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Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible
building loads has been previously used for a variety of grid and energy optimizations, carbon footprint
reduction using such flexible loads poses new challenges since such methods need to balance both energy
and carbon costs while also reducing user inconvenience from delaying such loads. This paper highlights the
potential conflict between electricity prices and carbon emissions and the resulting trade-offs in carbon-aware
and cost-aware load scheduling. To address this trade-off, we propose GreenThrift, a home automation system
that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and
cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an
optimization technique that automatically computes schedules based on user configurations and preferences.
We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and
load traces from multiple locations and across different scenarios and objectives. Our results show that
GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon
emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain
95.3% and 85.5% of the potential carbon and cost savings, respectively.

CCS Concepts: • Social and professional topics→ Sustainability.

1 Introduction
Buildings account for 30% of global energy consumption and 26% of global energy-related emissions,
as per the IEA [15]. Consequently, decarbonizing the building sector has emerged as a critical
challenge in our society’s transition to a low-carbon future. Traditional methods to reduce a
building’s carbon footprint have focused on increasing the penetration of renewable energy sources
in the electric grid or installing distributed renewable systems, such as rooftop solar, directly on
buildings. Other efforts have focused on electrification of gas-based building heating systems or
the use of distributed energy storage systems [16, 24, 27]. While these approaches have proven
effective, they come with substantial infrastructure investment costs and only partially address the
broader decarbonization challenge [6].
In contrast to these supply-side methods, a complementary approach is demand-side carbon

footprint optimization, where a building modulates its energy (and carbon) demand over time to
optimize its overall carbon footprint. Since the carbon intensity of electric supply is known to vary
over time — for example, due to intermittent generation from renewables — such demand-side
techniques can schedule flexible building loads or time-shift them to periods of low carbon intensity,
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thereby performing the same work at a lower carbon footprint. While carbon-aware load scheduling
in buildings is a relatively new problem, building load scheduling is well-studied in other contexts.

Scheduling of flexible loads via time shifting has been well studied in other contexts. For example,
prior efforts have studied load scheduling techniques to address problems such as peak load shaving
and cost optimizations in the presence of variable electricity pricing [8, 19, 20, 23, 33]. Automated
demand-response optimization has also explored delaying or time-shifting loads to reduce energy
demand during periods of grid stress [2, 6, 34]. More recently, researchers have begun to explore
load scheduling for optimizing carbon footprint of buildings or grid loads [24]. While prior load
scheduling approaches can provide inspiration for optimizing the carbon footprint of buildings,
they cannot be applied directly for two reasons.

First, carbon reduction techniques solely focus on variations in energy’s carbon intensity, mea-
sured in g·CO2eq/kWh; however, it does not account for variations in electricity prices, increasing
the total electricity cost incurred while reducing carbon emissions. While users may want to reduce
their buildings’ carbon emissions, they may be unwilling to incur higher electricity bills or may
even want to reduce them. This introduces carbon and cost tradeoffs that have not been addressed
in prior work.

Second, scheduling techniques that rely on time-shifting flexible, low carbon, or low electricity
cost periods can increase user inconvenience since loads, such as laundry cycles or EV charging,
take longer to complete. Reducing user inconvenience by mapping user preferences to delays
that are tolerable is an important aspect of the usability of such techniques. Such carbon-user
convenience tradeoffs have also not been explored in prior work.
Motivated by the above challenges, this paper presents GreenThrift, a carbon-aware scheduler

for flexible home loads, that utilizes real-time carbon intensity signals from the grid and vari-
able pricing signals to reduce carbon usage while optimizing cost and meeting user constraints.
Specifically, scheduling of flexible building loads in GreenThrift considers a three-way tradeoff
between carbon, energy cost and user constraints. Through careful scheduling in the presence
of real-world constraints, our GreenThrift approach demonstrates that it is possible to achieve
meaningful carbon reductions in residential buildings while also optimizing electricity costs and
reducing user inconvenience from such time-shifting methods. In designing, implementing, and
evaluating GreenThrift, our paper makes the following contributions:

• We present an analysis of the potential conflict between energy’s carbon intensity and prices to
demonstrate scenarios where reducing carbon emissions may come at the expense of increasing
monthly electricity costs.
• We present GreenThrift Algorithm, a joint optimization approach that can optimize carbon usage
and electric cost while respecting user constraints. We discuss how to embed this optimization
into an online scheduling algorithm that can dynamically time-shift flexible loads in a building
while leaving inflexible loads untouched.
• We evaluate the efficacy of GreenThrift using real-world carbon intensity and variable electricity
data from different regions of the United States. Our results show that GreenThrift can replicate
the offline optimal behavior by retaining 97% of the savings when optimizing the carbon emissions.
Lastly, we show how GreenThrift can balance the conflict between carbon and cost and retain
95.3% and 85.5% of the potential carbon and cost savings, respectively.

2 Background
This section provides background on energy’s carbon intensity and pricing models for residential
consumers. It then explains the role of load shifting in reducing carbon emissions and electricity
bills.
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Fig. 1. Carbon intensity across three locations for July 5-7, 2023.

2.1 Carbon Intensity
Carbon intensity refers to the amount of greenhouse gas emissions, measured in g·CO2eq/kWh, per
unit of energy produced. At the grid level, carbon intensity represents a weighted average of the
energy sources. For instance, coal-fired power plants typically have high carbon intensity, whereas
renewable sources like wind and solar have near-zero carbon emissions. The intermittent nature of
renewable energy sources introduces variability in the grid carbon intensity. For example, during
the day, solar energy is abundant, which decreases the contributions of fossil-based sources, while
at night, utilities may rely more on fossil fuel-based generation, increasing the carbon intensity of
the grid.

