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Abstract
Data centers and clouds are increasingly offering low-cost

computational resources in the form of transient virtual ma-

chines. Whenever demand for computational resources ex-

ceeds their availability, transient resources can reclaimed by

preempting the transient VMs. Conventionally, these tran-

sient VMs are used by low-priority applications that can

tolerate the disruption caused by preemptions.

In this paper we propose an alternative approach for re-

claiming resources, called resource deflation. Resource defla-
tion allows applications to dynamically shrink (and expand)

in response to resource pressure, instead of being preempted

outright. Deflatable VMs allow applications to continue run-

ning even under resource pressure, and increase the utility

of low-priority transient resources. Deflation uses a dynamic,

multi-level cascading reclamation technique that allows ap-

plications, operating systems, and hypervisors to implement

their own policies for handling resource pressure. For dis-

tributed data processing, machine learning, and deep neural

network training, our multi-level approach reduces the per-

formance degradation by up to 2× compared to existing

preemption-based approaches. When deflatable VMs are de-

ployed on a cluster, our policies allow up to 1.6× utilization

without the risk of preemption.
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1 Introduction
A transient computing resource, such as a server or a virtual

machine, is one that can be unilaterally revoked by the cloud

or data center provider for use elsewhere [70, 72, 86]. In

enterprise data centers, low priority applications can be pre-

empted after having their resources revoked, upon resource

pressure from high priority applications [79]. In cloud con-

text, all three major cloud providers, Amazon [1], Azure [6],

and Google [3], offer preemptible instances that can be uni-

laterally revoked during periods of high server demand.

The primary benefit of transient computing is that it en-

ables data center operators and cloud providers to signifi-

cantly increase server utilization. Idling servers can be al-

located to lower priority disruption-tolerant jobs or sold

at a discount to price-sensitive customers. In both cases,

the resource provider has the ability to reclaim these re-

sources when there is increased demand from higher prior-

ity or higher paying applications. Preemptible cloud servers

have become popular in recent years due to their discounted

prices, which can be 7-10x cheaper than conventional non-

revocable servers. A common use case is to run data-intensive

processing tasks on hundreds of inexpensive preemptible

servers to achieve significant cost savings.

Despite the many benefits, the preemptible nature of tran-

sient computing resources remains a key hurdle. From an

application standpoint, server revocations are essentially fail-

stop failures, leading to disruptions and performance degra-

dation. Consequently, recent work has developed transiency-

specific fault-tolerance mechanisms and policies to alleviate

the effects of preemptions for different classes of applica-

tions such as data processing [67, 84], machine learning [40],

batch jobs [74], and scientific computing [56]. In enterprise

data centers, using transient resources to increase utilization

and minimize the performance impact of preemptions re-

mains an important problem [58, 79, 84, 90]. Even with these

proposed solutions, the preemptible nature of transient re-

sources presents a significant burden for many applications

as they require changes to the application (legacy) code in

many cases.

In this paper, we present resource deflation as a new ap-

proach for managing transient computing resources in data

centers and cloud platforms. We argue that resource preemp-

tion is only one approach, and an extreme one, for reclaim-

ing erstwhile surplus resources from low-priority applica-

tions. In resource deflation, transient computing resources

https://doi.org/https://doi.org/10.1145/3302424.3303945
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allocated to an application can be dynamically reduced and

reclaimed. Such reclamation can be done at the operating sys-

tem, the hypervisor, or the application levels, albeit with dif-

ferent tradeoffs. By reclaiming partial resources, applications

can continue execution rather than being forcibly preempted.

This expands the set of applications that can be hosted on

lower priority transient resources. Specifically, applications

without built-in fault-tolerance support, legacy applications

that are not disruption-tolerant, and inelastic applications

that require a fixed set of servers such as MPI and distributed

machine learning—all of which are challenging to run on

preemptible servers—can all seamlessly run on deflatable

transient resources. In fact, resource deflation is a gener-

alization of many other resource management techniques,

including elastic scaling [71], resource overcommitment [76],

application brownout techniques [52], and preemption [79].

Since fractional reclamation of resources hampers applica-

tion performance, we design mechanisms and policies that

allow applications and cluster managers to cooperatively re-

claim resources to minimize performance degradation across

applications. We demonstrate the efficacy of our approach

for distributed data processing, distributed machine learning

as well as other clustered applications. In doing so, our paper

makes the following contributions:

1. We develop a multi-level resource reclamation technique

called cascade deflation, that reclaims resources using

reclamation mechanisms found in applications, operat-

ing systems, and hypervisors. Cascade deflation uses a

judicious combination of reclamation mechanisms across

different layers to minimize performance degradation.

Compared to conventional techniques for VM resource

reclamation, cascade deflation improves performance by

up to 6×.

2. We show how the flexibility provided by cascade defla-

tion allows applications to define their own policies for

responding to resource pressure. We design application

deflation policies for a range of applications including

memcached, JVM, and Spark-driven distributed data pro-

cessing and machine learning. Our deflation policy for

Spark voluntarily relinquishes resources to mitigate re-

source contention and stragglers. This policy adjusts ac-

cording to the elasticity of Spark programs to minimize

the expected running time, and is able to reduce perfor-

mance degradation by up to 2× compared to the current

preemption-based resource pressure handling found in

today’s public clouds.

3. We design cluster management policies for deflation, and

show that we can completely remove the risk of preemp-

tion even at cluster utilization levels as high as 1.6×.

2 Background and Overview
In this section we motivate the need for resource deflation as

an alternative to preemption of transient resources. We also

compare our approach to other related resource management

mechansims and disuss its merits.

2.1 Transient Computing
Most data centers today are virtualized where applications

run in either VMs or containers multiplexed on to physical

machines. Since data center capacity is provisioned for peak

demand, the average utilization tends to be low [26, 79]. Data

center operators can increase the overall system utilization

or maximize revenue, in case of the cloud, by offering unused

server capacity transiently to low-priority applications or at

a discounted cost.

Thus, the data center is assumed to host two classes of

applications—high and low priority workloads. Low priority

applications are scheduled whenever there is enough sur-

plus server capacity in the data center; however, resources

allocated to VMs of low priority applications are assumed to

be transient. Some or all of these resources may be reclaimed

at short notice when server demand from high priority ap-

plications starts increasing.

