
driver chip provides ampli�ers for input/output current sensing that
removes ripple current and provides averaged current data to the
MPPT chip. �e buck-boost converter also uses snubber circuits at
its input and output to reduce voltage ripples. �e MOSFET driver
chip has bu�ered outputs available to provide both isolation and
an interface to the current sense pin of the MPPT chip. Since the
MOSFET switches are rated at 175C, we use heatsinks with them, as
Helios’ operating temperate may exceed this when placed behind a
module installed on a roof under intense sunlight.

3.1.3 Sensing Circuitry. �eMPPT chip (SM72442) requiresmea-
surements of both the solarmodule’s and the buck-boost converter’s
output voltage and current as inputs to the dynamic MPPT and
current/voltage limiting algorithm. �e voltage sensing at both
points is done using a resistor divider circuit that scales the maxi-
mum voltage to ⇠4V, which is 80% of the full scale A/D input. We
introduce this rough limit to avoid high voltage at the SM72442 pins
and possible burn out. �e current sensing at both points is done
using 0.04� sense resistors. We use the current sense ampli�ers of
the SM72295 MOSFET driver chip set to 0.44V/A gain, and �lter
the voltage across the sense resistors. Finally, the bu�ered output
from the MOSFET driver chip is fed to the SM72442 MPPT chip.

3.1.4 DC Power Supply. Our design powers all components
using the available solar power. We �rst use a DC-DC switching
regulator IC (the SM72485) to step-down solar module voltage to
10V, which is required by the MOSFET driver chip for switching the
MOSFETs. We then use a low power 5V regulator (the SM72238),
to further step down the voltage for powering the SM72442 and
our processor (the Raspberry Pi Zero). We design the DC power
supply circuitry to work with solar modules having an open circuit
voltage in the range of 9V to 50V, which is compatible with standard
residential and commercial solar module capacities.

3.1.5 Processing and Communication Platform. Rather than an
embedded microcontroller, our design leverages a Raspberry Pi
Zero (W), which includes a built-in WiFi module. �e Raspberry Pi
zero is low power, low cost (⇠$10), and supports a standard Linux
so�ware stack. We select this full-featured platform to both enable
advanced control algorithms that require non-trivial local compu-
tation, such as advanced solar forecasting techniques, and to ease
programmability by exposing a high-level programming environ-
ment, such as python, to developers. �e platform includes a 1Ghz
single-core CPU, 512MB RAM, an 802.11 b/g/n wireless module and

consumes a maximum of 170mA at 5V (or 0.85W) when WiFi is
activated. �e platform also includes an I2C interface enabling it
to communicate with the SM72442 MPPT chip’s I2C interface. We
set the baud rate of the I2C bus to 100kHz to enable high speed
monitoring and updates of voltage and current limits. Network con-
nectivity is important to enable remote programmability. In cases
where WiFi does not penetrate roofs, using powerline networking
or the cell network are options, although our current prototype
does not support them. In a solar array, as long as one solar mod-
ule has WiFi connectivity, e.g., one near a window, it can act as a
gateway for an ad hoc mesh network that connects the others.

3.2 So�ware Design
�e Raspberry Pi platform above runs a full Linux so�ware stack,
including python and various drivers that interact with the MPPT
chip. Our so�ware includes a python library that exposes a simple
API to developers. �e API’s functions use the smbus library pro-
tocol to write the required register values to the SM7442. Table 1
shows the �ve primary functions in this API, which mostly consist
of ge�er and se�er methods. �e init() function initializes the
SM72442 MPPT chip and sets the appropriate con�guration bits in
its registers to override the external ADC channels, enabling so�-
ware control of its functions. �e ping() function simply checks if
the MPPT chip is alive and responding to commands.

�e APIs’ three key functions focus on se�ing a solar power limit,
monitoring power output, and retrieving themaximum power point.
setPowerLimit(int) takes a power value in Wa�s as input and
con�gures the MPPT chip to limit solar output to that value. Note
that se�ing the power limit to any value below zero or beyond the
MPP causes the MPPT chip to fall back to tracking the MPP. Our
prototype enables so�ware to set power limits at the granularity of
a Wa�, which should be su�cient for standard modules with max-
imum capacities on the order of 300W. Likewise, getPowerOut()
returns the current output power in Wa�s; if a limit is set, then this
value should be at the limit, since there is li�le imprecision in the
tracking algorithm. Finally, getPowerMax() returns the current
MPP. �is meta-function con�gures the MPPT chip to perform
MPPT, stores the MPP value and then resets the power limit, if any,
before returning to the MPP. We include this meta-function as it is
o�en useful to know how much solar power we are curtailing.