Figure 1 depicts the three-day carbon intensity in July in Texas, California, and New York. As
shown, the carbon intensity highly varies across locations and time of day as the energy source
changes. For example, California’s carbon intensity is typically low around noon due to its high
dependency on solar energy, while Texas has no noticeable pattern due to its high reliance on
wind energy. In contrast, New York highly depends on Gas and, hence, has a more stable carbon
intensity. In addition, the figure shows locations where users would typically prefer to run their
load to optimize their carbon emissions and the expected benefits of these actions. For instance, in
California, instead of running appliances early in the morning or later in the evening, users can
shift their loads to noon and reduce their emissions by almost 2×.

2.2 Electricity Prices
Electricity pricing models for residential consumers typically fall into two categories: flat-rate
pricing and dynamic pricing. Flat-rate pricing charges consumers a constant rate per kilowatt-hour
(kWh) regardless of the time of use. While this model is simple and predictable, it does not reflect
the true cost of electricity generation, which varies throughout the day. Dynamic pricing models,
on the other hand, adjust the cost of electricity based on real-time demand and supply conditions.
Time-of-Use (TOU) pricing charges higher rates during peak demand periods (on-peak prices)

and lower rates during off-peak periods (off-peak prices). Figure 2 depicts the TOU prices for Texas,
California, and New York [7, 11, 28]. As shown, the price differs greatly between times of day. For
instance, in New York, peak prices are applied between 8 AM and 12 AM, while in California and
Texas, peak prices are for a few hours. Nonetheless, in all cases, the differences between on-peak
and off-peak highly encourage users to shift their loads, which can result in up to 5.8×, 2.44×, and
14.8× cost savings for Texas, California, and New York, respectively.

Although TOU pricing is the most common approach for residential homes, another approach
is Real-Time Pricing (RTP), which takes this a step further by varying the price of electricity on
an hourly basis, reflecting the real-time cost of generating and delivering electricity as per the
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Fig. 2. Time of Use (TOU) price across three locations for July 5-7, 2023.
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Fig. 3. Real-time price across three locations for July 5-7, 2023.

energy market [10]. Although this pricing model can significantly reduce total energy costs, it is
often very dynamic, requiring agile demand-response strategies and higher flexibility. Figure 3
shows the real-time energy prices across Texas, California, and New York based on their respective
Independent System Operator (ISO), ERCOT, CAISO, and NYISO. As shown, energy prices highly
fluctuate, highlighting a cost reduction potential of 7×, 3×, and 3× for Texas, California, and New
York, respectively.

2.3 Temporal Load Shifting
To exploit variations in energy prices and prices, researchers have proposed multiple temporal load
techniques that move the consumption away from time slots with high energy prices [8, 19, 20, 23,
33]. Similarly, users have explored the potential of temporal shifting to reduce the carbon emissions
of residential loads [3]. Shifting consumption can be implemented through various mechanisms,
such as scheduling flexible appliances, such as dishwashers or dryers, to run during off-peak hours.
Another approach is to utilize energy storage systems like batteries by charging the batteries when
energy is cheaper or greener.

2.4 Problem Formulation
Our work considers a house with multiple electricity loads, which we categorize as flexible and
inflexible loads. Flexible loads have temporal flexibility and can be delayed to later times. Examples
of these loads are dishwashers, washing machines, EV charging, and other loads that users do not
typically directly interact with. On the other hand, inflexible loads, such as lights, cookers, HVAC
systems, and refrigerators, cannot be shifted as they require direct user interaction. We aim to
optimize carbon emissions and costs by scheduling flexible smart appliances to shift their energy
usage to different times by utilizing carbon intensity and cost variations. We assume that users
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Fig. 4. Relation between carbon intensity and TOU prices during July 5-7, 2023, in US, California. The graph
highlights examples of carbon-price conflict and alignments.
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Fig. 5. Demonstrating the conflict when scheduling a washing machine (1kWh load) with a 24hrs deadline
across regions and objectives using TOU prices.

provide a deadline or a waiting limit that GreenThrift can use in load scheduling. To our knowledge,
we are the first work to consider the trade-off in carbon and cost optimizations in residential
workloads. In Section 3, we highlight the trade-offs in implementing carbon and cost-aware load
shifting.

3 Motivation and Carbon-Cost Trade-offs
While exploring variations in the electricity grid’s carbon intensity by shifting appliance usage from
high to low carbon periods can effectively reduce emissions, previous research did not consider
the correlations between the grid’s carbon intensity and energy prices. In this section, we utilize
real-world carbon intensity and pricing traces to quantify the carbon-cost trade-offs of temporal
load shifting. We note that although we focus on the relation between carbon intensity and TOU
prices, the conclusions also apply to real-time prices.

Figure 4 highlights the relation between energy’s carbon intensity and TOU prices in California
during July 5-7, 2023. The figure highlights that there is no clear correlation between energy’s
carbon intensity and prices, and they may even strictly oppose each other (see highlighted periods).
Moreover, this relationship is consistent across different electricity grids, with year-long correlation
coefficients between carbon intensity and TOU prices of 0.17, 0.01, and 0.49 for Texas, California,
and New York, respectively. Although analyzing the reasons behind this conflict is beyond the
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Fig. 6. GreenThrift System Architecture.

scope of this paper, one possible reason is that TOU pricing schemes only focus on demand patterns,
are used to limit grid-level peak usage, and do not consider the energy source.
We devise a simple example to demonstrate the breadth of the conflict between carbon-aware

and cost-aware temporal shifting. In this example, we consider a washing machine that consumes
1kWh of energy and must run for an hour. We repeat this experiment for every hour of the year and
schedule the load within the following 24 hours. We utilize two shifting policies: a carbon-aware
policy — which selects the time slot with the lowest carbon intensity — and a cost-aware policy —
which selects the time slot with the lowest price.