Current systems implement resource reclamation in the

form of revocations, where server resources are reclaimed

through VM preemptions. Cloud offerings such as Amazon

Spot instances [1], Google Preemptible VMs [3], and Azure

batch VMs [6] are examples of such low-cost but preemptible

VMs. Enterprise data centers similarly preempt low-priority

jobs when high priority jobs arrive [79, 84, 90].

Preemptions in public clouds can occur at different fre-

quencies depending on the provider’s preemption policies

and the demand of the non-revocable resources (such as on-

demand and reserved instances). For instance, Google’s poli-

cies for preemptible VMs result in a Mean Time To Failure

(MTTF) of less than 24 hours [3]. The preemption rate of an

Amazon spot instance depends on the supply and demand of

instances of that particular instance type, and their MTTFs

can range from a few hours to a few days [8]. These pre-

emptions impose additional deployment and performance

overheads on applications. While always-on stateful services

require special fault-tolerance middleware [70], even batch

applications such as distributed data processing can suffer

from a significant (2×) decrease in performance [67] due to

preemption-induced recomputation.

2.2 Resource Reclamation in Clusters
The need for resource reclamation is common in cluster en-

vironments and arises in scenarios such as VM preemptions,

preemption of low-priority jobs, and for systemmaintenance.

Typically, reclamation through preemptions imposes a high

performance impact on running applications and may also

impact data center goodput. A recent study has shown that

unsuccessful execution accounts for 65% of machine time in a

Google cluster, and a non-trivial fraction of these failures are

cased by job evictions [64]. Preemptions can result in down-

times, loss of state, and starvation of low-priority jobs [21].

Masking the impact of preemptions requires fault tolerance
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Figure 1. Many applications in virtualized environments

can be deflated with only a small performance degradation.

techniques such as periodic checkpointing [56, 67]. Imple-

menting such methods requires application modification or

the use of middleware systems [70].

In this paper, we consider partial reclamation of a resource

such as a server or virtual machine, rather than “full” recla-

mation though preemptions. Our hypothesis is that partial

reclamation, which we refer to as resource deflation, reduces

the reclamation impact on applications when compared to

preemption, and also enables a broader range of applica-

tions to run on transient resources. Resource reclamation at
a cluster level has not received much attention, when com-

pared to cluster-based resource allocation, which has been

widely studied [34, 37]. We can view cluster-based resource

reclamation as the inverse of cluster resource allocation. At

an individual VM-level, partial resource reclamation can be

implemented through VM overcommitment. Our work views

VM overcommitment as a mechanism, available at the gran-

ularity of a single machine, for implementing cluster-wide

reclamation policies. We also argue that VM overcommit-

ment alone is not a sufficient mechanism for effective recla-

mation of resources from applications and present more

general mechanisms for doing so.

2.3 Resource Overbooking and Elasticity
There are a number of cluster-wide resource management

mechanisms related to resource reclamation. Resource over-

booking is one approach where the cumulative peak re-

sources needed by applications in the cluster exceed the total

allocated resources [76, 77]; overbooking tends to be feasi-

ble since not all applications require their peak requested

allocation at the same instant, allowing for statistical mul-

tiplexing of resources. VM overcommitment is an example

of overbooking at the granularity of a single physical ma-

chine. Cluster-wide overbooking policies must consider care-

ful placement and co-location of applications to minimize

chances of overload due to concurrent peak demand. Effec-

tive overbooking typically requires knowledge of application

workload characteristics and SLOs. In contrast, resource de-

flation does not require applications to specify explicit SLOs.

Further, during periods of overload, overbooking techniques

use these SLOs to degrade application performance. While

deflation also degrades application performance during re-

source pressure, our methods are SLO agnostic in nature.

Elastic scaling [55] is another dynamic resource manage-

ment technique where the capacity of a clustered applica-

tion is varied dynamically based on workload fluctuations.

This approach has been explored for web clusters [15, 33],

Hadoop [32], Spark [28], and scientific workflows [44].While

shrinking an application in horizontal scaling is a form

of reclamation, it typically requires knowledge of appli-

cation SLOs and reduces allocation to match a lower de-

mand [36, 48, 60]. In contrast, deflation under resource pres-

sure can, and often will, reduce the allocation to a level far

below the application’s current demand. Thus, despite some

similarities, neither overbooking nor elastic scaling are di-

rectly applicable for transient resource deflation.

Many applications deployed in clouds and data centers

are deflation friendly and can tolerate significant amounts of

deflation without the proportional decrease in performance.

For instance, Figure 1 shows the performance degradation of

four applications, namely, SPEC-JBB, Kernel-Compile, Mem-

cached, and Spark, when the VMs are deflated by different

amounts
1
. We see that the in many cases, even when 50%

of all resources (CPU, memory, and I/O bandwidth) are re-

claimed, the decrease in performance is less than 30%.

Furthermore, a majority of VMs are usually overprovi-
sioned and have a surplus of free and unused resources,

thereby giving deflation enough “headroom”, and avoiding

severe performance degradation. A recent resource usage

study of VMs in Microsoft Azure cloud [26] shows that more

than half the VMs had an average CPU utilization of less

than 30%, and a 95%ile utilization of less than 70%. Thus in

many cases, deflation can reclaim unused resources with

minimal performance degradation.

Thus, deflation allows resource providers to increase the

availability of low-priority resources, and also increase the

overall goodput of virtualized clusters. In many cases, per-

formance degradation, rather than outright termination and

downtimes, may be acceptable even for many interactive

applications except for the most mission-critical ones. Batch

application may also prefer temporary deflation to preemp-

tion to avoid wasteful restarts. Furthermore, our work shows

resource deflation is a feasible approach even for inelastic

applications (e.g., ones that are incompatible with horizontal

scaling) and enables a broad range of workloads to exploit

transient resources in cluster environments.