Table 2 lists some additional auxiliary functions the API supports
�ese functions generally enable se�ing voltage and current limits
separately, as well as ge�ing voltage and current at Helios’ input (at
the solar module) and output (at the inverter/ba�ery), as well as the
current/voltage limit se�ings and the current/voltage at the MPP.
Note that we label the return values of these functions as dynamic if
they represent a dynamic system measurement determined by the
environment, and not a stored value. Our so�ware packages these
functions into a helios python library that so�ware running locally
can import. In addition, we also wrote a small server in python that
exposes these functions remotely via a REST API, which enables
remote control by an external client. We present the REST API,
in Tables 1 and 2, where 127.0.0.1 can be replaced with Helios’
IP address. Such remote control may be useful for coordinating
control of multiple modules, where they communicate to perform
various tasks such as enforcing aggregate limit across distributed
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Function REST API Description Type
setPowerLimit(int) POST 127.0.0.1:5000/helios/P:<int limit> set power limit -
getPowerOut() GET 127.0.0.1:5000/helios/power-out get output power dynamic
getPowerMax() GET 127.0.0.1:5000/helios/power-max get MPP power dynamic
init() POST 127.0.0.1:5000/helios/init initializes platform -
ping() POST 127.0.0.1:5000/helios/ping checks chip status -

Table 1: Helios Library Primary Functions

Function REST API Description Type
setVoltageLimit(int) POST 127.0.0.1:5000/helios/V:<int limit> set maximum voltage -
setCurrentLimit(int) POST 127.0.0.1:5000/helios/I:<int limit> set maximum current -
getVoltageLimit() GET 127.0.0.1:5000/helios/voltage-limit get maximum voltage static
getCurrentLimit() GET 127.0.0.1:5000/helios/current-limit get maximum current static
getVoltageOut() GET 127.0.0.1:5000/helios/voltage-out get output voltage dynamic
getCurrentOut() GET 127.0.0.1:5000/helios/current-out get output current dynamic
getVoltageIn() GET 127.0.0.1:5000/helios/voltage-in get input voltage dynamic
getCurrentIn() GET 127.0.0.1:5000/helios/current-in get input current dynamic
getVoltageMax() GET 127.0.0.1:5000/helios/voltage-max get MPP voltage dynamic
getCurrentMax() GET 127.0.0.1:5000/helios/current-max get MPP current dynamic

Table 2: Helios Library Auxiliary Functions

modules. While coordinating control of multiple Helios modules
presents an interesting research problem, it is outside the scope
of this paper. Note also that, while Helios is designed as a DC
power optimizer for an individual solar module, it can also work
with arrays of multiple solar modules (based on their aggregate I-V
curve), which eliminates the need to coordinate multiple modules.

4 IMPLEMENTATION CONSIDERATIONS
Challenges. We faced a number of challenges in Helios’ imple-
mentation. For example, at the end of each day the voltage output
of Helios’ DC power supply would not switch directly from its
required 10V/5V (for the Raspberry Pi and MPPT chip) to 0V, but
would drop below the required voltage. When applied to the MPPT
chip (SM72442) and the MOSFET driver chip (SM72295), such low
voltages would alter the chips’ con�guration, which would persist
until the devices were powered back on the next day. To address the
problem, we save the con�guration state in the Raspberry Pi and
reset its con�guration at the start of each day. A similar problem
occurred during cloudy days, as voltage may drop below threshold
brie�y due to clouds. To address intermi�ent drops, we added a
capacitor at the DC power supply as a bu�er to store energy and
supply it to maintain voltage during cloudy periods.

Our implementation also required python’s smbus library to read
the MPPT chip’s registers. However, the chip’s communication
protocol requires “repeated start” functionality, which required
explicit activation within the smbus library to use. Speci�cally,
to read a register with “repeated start,” the address of the slave
devices and the target register �rst have to be wri�en on the I2C
bus; only then will the device respond by sending the length of
data bytes followed by the register contents. �is read sequence
requires the master to switch from initially writing to reading
without terminating the communication at the end of the �rst set
of writes, i.e., a “repeated start.” A standard write will not work, as
it terminates the communication before it switches to reading. �is
basic protocol enables so�ware running in the platform to control
the MPPT chip via its low-level interface.