Figure 5 presents the carbon savings (Figure 5a) and cost savings (Figure 5b) of the carbon-aware
and cost-aware policies compared to starting the load immediately across three regions while
considering the TOU prices. As shown, carbon-aware temporal shifting can result in more than
50% carbon savings. In contrast, cost-aware temporal shifting can result in more than 20% cost
savings, depending on the variations in energy’s carbon and price. More importantly, the figure
demonstrates how strictly following a cost-aware policy increases carbon emissions, and likewise,
following a carbon-aware policy increases the cost. Moreover, the figure highlights how the nuances
of the relationship between energy’s prices and carbon intensity affect the conflict. For instance,
following a carbon-aware scheduler in New York still introduces cost savings, while in California,
carbon-aware scheduling increases the total cost.
Key takeaways: The conflict between energy’s carbon intensity and prices motivates multi-criteria
temporal shifting strategies that consider variations in carbon intensity and pricing structures.

4 GreenThrift Design
In this section, we outline the design of GreenThrift, our carbon- and cost-aware home automation
software, and highlight key components needed for its functions. Then, we present our offline
problem formulation and a scheduling algorithm that considers realistic knowledge assumptions.
Lastly, we list an illustrative example of the typical behavior of GreenThrift across scenarios.

4.1 System Architecture
Figure 6 shows the system architecture of GreenThrift where flexible appliances (e.g., washing
machines, dishwashers, etc.) are scheduled in a carbon- and cost-aware manner. GreenThrift
scheduling decisions depend on many factors, such as carbon intensity, cost, and user preferences,
and can be integrated easily into current home automation systems. To schedule flexible home
appliances in a carbon- and cost-aware manner, GreenThrift utilizes the following components:

ACM J. Comput. Sustain. Soc., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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Table 1. GreenThrift parameters and decision variables.

Notation Description
𝑁 𝑁 = {0, 1, ..., 𝑛} is the set of appliances.
𝐿𝑖 𝐿𝑖 is the set of loads for appliance 𝑖 : 𝑖 ∈ 𝑁 .
𝑒𝑖, 𝑗 Energy consumption per slot of the 𝑗-th load of appliance 𝑖 .
𝑝𝑖, 𝑗 Peak power consumption of the 𝑗-th load of appliance 𝑖 .
𝑙𝑖, 𝑗 Length of the 𝑗-th load of appliance 𝑖 .
𝑎𝑖, 𝑗 Arrival time of the 𝑗-th load of appliance 𝑖 .
𝑑𝑖, 𝑗 Deadline for the 𝑗-th load of appliance 𝑖 .1
P𝑡 Price of electricity at time 𝑡 .
C𝑡 Carbon intensity at time 𝑡 .
𝛼 Carbon weight parameter.
𝛽 Cost weight parameter.
I𝑡 Inflexible load power consumption at time 𝑡 .
Bmax Breaker peak load.

𝑠𝑖, 𝑗,𝑡 load 𝑗 of appliance 𝑖 starts at time 𝑡 .
𝑥𝑖, 𝑗,𝑡 load 𝑗 of appliance 𝑖 is running at time 𝑡 .

where, 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝐿𝑖 , and 𝑡 ∈ [1,𝑇 ].

Carbon Information Service. GreenThrift bases its decision on average carbon intensity,
which can be realized through third-party integrations with carbon services such as Electricity
Maps [9], and CarbonCast [18]. These services provide fine-grained real-time and carbon intensity
forecasts at an hour-granularity.

Price Information Service. GreenThrift also relies on electricity prices (e.g., TOU or real-time
prices). TOU prices are fixed as part of the contracts with the utility company and usually remain
constant; hence, it is straightforward to consider in GreenThrift. On the other hand, real-time
prices are variable and require monitoring and predicting local energy markets. Because TOU is
the most commonly used pricing scheme, our evaluations will mainly focus on TOU. However, we
demonstrate the applicability of our approach and trade-offs when considering real-time prices
in Section 5.6.

Load Prediction. To make safe scheduling decisions, GreenThrift needs information about the
expected electricity demand for the upcoming hours. This includes knowledge of the inflexible
power load to ensure that scheduling decisions adhere to the maximum capacity of the circuit
breaker. Additionally, GreenThrift needs to know the periodicity of the flexible loads to ensure that
they are completed before the arrival of the new load.

User Interfaces. As in typical home automation systems, in GreenThrift, the user configures his
preferences (e.g., the allowed delay per appliance). GreenThrift interface highlights the possible
benefits of different scheduling decisions, such as allowed shifting periods and delays. The user
then selects the appliance-specific flexibility based on their preferences.