3 Multi-level Resource Reclamation
Our approach for increasing the utilization and performance

of computing resources entails running virtualized clusters

that run low-priority deflatable VMs and high-priority non-

deflatable VMs. Launching applications on such a cluster

can create resource pressure, if the resources (CPU, memory,

I/O) required exceed their availability. Our deflation-aware

cluster manager (§5) places newly launched VMs according

1
Details about workloads and execution environment can be found in §6
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Figure 2. Overview of deflation-based cluster management

to deflation-aware bin-packing policies, and proportionally

reclaims resources from all the deflatable VMs on a server.

To reclaim resources from a VM, we employ a new technique

called cascade deflation that allows applications, operating

systems, and hypervisors to work together to reclaim large

amounts of resources, while minimizing performance degra-

dation faced by the VM (Figure 2). Deflation allows appli-

cations the flexibility to define and implement their own

policies to respond to resource pressure, and we describe

application-level deflation policies for different applications

in §4. Performance degradation due to dynamic resource

reclamation is a primary concern with deflation, which we

address through multi-level cascade deflation in this section.

3.1 Why multi-level reclamation?
Cluster resources in virtualized data centers and clouds are al-

located and reclaimed by cluster managers based on resource

availability and application priorities. VM-level cluster man-

agers (like VMware vCenter [38] or OpenStack [12]) reclaim

resources through hypervisor-level overcommitment tech-

niques. On the other hand, bare-metal cluster managers such

as Mesos [41], rely on applications to relinquish resources.

Current cluster managers thus rely on a single reclamation

technique (i.e., either hypervisor-level or application-level

reclamation). This binary approach leads to two drawbacks:

first, the reclamation functionality present in modern guest

operating systems remains unused. Second, as we shall elab-

orate below, the reclamation mechanisms provided by differ-

ent software layers expose different tradeoffs in their perfor-

mance and safety, and relying on any single mechanism is

sub-optimal.

VMovercommitment can degrade performance.A com-

mon technique for fractional resource reclamation in virtual-

ized clusters is to use hypervisor-level VM overcommitment.

Since hypervisors virtualize resources and offer them to vir-

tual machines, they can also overcommit these resources by
multiplexing virtual resources onto physical ones. For exam-

ple, CPU resources can be reclaimed by remapping a VM’s

vCPUs onto a smaller number of physical cores, and sharing

the capacity of these cores using the hypervisor’s built-in

scheduling mechanism. Hypervisor-level VM overcommit-

ment mechanisms treat the guest OS and the application as a

“black box”, and the VM itself has no knowledge of the defla-

tion, which is done at the hypervisor level “outside” the VM.

This allows resources to be reclaimed from all applications,

including unmodified, inelastic ones.

However, black-box reclamation techniques can lead to

significant performance degradation. Since the hypervisor

has no knowledge of the relative importance of different

resources to the application, it may overcommit the “wrong”

resources. This problem frequently arises in memory over-

commitment where the hypervisor (unknowingly because

of the black box nature) swaps application pages to disk, in-

stead of free pages. Similarly, overcommitting CPUs leads to

complications like spin-lock preemption [29, 62, 75], wherein

the multiplexing of vCPUs onto a smaller number of physical

cores leads to excessive waiting for lock acquisition when

the vCPUs holding locks get preempted by the hypervisor.

Reclaiming from higher layers is not always feasible.
The performance concerns of black-box VM overcommit-

ment can be alleviated by reclaiming resources from higher

layers, i.e., the guest OS and the application. These higher

layers have better knowledge of actual resource use, and

can use control mechanisms to adjust resource usage in

an application-aware manner. For instance, the OS can re-

duce the size of their disk caches instead of hypervisor-level

swapping [16]. Similarly, distributed applications can reduce

the number of parallel tasks to reduce resource contention,

and mitigate lock holder preemptions mentioned previously.

Thus, it is desirable and feasible to incorporate application

support and cooperation in resource reclamation—something

not currently used in VM-level cluster management.

However, reclaiming resources from applications alone is

not sufficient in virtualized environments—resources freed

by the application are not considered free by the hypervisor

and cannot be directly reclaimed. Furthermore, relying on

application support for reclamation may not always be fea-

sible: the application may not have the control mechanisms,

or may choose not to exercise them.

Thus, the current cluster management techniques that

restrict resource reclamation to a single level are sub-optimal.

We propose a multi-level reclamation policy that seeks to

use the relative strengths of the different layers to deflate

applications safely and gracefully, which we describe next.

3.2 Cascade Deflation
Our multi-level reclamation approach is called cascade defla-
tion and determines how resources of different types (CPU,

memory, I/O) are reclaimed across multiple software layers.

Cascade deflation allows applications, operating systems,

and hypervisors to define and use their own reclamation

mechanisms and policies, as part of a common framework

for reclaiming resources acrossmultiple levels. The flow of re-

source reclamation across various layers is shown as pseudo-

code in Figure 3. When resources need to be reclaimed from

a VM, cascade deflation starts by applying resource pressure
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#Reclamation target is vector of (CPU, Memory, Disk, Network)
def Deflate_VM(target):
app_r = application_self_deflate(target)
unplug_r = hot_unplug(app_r, target)
hypervisor_overcommit(unplug_r, target)
return

def hot_unplug(app_r, target):
unplug_target = max(app_r, get_system_free())
#get_system_free() determines safely unpluggable resources
unplug_target = min(unplug_target, target)
unplug_r = try_unplug(unplug_target)
#If resource is busy, unplug_r < unplug_target
return unplug_r

def hypervisor_overcommit(unplug_r, target):
if (unplug_r < target):
#Unplugged resources released automatically
VM_overcommit_mechanism(target − unplug_r)

Figure 3. Pseudo-code for cascade deflation

at the highest layer (the application), and moves downwards

to the OS and the hypervisor. The application may be able

to free only some (or even none) of the resources, in which

case the lower layers (the OS and hypervisor) are asked to

reclaim the remaining amount of resources.

Thus, the reclamation cascades and moves down to the

lower layers. If a layer fails to meet the reclamation target,

then the lower layers pick up the slack. Having reclamation

“fall-through” to the lower layers allows for safer deflation

since applications and theOS can ignore excessive and unsafe

reclamation requests. Thus, higher layers can free resources

in a “best effort” manner in order to maximize their perfor-

mance, while the lower layers seek to reclaim remaining

resources to meet the reclamation target.