Finally, the MPPT chip’s datasheet speci�es that changing the
voltage and current limits requires writing a 10-bit �eld to a spe-
ci�c register. However, the datasheet did not specify how values
within this 10-bit �eld translate into decimal voltage and current
values. �us, we had to reverse engineer the translation through
experimentation, e.g., by se�ing values and reading the voltage
output. Since the there were only 1024 values of the registers, it
was possible to set every value and observe its result.
Cost. Table 3 breaks down the cost of our prototype and Helios’
cost at scale. For comparison, a 300W SolarEdge power optimizer
(P300) currently costs ⇠$60. �us, Helios’ cost is in-line with cur-
rent power optimizers. While its at-scale cost is signi�cantly less,
the cost of commercial products include additional costs beyond
hardware, e.g., marketing, certi�cation, etc. However, our break-
down does indicate that Helios appears to be in the same cost range
as existing power optimizers that are not programmable.

5 EXPERIMENTAL EVALUATION
We evaluated Helios in emulation and using a deployed solar mod-
ule. Our emulation connects Helios to both a solar array simu-
lator (SAS) and a programmable DC load. �e SAS acts like a
programmable power supply that mimics the electrical response
of an I-V curve. �at is, the SAS enables us to con�gure a speci�c
I-V curve, such that when its operating voltage changes (due to the
a�ached load) it will alter its output current according the curve. In
contrast, a traditional DC power supply will not change its output
current in response to changes in voltage, but will instead maintain
a steady current (depending on its se�ing). We use the Chroma
62020H-150S as our SAS, which also supports a real-world weather
mode. �is mode is capable of replaying solar radiation traces that
alter the maximum power point of the I-V curve to match the traces.
In our emulation, Helios sits between the SAS and a programmable
DC load, which is also able to replay power traces of demand. Fig-
ure 3 depicts our lab setup. Our real experiments simply replace
the SAS with a solar module. However, there are many drawbacks
to live experimentation, since they must be run outdoors subject



Helios BuildSys ’18, November 7–8, 2018, Shenzen, China

Component 1x cost ($) 10,000x cost ($)
SM72442 11.68 5.31
SM72295 4.56 2.22
SM72485 3.19 2.16
Raspberry Pi 10 10
Inductor 10.19 7.71
MOSFETS 6.4 2.48
Other components 10 7
PCB development 10 1
Total $66.02 $37.88

Table 3: Helios cost breakdown

Programmable 
DC load

Solar Array 
Simulator

Helios 
Prototype

Figure 3: Emulation con�guration with Helios sitting be-
tween a solar array simulator and a programmable DC load.

to real weather conditions (requiring weather-proo�ng) and are
not repeatable. �us, most of our experiments use the SAS. We
run microbenchmarks to evaluate Helios’ response latency and
power consumption. However, Helios’ primary contribution is in
the �exibility it provides to implement a wide range of control
algorithms. To evaluate this, we conduct a number of case studies
that implement a wide variety of solar control algorithms proposed
in prior work, but never implemented.

5.1 Microbenchmarks
Response Latency. Helios’ response latency is signi�cant as it
dictates its ramp rate, or the rate at which it can increase or de-
crease its power output. A conventional dispatchable generator’s
ramp rate is an important metric, since it determines how well
the generator can respond to changes in grid demand. We mea-
sure response latency by recording the time between calling Helios’
application-level function in python to set a power limit to when we
can verify that the power limit has been set. To verify the la�er, we
call Helios’ application-level function to verify the current power
state. We ran 1000 experiments that altered the power limit in this
way, and found that the average latency to change power was 12ms
at 99th percentile with worst case latency of 34ms. �is latency
was independent of the magnitude of the power changes, and less
than the 16.7ms cycle length of 60Hz AC power. �ese experiments
demonstrate that, from the perspective of the AC grid, Helios ef-
fectively enables an in�nite ramp rate 99% of the time. Even the
worst case response of 34ms is multiple orders of magnitude less
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Figure 4: Power consumption vs call rate per second
Variable Description
P l imit
S solar power limit