Scheduling Policy. Lastly, GreenThrift combines the forecasts, user configurations, and current
flexible loads to compute a carbon- and cost-aware schedule. In this case, the schedule computes
the start time of each appliance, where we assume that loads must run to completion. Although
some loads (e.g., batteries or EVs) can be interrupted, we limit ourselves to such use cases.
The following section presents the problem formulation and a scheduling algorithm that ac-

knowledges the impracticalities of the offline formulation.
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4.2 Problem Formulation
This section formalizes the problem of carbon- and cost-aware load scheduling. We consider a
house with 𝑁 flexible appliances, 𝐿𝑖 loads for appliance 𝑖 : 𝑖 ∈ 𝑁 . We divide the scheduling period
into 𝑇 discrete intervals of equal length (e.g., one hour) from 1 to 𝑇 . Table 1 describes the system
inputs and utilized decision variables. We formulate the problem as a minimization Integer linear
programming (ILP) problem as follows:

min
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝐿𝑖

∑︁
𝑡 ∈𝑇

𝑒𝑖, 𝑗 × 𝑥𝑖, 𝑗,𝑡 × (𝛼 C𝑡 + 𝛽 P𝑡 ) (1)

s.t.
𝑑𝑖,𝑗∑︁
𝑡=𝑎𝑖,𝑗

𝑠𝑖, 𝑗,𝑡 = 1 ∀𝑖,∀𝑗 (2)∑︁
𝑡

𝑥𝑖, 𝑗,𝑡 = 𝑙𝑖, 𝑗 ∀𝑖,∀𝑗 (3)∑︁
𝑗∈𝐿𝑖

𝑥𝑖, 𝑗,𝑡 ≤ 1 ∀𝑖,∀𝑗,∀𝑡 (4)

𝑥𝑖, 𝑗,𝑡 ≤
𝑡∑︁

𝑡 ′=𝑡−𝑙𝑖,𝑗+1
𝑠𝑖, 𝑗,𝑡 ′ ∀𝑖,∀𝑗,∀𝑡 (5)∑︁

𝑖

∑︁
𝑗

𝑝𝑖, 𝑗𝑥𝑖, 𝑗,𝑡 + 𝐼𝑡 ≤ Bmax ∀𝑡 (6)

𝑠, 𝑥 ∈ {0, 1} (7)

As shown, the optimization tries to schedule workloads to optimize a parameterized cost function
where 𝛼 ∈ [0, 1] is the weight of carbon emissions and 𝛽 ∈ [0, 1] is the weight of electric prices, and
is subject to multiple constraints. Equation 2 guarantees that the job only starts once and within the
allowed time, i.e., respect the deadline. Equation 3 is the load length constraint, while Equation 4
guarantees that only one load is utilizing the appliances. Equation 5 is the non-interruptibility
constraint, where loads must run to completion once started. The constraint in Equation 6 ensures
that the peak power consumption of flexible and inflexible loads is within the allowed circuit
breaker capacity. Finally, Equation 7 states that the decision variables are binary.

4.3 GreenThrift Algorithm
The problem formulation above relies on detailed knowledge of the electric loads and system
capacities. Although some details are known, such as the circuit breaker capacity, or can easily be
forecasted, such as energy’s carbon intensity [9, 32], some information is burdensome or cannot be
known. For instance, in contrast to the carbon intensity that typically follows a diurnal pattern, the
real-time electricity prices are much more variable, resulting in higher prediction errors. Another
example is inflexible load prediction, which is usually dynamic and can change abruptly. Lastly,
in cases where the carbon intensity or future loads are not predictable, GreenThrift can utilize
threshold-based approaches [17]; however, evaluating the effectiveness of such approaches is
beyond the scope of this paper.
To address these challenges, GreenThrift monitors for the arrival of new loads and the quality

of its predictors at each time step. GreenThrift then follows an iterative scheduling behavior that
1Note that the deadline is computed per load, depending on the load’s arrival time, the next load on the same appliance,
load length, and the users’ configuration.
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Algorithm 1 GreenThrift Algorithm
Input: Appliances 𝑁 , Loads 𝐿, New Load L, Inflex Load Î, Carbon Intensity Ĉ, Energy Price P̂, Breaker peak load Bmax,
𝛼, 𝛽 .
Output: Load start times 𝑆 .
1: if 𝐿L.𝑖 ! = 𝜙 then ⊲ A load exist for this appliance.
2: 𝑑𝑖,1 ← 𝑙𝑖,1 ⊲ Schedule for now.
3: end if
4: L.𝑑 ← min(L.𝜆, L.𝑤 ) + L.𝑙
5: 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑 (L)
6: 𝑆 ← Solve Optimization(𝑁, 𝐿, Î, Ĉ, P̂, Bmax, 𝛼, 𝛽)
7: return 𝑆

12:00 AM 12:00 AM12:00 PM6:00 AM 6:00 PM

Energy PriceCarbon Intensity

Carbon + Cost 
Optimal

(a) Correlated carbon and price

Energy PriceCarbon Intensity

Cost Balance Carbon
12:00 AM 12:00 AM12:00 PM6:00 AM 6:00 PM

(b) Uncorrelated carbon and price

Fig. 7. An illustrative example of GreenThrift behavior across carbon-prices scenarios.