The intuition behind starting at the higher layers is that

since applications and OSes have better knowledge of un-

used and underutilized resources, relinquishing them reduces

performance degradation. With cascade deflation, different

amounts of resources can be reclaimed at different levels.

Different layers can use their own reclamation mechanisms,

as well as define policies on how to use those mechanisms.

These policies are implemented by the different layers, and in-

teract using the control-flow outlined in Figure 3. We present

details on reclamation mechanisms and policies for the dif-

ferent layers below.

3.2.1 Application-level Reclamation
Mechanisms: Applications can partake in cascade deflation

by relinquishing resources in response to deflation requests,

by using their own resource control mechanisms and policies.

Many distributed applications such as web server clusters,

map-reduce style processing, key-value stores, etc., are elas-
tic, and have mechanisms to adjust resource usage. For exam-

ple, application-level caches (such as memcached, redis, etc.)

can be shrunk using LRU-based object eviction. Similarly,

web-clusters can reduce their CPU utilization by reducing

Application & Resource type Reclamation Mechanisms

Memcached - memory LRU object eviction to reduce memory foot-

print

JVM - memory Trigger GC and reduce maximum heap size

Web servers - CPU Reduce size of thread pool

Spark/Hadoop - All Reduce number of tasks used

Table 1. Application-level deflation mechanisms for differ-

ent application types

the number of worker threads, and adjust the load-balancing

rules accordingly (serve less traffic from deflated servers).

Distributed data and numerical processing applications can

control their resource usage by adding and removing parallel-

tasks and workers. Examples of deflation mechanisms for

different application classes are presented in Table 1. Appli-

cations can use and combine these different mechanisms for

reclaiming different resources (CPU, memory, I/O).

Policies:Application deflation policies determine howmany

resources (if any) to voluntarily relinquish. For inelastic ap-

plications that do not support dynamic reclamation mech-

anisms (synchronous MPI programs, single-VM legacy ap-

plications, etc.), the application deflation policy is to simply

ignore the deflation request, and let the OS and hypervisor

take care of the deflation. Elastic applications on the other

hand can use application-level mechanisms to free resources

and to self-deflate. Of course, even elastic applications can

choose to only partially deflate, or ignore the request entirely.

Since application self-deflation involves relinquishing re-

sources, the degree of self-deflation is ultimately determined

by safety and performance concerns. Applications can stop

self-deflating if they risk loss of functionality or applica-

tion failure. In some scenarios, even though the application

may have the mechanisms for reclamation, doing so leads

to excessive performance degradation. The degree of per-

formance degradation depends on the application’s perfor-

mance model, and is determined by two main factors:

1. Short-term impact of deflation mechanism

2. Long-term impact of running on reduced resources

The short-term performance degradation is due to the

overhead of the deflation mechanism itself. For example,

some applications deflate by terminating tasks (such as in

the case of Hadoop and Spark), which requires recomputing

the lost program state, which increases the running time

of the program. Similarly, the high garbage collection activ-

ity required to shrink the JVM heap size can temporarily

degrade the performance of JVM-based applications. The

long-term performance impact is due to the application run-

ning on reduced amount of resources, and depends on the

application’s utility curves (such as those shown in Figure 1)

and the reclamation mechanism used.

Thus when determining the magnitude of self-deflation,

application-level policies must account for both the short and

long-term performance degradation, along with any safety

constraints. Since the magnitude of deflation is fixed and
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decided by the cluster manager, application-level policies

only need to compare the performance degradation for the

different deflation options, and thus utility curves are not re-

quired in our approach. Incorporating deflation mechanisms

and policies requires minor application modifications, and

we develop policies for different application types in §4. We

also develop models for short and long term performance

degradation for distributed data-parallel data processing and

machine learning applications, and use them to design a dy-

namic running-time minimizing deflation policy for Spark.

Cascade deflation’s multi-layer design is modular: it is not

necessary for every layer to implement reclamation mecha-

nisms for all resource types. If a reclamation mechanism is

not implemented by a layer, the reclamation falls through

to the lower layer. Thus, although it is beneficial to have

application and OS level deflation, it is not necessary. We

evaluate the performance of cascade deflation with and with-

out application-level policies later in Section 6.

3.2.2 OS-level Reclamation
Mechanisms: Surplus resources in the VM, or those relin-

quished through application-level deflation, must still be

reclaimed and released by the guest OS, since free resources

inside a VM cannot be directly reclaimed by the hypervi-

sor. To reclaim resources from the OS, we utilize resource

hot-plug and hot-unplug mechanisms. Modern operating

systems and hypervisors now support the ability to hot plug

(and unplug) resources [4, 24], and these mechanisms can be

used to explicitly change the resource allocation. Resources

that are free or that have been recently relinquished by the

application are “unplugged” from the VM, and returned to

the hypervisor. Hot unplugging a resource (such as vCPUs)

invokes the equivalent OS resource reclamation mechanisms.

Hot-unplug also updates the resource allocation observed by

the OS and applications (actual number of CPUs andmemory

available)—improving resource management at these layers.

Policies: For CPU reclamation, we unplug vCPUs until the

CPU deflation target is reached. Hot plugging and unplug-

ging is only possible at coarse granularity—it is not possible

to unplug fractional CPUs. Therefore, the final amount of

resources unplugged can be at most ⌊unplug_target⌋. In case

of memory, we use memory unplugging to explicitly reduce

the memory seen by the guest OS. We don’t hot unplug NICs

and disks because it is generally unsafe.

In practice, hot unplugging of resources may fail or only

succeed in partial reclamation, if the OS observes the re-

sources to be busy. For instance, CPUs with tasks pinned

on them are generally not safely unpluggable. Similarly, un-

plugging memory entails identifying blocks of free pages,

and migrating pages to create a contiguous zone of pages

that can be freed and unplugged. This operation may fail or

result in a smaller amount of unplugged memory than the

target. Our policy for hot-unplug based reclamation prior-

itizes safety and is best-effort: if an unplug operation fails

due to busy resources, we seek to unplug a smaller target,

and reclaim the rest with hypervisor-level reclamation.