Pwei�ht
S solar power weight

Pmax
S maximum solar power

PD (t ) grid demand at time t
P l imit
D grid demand limit

� smoothing factor for EWMA
PTS solar power data over T
PH helios power output
� time between power updates

Table 4: Variable de�nitions for Algorithms 1-4

than the most agile conventional power generators, which take on
the order of minutes to ramp up.
Power Consumption. Helios’ power consumption ranges be-
tween 0.9W and 1.6W with the Raspberry Pi’s consumption alone
ranging between 0.7W and 0.8W. By contrast, the MPPT chip’s
power is insigni�cant, ranging from 0.08W to 0.1W depending on
its temperature. Figure 4 plots the power consumption as a function
of the function call rate to alter the power, which shows that the
power consumption is steady even under intensive use of the plat-
form and the MPPT chip, e.g., when changing power levels every
10ms. Since Helios is designed to support modules with capacity of
⇠300W, its power consumption is insigni�cant. In addition, the low
power consumption should enable Helios to run for the entire day.

5.2 Case Studies
In our case studies, we use Helios to implement a wide range of solar
control algorithms. In each case, we list the algorithm’s pseudocode
when implemented using Helios. �e variable de�nitions for this
pseudocode are shown in Table 4. Note that for our emulation
experiments, we use traces that report solar radiation every �ve
minutes. We accelerate our emulation experiments by 300⇥ by
changing power every second based on the �ve minute values. Note
that accelerating the experiments stresses our prototypemuchmore
than in practice by increasing the frequency of power variations.
We quantify accuracy using the Mean Absolute Percentage Error
(MAPE) between the limit and the actual generation, as below. A
MAPE near 0% is be�er, as it indicates be�er accuracy.

MAPE =
100
T

T’
t=0

|
P l imit
S (t) � PH (t)

P l imit
S (t)

| (1)

5.2.1 Constant Power Generation. �e simplest possible “algo-
rithm” is to set and maintain a constant power output. Recent work
has proposed di�erent various approaches to constant power gen-
eration [13, 14]. �ese approaches are similar to the algorithmic
variants of MPPT in that, while interesting, simple approaches, such
as P&O, are quite e�ective. Since our MPPT chip natively supports
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Algorithm 1 Constant Power Generation

Require: P l imit
S

1: Helios .init()
2: Helios .setPowerLimit(P l imit

S )

Algorithm 2 Constant Net Metering

Require: P l imit
D , PD (t)

1: Helios .init()
2: while (1) do
3: if (PD (t) > P l imit

D ) then
4: P l imit

S = PD (t) � P l imit
D

5: else
6: P l imit

S = 0
7: Helios .setPowerLimit(P l imit

S )
8: sleep(�)

se�ing power limits using a modi�ed P&O algorithm, and Helios’
API directly exposes this functionality, the Helios pseudocode in
Algorithm 1 for constant power generation is straightforward. Fig-
ure 5 demonstrates our constant power generation algorithm on
a sunny (a) and cloudy (b) day in emulation. In this case, we set
Helios to maintain a �xed power of 50W on a 100W solar panel’s
output. We also ran the algorithm outdoors on a real 100W panel
on a sunny day as well, although we only ran it for an hour, during
which solar radiation was relatively constant. �ese experiments
demonstrate that Helios, and its underlying MPPT chip’s algorithm,
are nearly perfect at maintaining constant power generation as the
MAPE is 1.06%, 1.13%, and 0.83% for the sunny day, cloudy day, and
outdoors, respectively.

5.2.2 Constant Net Metering. A slightly more complex algo-
rithm is constant net metering, which a�empts to maintain con-
stant net power for a solar-powered building or home. Constant net
metering has multiple potential bene�ts. For example, while cur-
rent policies regulate grid-tied solar capacity to control its e�ect on
the grid, they are indirect. In contrast, regulating users’ net meter
demand would directly control users’ grid impact. In particular, by
regulating users’ net demand, governments could incentivize users
to alter their demand in response to their solar to minimize their
aggregate impact on the grid. Our constant net meter generation
algorithm (Algorithm 2) regulates a home’s net demand to maintain
it at a constant level and remove all variations in power. Prior work
proposes a similar approach to �a�ening a home’s net demand to
preserve user privacy by preventing utilities from applying energy
analytics algorithms, which analyze changes in a building’s power
to infer a range of behaviors, such as appliance usage and occu-
pancy [6, 9]. �e primary di�erence here is that prior algorithms
use ba�eries or thermal energy storage, e.g., in water heaters, to
�a�en demand, while Helios controls solar power.