dynamically schedules electricity loads when a new load is scheduled or whenever GreenThrift de-
tects an abrupt change in prediction accuracy. In addition, new load arrivals may cause GreenThrift
Algorithm to violate some of the scheduling constraints, e.g., a new load may arrive before the
current load finishes. Our GreenThrift algorithm makes iterative and incremental modifications to
the computed schedule to address such issues. Our experimental evaluation quantifies the impact
of these decisions in Section 5.6.
Algorithm 1 lists the GreenThrift Algorithm, where the input contains current loads 𝐿, new

load L, and predictions such as carbon intensity and inflexible loads. The algorithm also takes
the system parameters and configurations. The GreenThrift Algorithm is also executed when the
current inflexible load power demand changes beyond the expected range, even if there is no new
load. In this case, GreenThrift Algorithm recomputes the schedules for the current appliances.
First, when a new load arrives, the algorithm forces the scheduler to start all currently scheduled
loads for the corresponding appliance that have not yet begun. The algorithm then computes the
deadline of the new load by considering the expected duration between loads 𝜆, the maximum
allowed waiting time 𝑤 , which the users configure, and the load length 𝑙 2. The algorithm then
computes the schedule using the optimization approach from Equations 1-7 based on the forecasted
inputs. Lastly, the algorithm returns the schedule that should be followed by GreenThrift. Thus, by
optimizing the schedule as new information becomes available, our algorithm effectively balances
the goals of minimizing carbon emissions, reducing costs, and adhering to peak demand constraints,
even in a dynamic and uncertain environment.

4.4 GreenThrift in Action
To illustrate the behavior of GreenThrift, we construct two examples of the relation between the
electricity grid’s time-varying carbon intensity and price, which is typically dynamic, as explained
2Note that we assume that appliances’ power consumption and duration are known, as they are typically static
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earlier. In both examples, we consider two appliances: A dishwasher and a washing machine, ready
at 9 AM and 11 AM, respectively. Figure 7 lists the two cases where the first case (see Figure 7a)
shows the availability of a slot where carbon and price are low (around noon). In this situation,
GreenThrift is not subjected to the carbon-price trade-off, and it simply can select the time slot
where both are low, achieving maximum carbon and cost savings. In contrast, in the second
scenario (see Figure 7b), carbon intensity and price are not aligned, where users must choose
between optimizing for cost or carbon. However, we show that it may be possible to balance the
system by finding a compromise between reducing costs and carbon emissions by selecting values
for 𝛼 and 𝛽 . In next section, we evaluate the trade-offs between carbon and cost and show the effect
of the weight factors on the results.

5 Evaluation
In this section, we evaluate the performance of GreenThrift in terms of carbon and cost savings.
We start by evaluating the performance of the proposed approach across different objectives and
scenarios. Next, we illustrate how GreenThrift under different carbon/price dynamics and traces.
We then perform a sensitivity analysis of the user’s settings. Lastly, we discuss the generalizability
and limitations of our approach.

5.1 Experimental Setup
This section describes the real-world traces used to simulate realistic scenarios and assess Green-
Thrift’s performance.

Carbon Intensity Traces. We utilize carbon intensity traces from ElectricityMaps [9]. The
traces provide hourly average carbon intensity information, measured in grams of carbon dioxide
equivalent per kilowatt-hour (g·CO2eq/kWh). We utilize carbon intensity for California, Texas,
and New York. To emulate the forecast errors, we introduce a uniformly random error to carbon
intensity data, denoted as Ĉ𝑒𝑟𝑟 , where 𝑒𝑟𝑟 is the mean of added percentage error.

Electricity Prices Traces. In addition to carbon intensity traces, we utilized electricity price
traces for California, Texas, and New York. We utilize TOU and real-time pricing data from utility
providers [7, 11, 28], and real-time energy prices from EnergyOnline, a service that provides
historical real-time energy prices [10]. We base most of our experiments on the TOU data, which is
typically the most common pricing model for houses in the US. Nonetheless, since some states allow
residential homes to directly participate in the energy market [26], in Section 5.6, we show the
performance of GreenThrift when using real-time prices. Similar to carbon forecasts, we introduce
a uniformly random error to real-time price data, denoted as P̂𝑒𝑟𝑟 , where 𝑒𝑟𝑟 is the mean of added
percentage error.

Residential Load Traces. We use energy consumption traces from households across multiple
open datasets(e.g., UMass Smart∗ dataset [1]). These traces contain various types of loads, including
both flexible (e.g., washing machines, dishwashers) and inflexible (e.g., lights, refrigerators, HVAC)
loads, allowing us to simulate different load-shifting policies.

Experimental Settings. We utilize three main variations of GreenThrift by setting the val-
ues of 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎: a carbon-aware policy (𝑎𝑙𝑝ℎ𝑎 = 1, 𝑏𝑒𝑡𝑎 = 0), a cost-aware policy
(𝑎𝑙𝑝ℎ𝑎 = 0, 𝑏𝑒𝑡𝑎 = 1), and a balance policy (𝑎𝑙𝑝ℎ𝑎 = 0.001, 𝑏𝑒𝑡𝑎 = 1). In addition, we evalu-
ate the performance of GreenThrift in two load shifting scenarios, an overnight load shifting and
24hrs load shifting. The overnight is a minimum disruption approach that only shifts overnight
workloads (loads are submitted after 6 PM) and ensures they finish before 8:00 AM. In contrast, the
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Fig. 8. Carbon Savings for different scenario and assumptions in California, USA.

24hrs scheduling approach allows all workloads to be moved for 24hrs in the future. Unless other-
wise stated, we use carbon intensity traces without errors and report carbon and cost savings from
flexible loads. We set the peak constraints for individual houses equal to the peak reported in the
original trace. Finally, we implement GreenThrift load shifting policies using Google OR-Tools [25]
across different scenarios and policies and use 1hr time step 𝑡 .