3.2.3 Hypervisor level Reclamation
Mechanisms:Hypervisor level multiplexing of resources al-

lows us to reclaim resources via traditional VM overcommit-

ment mechanisms.We use CPU and I/O bandwidth throttling

to reclaim CPU and I/O resources respectively [23]. Memory

can be reclaimed through host-swapping or ballooning [80].

Policy: Cascade deflation invokes hypervisor deflation as

the last step to reclaim remaining resources, and seeks to

minimize its use because of its high performance degradation.

The goal of hypervisor level reclamation is to simply reclaim

all the resources to reach the deflation target. Resources

freed through the OS-level reclamation are already freed

and do not need reclamation. Reclaiming resources through

hypervisor overcommitment is transparent to the application

and the guest OS, and poses no direct risk to application

availability, thus allowing us to reclaim large amounts of

resources if required.

4 Application Deflation Policies
Cascade deflation allows applications, operating systems,

and hypervisors to cooperate in the resource reclamation

process and define and use their own reclamation mecha-

nisms and policies. In this section, we will illustrate how elas-

tic applications can develop and define deflation policies. We

have developed deflation policies for multiple applications

including memcached, JVM, and distributed data processing

with Spark, to show that it is feasible to develop simple ap-

plication deflation policies for a wide range of applications,

with relatively modest implementation effort. For Spark ap-

plications, we present an online, running-time minimizing

deflation policy that can serve as a case-study for distributed

application deflation.

Memcached.Memcached is a popular user-space in-memory

key-value store [5]. In conventional operation, the mem-

cached server is started with a fixed, maximum cache size.

Our application level policy for memcached dynamically ad-

justs the maximum cache size based on the memory availabil-

ity inside the VM. When shrinking the cache size, the mem-

cached object eviction algorithm (LRU) is invoked. Shrinking

the cache size may result in a lower object hit-rate, but avoids

paging in memory pages from the slow swap disk. This mod-

ification allows memcached to serve more traffic even when

the memory is deflated to below the original cache size. Thus,

because the long-term performance degradation with mem-

ory self-deflation is lower than VM-level deflation, our defla-

tion policy for memcached uses application-level deflation

for memory, and uses VM-level deflation for other resources.

Our implementation is based on memcached v.1.3 and a pre-

vious dynamic memory-size version [42], and comprises of

about 500 lines of modifications to the memcached server.

JVM. Application level deflation policies can also be imple-

mented for garbage collected run-time environments such
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as Java Virtual Machines (JVM). In response to memory

deflation, our application policy for JVM reduces the heap

size by triggering garbage collection. Reducing the heap size

results in increased garbage collection overhead, but is nev-

ertheless favorable to fetching pages from the swap disk.

Prior work on JVM heap sizing have also explored this trade-

off [19, 85]. Our deflation-aware JVM allows the large class

of JVM based applications to be made memory-deflation

aware. Our deflation-policy for JVM-based applications uses

application-level deflation for memory, and VM-level defla-

tion for other resources. Of course, Java applications can

specify their own application deflation policies to augment

the JVM deflation policies. We use IBM’s J9 JVM [7] that

has the ability to change the maximum heap size during

run-time. We set the max heap size to the actual physical

memory availability to avoid swapping. We implement this

in the application deflation agent using the JMX API in about

30 lines of Java code.

4.1 Spark
We now focus on distributed data processing and machine

learning workloads, and use Spark as the representative data-

parallel framework. Spark [88] is a general-purpose, widely

used framework that is used for a wide range of applications

like map-reduce style data processing, graph analytics [83],

machine learning [57], deep learning [59, 82], relational data

processing [17], interactive data mining, etc. The long and

short-term performance degradation for Spark is thus highly

variable and depends on the specific workload.

We design a general self-deflation policy for Spark that

works across workload types, and is able to dynamically de-

termine the extent of self-deflation required to minimize the

running time of the workload. To do so, our policy uses sim-

ple models developed from first principles, and we therefore

provide a brief discussion of Spark’s runtime model next.

SparkBackground. Spark uses Resilient DistributedDatasets
(RDDs) [87] as the abstraction for data partitions, and RDDs

are designed to be stored in a combination of memory and

disk. Spark jobs are comprised of multiple data processing

operations, and each operation (such as a map) operates on an
RDD partition. Spark jobs can be viewed as a directed acyclic

graph of RDD partition dependencies (Figure 4). If the output

of a task is lost (due to task failure or termination), then Spark

uses the RDD dependency graph to recursively recompute
all missing RDD partitions. Of course, this recomputation

may substantially increase the job running time.

A wide range of distributed data processing and compute-

intensive applications have been built on top of Spark’s RDD

abstractions and data operations. These applications have

different RDDdependency graph structures, demand for com-

puting resources, and tolerance to deflation. While specific

applications (such as parallel K-means, a popular machine

learning workload) can define their policies for cascade de-

flation, Spark’s common runtime environment presents an

1
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RDD-CRDD-A RDD-B

Partitions

Figure 4. Spark jobs create a directed acyclic graph of RDD

partitions. Partitions are computed by tasks that run on dif-

ferent VMs. Loss of a partition (RDD-B’s 3rd partition) ne-

cessitates recomputing its dependencies.

opportunity for a common, general application deflation pol-

icy that can work across multiple applications.

Another class of applications that the Spark framework

supports is distributed deep neural network training and

inference. A popular technique for parallelizing these appli-

cations is to use data-parallel architectures such as parame-

ter servers [53], and optimize the network model iteratively.

During training, data is partitioned across workers, and the

network model parameters are updated in a distributed fash-

ion using optimization techniques such as stochastic gradient

descent. At the end of each iteration, workers share and up-

date model parameters. However, these updates are typically

synchronous in nature, to ensure that all workers start with

the same model state before each iteration [25]. Since a large

portion of the training job is synchronous, the job is inelastic

and cannot scale easily. However, the combination of cascade

deflation and the model-driven Spark deflation policy allows

us deflate deep-learning applications (along with other Spark

applications), and run them on low-cost transient resources.