Figure 6 demonstrates Helios maintaining a constant net meter
power. Here, the demand and net lines in the graph are negative
and we translate them up on the graph by 100W so that they do
not overlap with the positive solar generation. In this case, we
con�gure our algorithm to keep the net demand constant at 0W

Algorithm 3 Weighted Power Point Tracking (WPPT)

Require: Pwei�ht
S

1: Helios .init()
2: while (1) do
3: Pmax

S = Helios .�etPowerMax()
4: sleep(20ms)
5: P l imit

S = P
wei�ht
S ⇥ PS

6: Helios .setPowerLimit(P l imit
S )

7: sleep(�)

Algorithm 4 Solar Ramp Rate Control (SRRC)

Require: � , PTS
1: Helios .init()
2: while (1) do
3: P l imit

S = ewma(PTS ,�)
4: Helios .setPowerLimit(P l imit

S )
5: sleep(�)

for the home, such that it has zero impact on the grid. Note that
we have scaled down a real home’s demand by 10⇥ to match it to
the solar emulator’s capacity. �e do�ed line shows how Helios
varies solar power to mirror demand and maintain the �at net
demand line in the middle. On the sunny day (a), Helios maintains
a nearly perfect net demand, while on the cloudy day (b), there are
a few periods where there is not enough solar power available to
completely �a�en demand, resulting in some �uctuations in net
demand and a higher MAPE value, as shown in Table 5. We also ran
a proof-of-concept experiment outdoors over an hour on a sunny
day, where Helios was able to maintain a �at net demand with a
low MAPE, as there were no �uctuations in solar power.

5.2.3 Weighted Power Point Tracking. WPPT is a recently pro-
posed solar control algorithm that enables users to apply a percent-
age weight to their output, such that their solar output is regulated
to be a speci�ed percentage of their maximum output [13]. WPPT
is inspired by similar approaches to proportional sharing in com-
puter systems and networks, which allocate users a fraction of
the available resources. Similarly, WPPT enables higher-level al-
gorithms that both regulate aggregate solar power and ensure all
users are able to generate the same fraction of power relative to
their maximum capacity [3]. Since WPPT requires knowing the
actual MPP and then backing o� by a certain fraction, Helios’ al-
gorithm periodically �nds the MPP, multiplies it by the fractional
weight, and then sets the appropriate limit. Algorithm 3 shows
the pseduocode for WPPT in Helios. Figure 7 shows the results of
WPPT.�e periodic spikes upward represent points where Helios
searches for an updated MPP before scaling back. In this case, we
set the weight equal to 50% and search every �ve seconds for a
new MPP. As the graphs show, on a cloudy day (b) with frequent
variations, WPPT is less accurate at maintaining its limit than on
sunny days and has a higher MAPE, as in (a) and (c), with fewer
variations and lower MAPE, as given in Table 5.

5.2.4 Solar Ramp Rate Control. Helios also enables new algo-
rithms. Here, we describe an algorithm we developed to dampen
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Figure 5: Helios is nearly perfect at maintaining a constant power, in this case, of 50W in various scenarios.
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Figure 6: Helios maintaining a constant net power at 0W.
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Figure 7: Helios performing Weighted Power Point Tracking (WPPT).
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Figure 8: Helios executing an algorithm to dampen the ramp rates of solar power generation.

solar ramp rates based on an Exponentially Weighted Moving Av-
erage (EWMA). �e algorithm simply sets the solar power limit
equal to an EWMA of solar output. EWMA de�nes a history pa-
rameter � , which dictates the weight the moving average applies
to previous values when updating the moving average, enabling us
to control the level of dampening using this parameter. Note that
the Helios pseudocode in Algorithm 4 is only able to dampen the
rate of increase in solar power output, as sharp decreases are not
incorporated into a moving average based on previous values.