5.2 Carbon-aware load shifting
This section evaluates the carbon savings achieved by GreenThrift over a year using different
knowledge assumptions and scenarios. Figure 8 compares the carbon savings of GreenThrift to
the offline optimal under the 24hrs and overnight experimental scenarios. The figure shows that
the carbon savings potential for the 24hrs approach is much higher than that of the overnight
approach, achieving up to 35.7% and 6.3% for the two scenarios, respectively. This is because the
carbon intensity in California is typically lowest during the day, a period that cannot be utilized
when workloads are only shifted overnight.

Moreover, the figure highlights the performance similarly of GreenThrift, which depends on
realistic knowledge assumptions, with the offline optimal where it achieves carbon savings of 34.7%
and 6.8% for the 24hrs and overnight scheduling scenarios, respectively. Note that the heuristic
achieves slightly higher carbon savings in the overnight scenario, as it frequently violates the
deadline constraints by not finishing the loads before the new load arrives, forcing early morning
loads to be slightly shifted.
Key takeaways: Carbon-aware load shifting can reduce over 35% of carbon emissions from flexible
residential workloads. GreenThrift can replicate the offline optimal behavior and retain 97% of the
carbon savings.

5.3 Balancing the trade-offs
As highlighted in Section 3, strictly following the carbon- or a cost-aware schedule often yields
undesirable effects. Figure 9 shows a single house’s carbon and cost savings when employing
different scheduling objectives across different scenarios in California. Figure 9a highlights the
carbon and cost savings and their trade-offs. For instance, following a carbon-aware schedule
(𝛼 = 1, 𝛽 = 0) can yield up to 34.7% carbon savings. However, it increases the cost of running
the flexible load by 5.7%. On the other hand, following the cost-aware schedule (𝛼 = 0, 𝛽 = 1)
yields up 9.5% cost savings while losing 96.2% of the possible carbon savings. Finally, the figure
shows that using the balance policy can allow us to co-optimize the carbon emissions and cost and
retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. Figure 9b shows the
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Fig. 9. Average savings when employing carbon-aware, cost-aware, and balance scheduling across scheduling
scenarios in California, USA.
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Fig. 10. Average Energy consumption across policies from Figure 9a

behavior of the three policies, where the balance policy can retain 98% and 100% of the possible
gains. Nonetheless, in contrast to Figure 9a, the carbon-aware policy does not yield cost increases,
as pushing the workloads to later periods always pushes it away from on-peak price periods.

Figure 10 provides additional insights into how these load-shifting policies impact load distribu-
tion throughout the day in a single home from Figure 9a. Figure 10a shows the original demand and
highlights the difference between flexible and inflexible load. As shown in the original schedule,
most flexible loads (e.g., dishwashers) occur later in the evening, when the cost is low, which limits
the possibilities of cost savings (see Figure 9). Figure 10b shows how the carbon-aware scheduler
moves workloads around noon, when carbon intensity is typically the lowest, while Figure 10c
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Fig. 11. Average carbon savings and cost savings using balance settings across scenarios in three different
regions.

pushes the demand away from the peak period, which normally moves the load later in the evening,
without introducing many changes. Lastly, Figure 10d shows how the balance policy seeks a middle
ground, distributing loads across lower carbon and cost periods. Although the result resembles
carbon-aware, it avoids the on-peak TOU period at 5 PM. Finally, we note that load shifting does not
affect expected peak demand, as inflexible loads dominate the energy consumption. In Section 5.5,
we show that this conclusion applies when considering multiple houses.
Key takeaways: GreenThrift can balance the conflict between carbon and cost and retain 95.3% and
85.5% of the potential carbon and cost savings, respectively. Since inflexible loads dominate energy
consumption, shifting flexible loads does not increase peak demand.

5.4 Carbon-Price Dynamics
In this section, we evaluate GreenThrift across multiple carbon-price dynamics. Figure 11 shows the
carbon and cost savings achieved using the balance policy across scheduling scenarios in California,
Texas, and New York. The results highlight the impact of the electricity pricing structures and
carbon intensity profiles on the potential savings and the effectiveness of load-shifting policies.
For instance, GreenThrift can achieve 17%, 11%, and 5% for California, Texas, and New York,
respectively, when considering the 24hrs scenario, which is correlated with the variability of each
trace [14]. However, the high reliance on wind energy in Texas, which is typically more available
at night, allows the 6 AM to 8 PM policy to retain more than 50% of the carbon savings. At the
same time, GreenThrift can achieve 22%, 14%, 16% cost savings for California, Texas, and New
York, respectively, when considering the 24hrs scenario. The figure also highlights the role of the
variability in carbon and cost savings. For example, New York has a gap in the price difference
with 25 ¢/kWh off-peak price and 61 ¢/kWh on-peak price during summer, which impacts its cost
savings compared to other regions.

Figure 12 further analyzes the behavior of GreenThrift and highlights the carbon and cost
savings for different seasons across policies in California. As shown, both the potential savings and
the conflict differ across seasons. For instance, in Spring, where carbon intensity is typically more
variable in California, the GreenThrift reduces carbon emissions by up 21.8% and cost by up 26.5%.
Nonetheless, the figure highlights that Spring has a bigger carbon-cost conflict than other seasons.
Key takeaways: Carbon intensity and price dynamics, which change across seasons, dictate the
possible savings and conflict.
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Fig. 12. Carbon and Cost Savings across seasons using balance settings in the 24hrs scenario, in California.
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Fig. 13. Carbon savings and cost savings from multiple houses in different regions using the balance policy.
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Fig. 14. Flexible demand in a house with high carbon and cost savings in California.