4.1.1 Cascade Deflation Policy For Spark
Our Spark deflation policy tries to minimize the perfor-

mance impact of deflation. The basic mechanism we use

for application-level deflation is terminating Spark tasks.

Terminating tasks allows Spark to reduce its degree of paral-

lelism, and the freed resources are returned to the hypervisor

via cascade deflation. However, terminating tasks can trigger

expensive recomputation of dependent tasks and results in

high short-term performance degradation. With cascade de-

flation, if the application does not relinquish resources, then

resources have to be reclaimed by the OS and hypervisor.

We refer to the combination of OS and hypervisor level defla-

tion as “VM-level deflation” for ease of exposition. However,

with VM-level deflation, tasks on deflated VMs can turn into

stragglers and result in a higher long-term impact.

Since different deflation mechanisms impose different

tradeoffs for Spark application performance, we design a

cascade deflation policy for Spark that is able to choose the

“right” deflation mechanism. Our cascade deflation policy
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estimates the running time with application-level and VM-

level deflation, and chooses the mechanism that minimizes

the expected running time. Based on the application’s recent

execution history, we use simple performance models to es-

timate TVM , the running time with VM-level deflation, and

Tsel f , the running time with self-deflation.

Our deflation policy for Spark is general-purpose and on-
line, and does not require offline profiling or pilot jobs. When

VMs of a Spark application are deflated, they send their

reclamation targets to the Spark master, that executes the

deflation policy and determines if application-level deflation

would be desirable. We do not deflate the Spark master, and

run it on a high-priority VM. Since multiple VMs may be

deflated simultaneously, the Spark master collects all the de-

flation requests into the deflation vector d, with di represent-
ing the deflation desired on VM-i. We model the slowdown

of Spark applications using a simple performance model for

VM and self deflation below:

Running Time With VM Overcommitment.When VM

overcommitment is used, the deflated VMs will execute tasks

slower than the non-deflated VMs, leading to resource con-

tention on the deflated VMs and stragglers. Due to stragglers

and BSP execution model [22], the running-time will be de-

termined by the VM deflated the most. If the deflation occurs

when c fraction of the job has finished, then the reminder of

the jobwill be slowed down by a factor of (1−c)/(1−max {d}).
Thus we assume that the job will be slowed down linearly

due to reduced resource availability. Furthermore, we model

Spark jobs as a sequence of Bulk Synchronous Parallel (BSP)

stages, and thus deflating even a single VM can result in a

large slowdown because tasks on other non-deflated VMs

need to “wait” for the slower tasks on the deflated VM. If T
is the running time of the job without deflation, then the the

total running time with VM-level deflation is:

TVM = T ·

[
c +

1 − c

1 −max {d}

]
(1)

Running Time With Self-deflation. Spark self-deflation

involves terminating tasks/executors. This controls the de-

gree of parallelism, and can also mitigate stragglers, since

it removes the imbalance caused by deflation of a subset

of VMs. However, recursively recomputing output of ter-

minated tasks increases the short-term cost of deflation. In

general, the recomputation cost can be expressed as:

Recomputation cost = rcT (2)

Here, r determines the fraction of the job that will be recom-

puted, and depends on the nature of the RDD DAG, whether

the dependencies are already cached and do not require re-

computation, and other application-specific factors. In the

worst-case, r = 1, and the entire job so far has be recomputed.

Since the Spark master has knowledge of the DAG, the

time required for various tasks, and the cached state of vari-

ous RDDs, it can determine the recomputation cost by recur-

sively tracing the DAG, and adding the recomputation cost

for the various dependent tasks. However, a simple heuristic

can also be used instead: r =
Synchronous execution time

Total running rime

The intuition behind this heuristic is that in general, a

larger number of (synchronous) shuffle stages implies a

higher recomputation cost. Shuffle operations have a larger

number of dependencies, and hence higher likelihood of

missing dependencies which have to be recomputed. Spark

applications thus have a choice of different recomputation

cost estimates. They can either compute accurate estimates

using the knowledge of the DAG and other execution char-

acteristics; or use the worst-case estimate (r = 1); or use the

synchronous execution time heuristic discussed above.

We use the synchronous execution time heuristic because

it represents a middle ground between the application obliv-

ious worst-case estimate, and the application-specific DAG-

based estimate, and is general enough to work across a range

of Spark applications. Our policy also determines if a shuffle

operation is scheduled in the immediate future by looking at

the RDD DAG, and accounts for that by setting r = 1, since

the terminated tasks will not have their RDDs cached, and

will require recomputation.

Note that the degree of slowdown with self-deflation and

VM overcommitment is different. The Spark task scheduler

scales back the number of tasks on deflated VMs, allowing

for an even load distribution, and the degree of slowdown is

the average of the deflation for each VM (d). In contrast, VM

overcommitment faces a larger slowdown (max{d}) due to
load imbalance and stragglers. The total running time with

self-deflation is thus :

Tsel f = T ·

[
c +

rc + 1 − c

1 − d

]
(3)

Our policy compares TVM ,Tsel f , and selects whichever

yields the lower running time estimate. Since T , the un-

deflated running time, is a common factor, it is not required.

The job-progress (c) is estimated as the fraction of stages

completed. Since self-deflation imposes the risk of high re-

computation cost, our policy tends to use VM overcommit-

ment for jobs that are close to completion (c close to 1).

Spark Policy Implementation:We have implemented the

Spark policy for self-deflation described above as part of

the Spark master in Spark v2.3.1. For self-deflation, we kill

running tasks and blacklist their executors so that additional

tasks are not launched on deflated VMs. We use the Spark

HTTP API and application logs to get all relevant metrics

for the self-deflation policy: job completion statistics (c),
whether a shuffle stage is pending, and the shuffle-intensity

of the job (α ). The self-deflation policy is implemented as a

HTTP service started by the Spark master (about 500 lines of

Scala), and listens to the deflation requests from the hypervi-

sor’s local deflation controller.We also determine the number

of tasks to kill based on the deflation requests and the size

of tasks. Spark workers relay the deflation requests to the
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Spark master, which then executes the policy, and returns

the amount of relinquished resources on each worker.