Enabling dampening of solar power decreases would require ad-
ditional logic to track the time and nearby weather conditions, e.g.,
such as with sky imagers, and respond to short-term predictions
of solar output. We could also modify this algorithm to enforce a
limit on the ramp rate, rather than simply dampening it using a
moving average. Dampening the rate of increase in solar output
will be increasingly important as solar penetration grows in provid-
ing time to ramp up/down mechanical generators with potentially
slow ramp rates to balance �uctuations in solar power. Figure 8
shows the results of dampening the solar ramp rates. As expected,
on sunny days that are already smooth, the algorithm does not alter
solar power and thus has a low MAPE. However, on the cloudy day,

the algorithm smooths the increases in solar power and reduces the
sharp spikes in output. As there are large and frequent variations,
Helios is not able to satisfy the limit perfectly, which is re�ected in
its higher MAPE of 4.79%, as shown in Table 5.

5.2.5 Load Imitation. Another recently proposed solar control
algorithm focuses on privacy [11] by proposing to imitate the pres-
ence of loads in net meter data, rather than �a�en or hide the loads.
�e idea is to inject fake load signatures or noise to fool energy an-
alytics algorithms, such as Non-Intrusive Load Monitoring (NILM)
or Occupancy Detecion (NIOM), into returning incorrect results.
Our load imitation algorithm simply applies a limit to solar power
to mirror the demand imposed by a particular load’s power usage
taken from a trace. �at is, the algorithm reduces solar output
by the demand speci�ed in the trace, which has the same e�ect
that the load would have on solar if it were actually present. To
demonstrate this capability, we re-play a highly complex load trace
for a washing machine trace from recent work [2]. Figure 9 shows
the results, which depict the steady solar output and the washing
machine demand on the top graph, and the resulting solar trace
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Figure 9: �e top graph shows raw solar power and a washing machine load trace, while the bottom graph shows Helios
modifying the solar power output to mimic the washing machine load.

Case Study Sunny Cloudy Outdoor
Constant Power Generation 1.06 1.13 0.83
Constant Net Metering 5.43 11.90 0.16
Weighted Power Point 4.16 19.12 2.02
Solar Ramp Rate Control 0.67 4.79 2.96
Load Imitation 2.51

Table 5: Fidelity, in terms ofMAPE, for di�erent case studies

when imitating the load in the bo�om graph. �e graph demon-
strates that Helios is able to mimic arbitrarily complex load power
traces to within a MAPE of 2.5%, as given in Table 5.

6 RELATEDWORK
Helios is a platform that enables rapid and �ne-grained control of
solar power output. In e�ect, Helios transforms a solar module
into a network-connected IoT device. As we discuss, there has
been signi�cant prior research on algorithms for controlling solar
output, many of which we implement in the previous section using
Helios [8, 11–14]. However, since there is currently no platform
that enables programmatic solar control, existing algorithms have
only been evaluated in simulation and never been implemented. In
enabling control of solar power, Helios enables solar to be used as a
demand response resource, similar to other thermostatic loads, such
as air conditioners and heaters, which are currently the focus of
demand response programs. However, unlike these loads, altering
solar power has no impact on either user comfort or food tempera-
ture. As we show, since solar modules have no moving parts, Helios
enables much �ner-grained and rapid power control compared to
thermostatic loads with mechanical parts. Recent work on smart
inverters is most closely related to Helios. However, as discussed in
§2, smart inverters focus on speci�c operating modes that provide
grid power quality support. While these modes implement useful
algorithms, they are not programmable. Instead, Helios is a pro-
grammable DC power optimizer that operates separate from the
inverter, and focuses on enabling control of real power, which has
numerous applications, as we show in the previous section.

7 CONCLUSIONS
�is paper presents the design and implementation of a “smart”
so�ware-de�ned solar module, called Helios, which enables so�-
ware control of solar power output. While recent work has pro-
posed various algorithms to control solar power to optimize grid

operations, there is currently no way to implement them. Helios
addresses the problem by exposing a high-level programmatic in-
terface to a DC-DC power optimizer, which enables higher-level
so�ware to remotely control solar power output in real-time. We
evaluate Helios in the lab (using a solar array simulator) and out-
doors, and show that i) it enables precise and rapid solar control and
ii) its simple API supports multiple solar control algorithms pro-
posed in recent work. Our work e�ectively transforms solar from
an intermi�ent power source into one that is highly controllable.
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