5.5 Demand Dynamics
Next, we depict the performance of GreenThrift across different houses, representing customers’
behaviors. Figure 13 illustrates the carbon and cost savings across multiple houses in California, New
York, and Austin. The data shows significant variability in savings within each region, highlighting
how differences in household loads and appliance usage patterns can lead to diverse outcomes. For
instance, in California, houses can achieve up to 33.1% carbon savings and up to 37% cost savings.
At the same time, some houses only achieve 6.6% carbon savings or only 8.1% cost savings.
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Fig. 15. Flexible demand in a house with low carbon and cost savings in California.
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Fig. 16. Accumulated average Flexible and Inflexible load at the transformer level in California.

To understand the reason behind variations, Figure 14 and Figure 15 show the demand pattern of
two houses in California before and after load shifting. As shown in the first house (see Figure 14a),
the demand is typically higher at on-peak and high carbon intensity periods. Thus, load shifts
highly influence the demand pattern (see Figure 14b), resulting in carbon and cost savings of 25.6%
and 36.9%, respectively. On the other hand, Figure 15 demonstrates a scenario where the majority
of the load already occurs during off-peak and low-carbon periods. This results in minimal changes
in the demand pattern, leading to only 7.6% and 15.6% reductions in carbon and cost, respectively.
Moreover, as highlighted earlier, the savings in Texas and New York are much more limited,

where houses achieve a maximum of 15.9% and 33.7% carbon and cost savings and a maximum of
10% and 26.1% carbon and cost savings, for Texas and New York, respectively. Nonetheless, houses
exhibit similar variability. Lastly, it’s important to note that, on average, most locations offer greater
cost savings than carbon savings. This is because the ratio between low and high prices is usually
higher than between low and high carbon intensity.
Finally, to analyze the impact of load shifting on overall energy demand, we combine demand

from flexible and inflexible loads across households. Figure 16 and Figure 17 depict the average
daily energy consumption when combining the load of all the houses in California and New York,
respectively. Figure 16a and Figure 16b compare the original demand, where the peak typically
happens around 6 PM, with the load after shifting. As shown, GreenThrift reduces the peak demand
by 3.1%, as it shifts the load to an off-peak period. Similarly, in New York (See Figure 17a and
Figure 17b), GreenThrift is capable of reducing peak demand by 15%. As explained earlier, the
reason for this is that inflexible loads dominate total consumption, and moving flexible loads is less
likely to increase the peak. At the same time, since the electricity price is typically high at peak
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Fig. 17. Accumulated average Flexible and Inflexible load at the transformer level in New York.
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Fig. 18. Carbon and Cost savings when using real-time pricing for a single house in California across policies.

load times, shifting workloads in a cost-aware manner also shifts flexible loads away from peak
demand slots.
Key takeaways: The potential carbon and cost reductions from GreenThrift are significantly influenced
by demand patterns. The benefits of GreenThrift increase when demand is not aligned with periods of
low carbon intensity and prices. Additionally, GreenThrift aims to lower energy costs by shifting loads
to off-peak times, thereby reducing overall peak demand.

5.6 Sensitivity Analysis
Using Real-time Prices: Although TOU is the most common dynamic pricing scheme, some
locations allow users to participate directly in the energy market and pay according to real-time
prices. Figure 18 shows the behavior of GreenThrift across scheduling objectives, using the same
trace as in Figure 9 while allowing loads to be shifted for 24hrs. Similar to TOU prices, optimizing
for a single objective often leads to a bias in the decisions. However, we highlight that in contrast
to using TOU pricing, real-time prices allowed the house to save up 45% compared to 9.5% that was
saved in Figure 9. Moreover, the figure illustrates that the trade-off is less pronounced where all
objectives result in similar carbon and cost savings.

Impact of extended deadline: To illustrate the relationship between extended deadlines and
savings, we evaluate the behavior of GreenThrift under different deadlines. Figure 19 depicts this
relation when using the balance policy in California. As shown in contrast to earlier work [14],
extending the deadline does not always yield higher savings. For example, in California, extending
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Fig. 19. Carbon and Cost Savings when employing the balance policy for a single house in California.

the deadline beyond 24hrs decreases the carbon savings, while extending the deadline beyond
12hrs decreases the cost savings. This is because when a new load arrives on an appliance with
a scheduled load, GreenThrift Algorithm immediately starts the scheduled load, aside from the
carbon intensity and cost. The figure also highlights that this behavior is seen across locations,
but the magnitude of the change depends on the load and the electricity grid’s carbon and price
characteristics. Lastly, it highlights how selecting the proper deadline and understanding the load
dynamics is vital to maximizing the benefits of GreenThrift.

Carbon Intensity Error: Although researchers have shown that carbon intensity forecasts are
often very accurate [18, 32], forecasting errors are still possible. Figure 20 evaluates the performance
GreenThrift when considering carbon forecast errors, which we emulate by adding uniform errors,
as explained in Section 5.1. As shown, the effect of errors barely changes the performance of
GreenThrift, highlighting the robustness of our scheduling approaches. For instance, even when
adding 30% carbon intensity errors, the carbon savings are reduced by only 2%.