5 Implementing Deflation-based Cluster
Management

Our deflation framework allows users to deploy applications

using a combination of non-deflatable, non-preemptible high

priority VMs and deflatable low-priority VMs. Our system

is comprised of two main components. First, a centralized

cluster manager allocates and reclaims resources through

VM placement and proportional deflation policies at a cluster

level. Second, each server runs a local deflation controller

(Figure 2), which keeps track of resource allocation and avail-

ability, and implements proportional cascade VM deflation at

a single machine level. We have implemented both the cen-

tralized cluster manager and the local-controllers in about

4,000 lines of Python. The two components communicate

with each other via a REST API.

The implementation complexity of our prototype is com-

parable to that of other preemption-mitigation systems. As

a point of comparison, ExoSphere’s cluster management

and application fault-tolerance policies are over 5,000 lines

of code [68], inspite of being based on an existing cluster

manager (Mesos). We now describe the design and imple-

mentation of our deflation-based cluster manager.

Bin-packing based VM placement. When a new applica-

tion is launched on the cluster, its high and low priority VMs

are individually placed onto the cluster (physical) servers.

Servers host a mix of high and low priority VMs. Our VM-

placement policies determine which physical server to place

each VM on, by using a multi-dimensional bin-packing ap-

proach, where the multiple dimensions are the CPU, memory,

network, and disk resources. Bin-packing VMs onto servers

is the standard technique for VM placement [63], and it takes

into account the free/available resources on each server. In

our case, since low-priority VMs can be deflated to free-up

server resources, we consider the sum of free and the deflat-

able resources, when placing VMs.

We use the notion of “fitness” to place a VM onto a server,

which in our case is the cosine similarity between the VM’s

resource demand vector and the server’s resource-availability

vector: fitness(D,Aj) =
Aj ·D
|Aj | |D |

. Since resources can be re-

claimed from deflatable VMs already running on a server,

the availability vector is given by:

Aj = Freej + Deflatablej (4)

Deflatablej is the total amount of resources (across all

VMs) that can still be reclaimed by deflation. Using the

above formulation, our cluster manager implements best-fit,

first-fit, and a 2-choices policy that randomly selects two

servers and places the VM on one with higher fitness (larger

free+deflatable resources).

How much to deflate VMs by? In order to run a VM on

a server, resources may need to be reclaimed, if there are

insufficient free resources. Cluster-level policies determine

how much to deflate each VM by—VMs are actually deflated

using cascade deflation. We implement a simple proportional

cascade deflation policy that deflates all low-priority VMs by

an amount proportional to their size. For example, suppose

a new high-priority VM of size R is placed on a server with

no free resources available, and n deflatable VMs of sizeMi .

Then, the VMs are assigned deflation targets of xi , such that∑
xi = R, and xi = (Mi −mi )−α(Mi −mi ). Here,mi denotes

the minimum size of the VM, beyond which deflation is not

feasible/safe, and the VM is preempted instead. Minimum

sizes are optional in our framework and default to 0, but allow

applications to control their deflatability and preemptions,

and can be set based on application SLOs. Our cluster policies

thus use bin-packing to globally balance the load across

the cluster, and proportional deflation to reclaim resources

within a single server.

Implementation details. Once the deflation amounts have

been determined, we use cascade deflation to deflate indi-

vidual VMs. The cascade deflation is orchestrated by the

per-server local deflation controller, which performs the

reclamation for each VM on a server concurrently. Our pro-

totype deflation controller is implemented for the KVM hy-

pervisor [51], and uses the libvirt API [10] for managing VM

lifecycles, and for hypervisor and guest-OS level deflation.

For application-level deflation, applications use a defla-

tion agent with a REST endpoint. The deflation agents listen

to deflation requests (in the form of deflation vectors), in-

voke the application-level mechanisms, and respond with

the amount of resources volunarily relinquished. The local

controller then invokes OS and hypervisor level reclamation,

if necessary.

For hot-plugging (and unplugging) of CPU and memory

required for OS-level deflation, we rely on QEMU’s agent-

based hotplug. A QEMU hotplug agent runs inside the VMs

as a user-space process, and listens for hotplug commands

from the local deflation controller. The hotplug commands

are passed to the guest OS kernel via this agent. This allows

the hotplug to be “virtualization friendly”. Unlike physical

resource hotplug where unplug is a result of a fail-stop fail-

ure, the agent-based approach allows unplug operations to

be executed in a best-effort manner by the guest OS ker-

nel. This increases the safety of the unplugging operations.

For example, if the guest kernel cannot safely unplug the

requested amount of memory, the hot unplug operation is

allowed to return unfinished. In this case, the memory re-

claimed through hot plug will be lower, but the safety of the

operation is increased.

For hypervisor-level deflation, we run KVM VMs inside

Linux cgroups containers [11], which provide a unified inter-

face for reclaiming resources, and also help limit the perfor-

mance interference between VMs by limiting their resource
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Workload Description

Memcached In-memory key-val store. YCSB and Redis

memtier_benchmark for load generation

Kcompile Linux kernel compile

SpecJBB SpecJBB 2015 benchmark in “fixed IR” mode. IBM J9 JVM

ALS Spark mllib Alternating Least Squares on 100GB dataset

K-means Spark mllib dense K-means clustering with 50GB dataset

CNN Resnet convolutional neural network with Spark-BigDL

on Cifar-10 dataset. BatchSize=720, depth=20, classes=10

RNN Recurrent neural network with Spark-BigDL on Shake-

speare Texts corpus

Table 2. Workloads used for experimental evaluation

usage. For CPU multiplexing, we adjust the cpu shares of

the VM. For memory multiplexing, we limit the VM’s phys-

ical memory usage by limiting the memory usage of the

cgroup (mem.limit_in_bytes). Large memory reclamation

operations can often fail, and we use a control loop for incre-

mental, gradual reclamation. Similarly, we throttle the disk

and network bandwidth using the appropriate libvirt APIs.

Deflation operations have a deadline that is primarily deter-

mined by the amount of memory reclamation. If a deflation

operation times out, we proceed to the next level in cascade

deflation. In some cases, partial deflation may be sufficient

to meet the new resource demands. In the worst case, VMs

that are farthest from their deflation target are preempted.