Effect of 𝛼 and 𝛽 . GreenThrift typically uses a weighted average of the energy’s carbon intensity
and price. In this subsection, we explore the sensitivity of our load-shifting policies to different
values of carbon weight parameter 𝛼 and cost weight parameter 𝛽 in terms of carbon and cost
savings. Figure 21 shows the effect of 𝛼 and 𝛽 on the carbon emissions and savings. As expected, the
values of 𝛼 and 𝛽 highly influence the carbon and cost savings. For example, when 𝛼 = 𝛽 or 𝛼 > 𝛽 ,
GreenThrift behaves as a carbon-aware system as the magnitude of the carbon intensity is much
higher. However, when 𝛽 > 𝛼 , the system behaves differently based on the ratio between alpha
and beta. For example, when 𝛽 ≫ 𝛼 , it behaves as a cost-aware, while if 𝛽 ≈ 𝛼 , it still behaves as a
carbon-aware. Finally, we note that we found many values for 𝛼 and 𝛽 that can bring GreenThrift
to a balance; we highlight a few of them in the figure.
Key takeaways: Although GreenThrift configurations and quality of inputs significantly impact the
possible carbon and cost savings, the configuration space is easy to navigate, and in case of forecast
errors, GreenThrift can retain most benefits.

5.7 Discussion
We have shown the benefits of GreenThrift in minimizing carbon and costs by exploiting the
temporal flexibility in residential loads. Next, we highlight other benefits of the proposed methods
and their limitations.
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Fig. 20. Effect of Carbon Forecast Errors in California,
using the balance policy.
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Fig. 21. Changes in carbon and cost savings
across different values of 𝛼 and 𝛽 in a single house
in California.

Generalizability of GreenThrift In this work, we showed the benefits of GreenThrift in
reducing carbon emissions and the cost of residential flexible loads. However, flexible loads only
represent a small fraction of the total load. However, GreenThrift load-shifting policies can be
leveraged to implement holistic reductions using batteries and rooftop solar panels. In this case,
each house can compute its own energy carbon intensity and prices and shift load according
to cheap and green energy availability. Evaluating the usage of batteries and solar energy and
addressing the challenges and trade-offs in this case is part of our future work.

Limitations Although load shifting can significantly reduce carbon emissions and costs, Green-
Thrift makes assumptions that must be addressed in real-world deployments. First, in this work,
we assume no dependency between loads. However, in reality, there is some causality between
loads. For example, the washer must finish before the dryer, and should complete its cycle when
the user is nearby to manually unload and load the machines.

Although these relations can be modeled, they require further user involvement to configure mul-
tiple loads simultaneously. Second, our experiments assume that load time and power consumption
are fixed and known beforehand. Although this is true for most appliances, some smart appliances
have automatic modes that change their behavior with the state. For example, some dryers stop
when the load gets dry enough, which requires further profiling of household workloads. Moreover,
our experiments assume knowledge of flexible loads demand, which may not be true, and require
insights on the typical users’ behavior. Lastly, although we show that GreenThrift typically reduces
the peak, this was an artifact of our traces, where flexible loads are a minority. Although this is
true for most residential buildings, houses with many flexible loads may lead to increases in their
peak demand.

6 Related Work
Load shifting is a commonly used technique to manage residential electricity demand. It helps to
lower costs, reduce peak consumption, and decrease overall carbon emissions [13]. Researchers
have employed load shifting to cut down on energy expenses by shifting electricity usage away from
peak demand periods when electricity is typically more expensive [8, 12, 19, 20, 23]. For example,
the authors of [23] proposed a scheduling technique for flexible loads to minimize electricity costs
while maintaining user comfort. In [20], the authors used batteries to lower all loads’ energy costs
by charging a battery when energy prices are low and using the stored energy when prices are high.
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Lastly, the authors of [12] analyzed the challenges in the broad deployment of demand-response
techniques. In contrast to these single-objective approaches, GreenThrift focuses on simultaneously
optimizing costs and carbon emissions.

Moreover, researchers have demonstrated that load shifting not only helps in cost optimization
but also aids in reducing peak demand. For example, [34] conducted simulations to analyze the ad-
vantages of load shifting for flexible loads in lowering the peak-to-average ratio. Additionally, [4] [5]
illustrated how cooperative load shifting can reduce grid-wide peaks. Furthermore, researchers
have also explored the benefits of house-wide load shifting in reducing peak demands. For example,
in [2], researchers have utilized load shifting for background loads (e.g., an HVAC unit) to decrease
the peak demand while considering users’ comfort. In contrast, in [20, 22, 31], authors explored
how batteries can help reduce load peaks. Although in GreenThrift, we only focus on flexible loads,
peak reduction was not a direct objective. We have demonstrated that cost considerations typically
move loads away from peak demand slots, decreasing the average cost.
Researchers have also studied ways to reduce the carbon emissions produced by residential

energy usage. For instance, [21, 33] have demonstrated that using local renewable energy sources
can replace some of the energy obtained from the grid with carbon-free renewable energy, leading
to lower emissions and costs. Furthermore, the authors of [3, 29, 30] analyzed the potential of load
shifting in directly reducing carbon emissions by exploiting temporal variability of energy’s carbon
intensity. In GreenThrift, we consider grids where energy’s cost and carbon intensity are variable,
unlike other approaches that only consider variations in either.

7 Conclusion
In this paper, we analyzed the potential of temporal load shifting of flexible loads to decrease
carbon emissions and costs in residential houses. We proposed GreenThrift, an optimization
technique that automatically computes schedules based on user configurations and preferences
while considering the tradeoffs between energy’s carbon intensity and prices. Our results from
trace-driven simulations based on real-world traces show that our approach can replicate the offline
optimal behavior by retaining 97% of the savings when optimizing carbon emissions. Moreover,
we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and
85.5% of the potential carbon and cost savings, respectively. In future work, we will analyze the
applicability of our load-shifting techniques and the breadth of the carbon-cost tradeoffs in the
presence of local renewables and energy storage.
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