Finally, the cluster manager monitors VM lifecycle events

(startup, shutdown, termination) to maintain consistent al-

location and availability information of all servers. If some

resources become available, then it reinflates VMs. Just as

with deflation, we reinflate VMs proportionally. Cascade de-

flation can be used “in reverse” to reinflate individual VMs:

it first increases the hypervisor-level allocation, then adds

resources to the OS, and finally informs the application’s

deflation agent of the additional resource availability.

6 Experimental Evaluation
We now examine the behavior of our deflation framework

using testbed experiments and a range of application work-

loads. Our evaluation is guided by the following questions:

1. How does cascade deflation compare with other recla-

mation techniques?

2. Howdoes deflation affect the performance of distributed

data processing and machine learning workloads?

3. What is the impact on cluster management metrics

such as throughput, utilization, and overcommitment?

Environment andWorkloads.We use the deflation-based

cluster management system described previously in §5 to

perform our empirical evaluation. We run applications in

KVM VMs running on Ubuntu 16.04.3 (x86-64). The cluster

servers are equipped with Intel Xeon E5-2670 v3 CPUs (2.3

Ghz). Unless otherwise stated, we run VMs with 4 vCPUs

and 16 GB of memory. Cluster applications such as Spark

workloads and Memcached are run on a cluster size of 9 VMs,

unless otherwise stated.

We evaluate the performance of deflation techniques over

a wide spectrum of workloads listed in Table 2. All our Spark

workloads use Spark v2.3.1, and are run with a cluster of 8

worker VMs and 1 master VM. For the neural network train-

ing workloads (CNN and RNN), we use Intel’s BigDL [82]

library benchmarks [9] with default network parameters.

Neural network training is an example of a synchronous and
inelastic workload, i.e., the loss of any VM results in the

entire application stalling. While asynchronous training is

also a popular mode of operation, its effectiveness is reduced

in heterogeneous cloud environments [46], and hence we

use the synchronous mode of operation. Using Spark for

neural network training provides us a uniform platform for

implementing and evaluating our deflation policies. Evalua-

tion of cascade deflation for specialized frameworks such as

TensorFlow [13] is part of our future work.

We are primarily interested in the overhead of deflation,

and all results are normalized to the “no deflation” case.

6.1 Application Performance with Deflation
We begin by analyzing the performance impact of different

fractional reclamation approaches outlined in §3. We are

interested in evaluating the effectiveness of cascade deflation

and comparing it with single-level reclamation approaches.

No Application Deflation: We first look at the perfor-

mance of unmodified applications (without application-deflation

support), to examine the behavior of hypervisor-level and

OS-level deflation. The throughput of the memory-intensive

memcached workload at different memory deflation levels

is shown in Figure 5a, where we report successful GET re-

quests (cache hits) per second. At 50% deflation, memcached

throughput decreases by around 20% with hypervisor-level

deflation (host-memory swapping in this case). While OS-

level memory hot-unplug achieves superior performance up

to 40% deflation, memcached runs out of memory and is ter-

minated at higher deflation levels, making it impractical to

rely on OS-level deflation alone. The combination of hyper-

visor and OS level techniques used with cascade deflation is

able to “switch over” from OS to hypervisor level deflation to

yield superior performance over a range of deflation levels.

Similarly, Figure 5b shows the performance of the CPU in-

tensive kernel-compile benchmark at different CPU deflation

levels. The performance with hypervisor-only deflation is

inferior compared to OS-level techniques (vCPU hot-unplug)

by up to 22%, likely due to lock-holder preemption [29].

Combining hypervisor and OS level deflation (which cas-

cade deflation does) allows us to deflate the application by

75%, with only 30% decrease in performance.

With Application Deflation:We now evaluate the perfor-

mance effects of the application self-deflation policies, which

engage all three layers of cascade deflation. We compare
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Figure 5. Hybrid deflation improves performance for both CPU and memory deflation

against VM-level deflation (Hypervisor+OS), which does not

use application deflation.

Figure 5c shows the performance of a memcached work-

load at different memory deflation levels. Our memcached

application deflation policy evicts least recently used objects

to reduce memory usage, and this results in a 6× improve-

ment in throughput at 50% deflation. At high deflation levels,

the unmodified version has to read some objects from swap,

which is a slow operation bound by the disk-speed. Addi-

tionally, these slow GET requests (that hit swap), increase

system load and decrease the overall throughput of the ap-

plication. The deflation-aware memcached avoids this by

sizing the cache to fit in the available memory, and sees a

higher number of cache misses because it has evicted items

that wouldn’t fit in the memory available. But by doing so,

it avoids swapping and obtains a much higher throughput,

yielding a higher effective cache hit rate in terms of GETS/s.

Similarly, Figure 5d evaluates the performance of the Spec-

JBB workload across different CPU and memory deflation

levels (both resources deflated by the same fraction). Our

deflation policy for JVM-based applications minimizes swap-

ping by reducing the heap size by triggering garbage collec-

tion. At higher deflation levels, this policy results in a 20%

improvement in the response time.

Result: Using OS-level reclamation is insufficient since it can
lead to application failures. Using both hypervisor and OS level
deflation can improve performance of unmodified applications
by 20%. Cascade deflation with simple application deflation
policies can improve performance by upto 6×.

6.2 Distributed Processing On Deflatable VMs
While the previous subsection focused on evaluating cascade

deflation for single-VM applications, we now turn our atten-

tion to the performance of distributed data processing and

machine learning workloads.We evaluate the Spark deflation

policy developed in section 4.1 and compare it against alter-

native reclamation approaches. Our Spark deflation policy

chooses either application-level self deflation, or VM-level

deflation, and we compare these two approaches.

We deflate Spark applications by deflating all its VMs (CPU,

memory, and I/O), and deflate the applications roughly 50%

into their execution, and thus the applications run with 100%

resources in the first half and then with reduced resources for

the reminder of their execution. Figure 6 shows the normal-

ized running time (relative to no deflation) for four different

Spark workloads. We note that the deflation performance

of Spark depends on the characteristics of the RDD compu-

tation graph, and hence each of the workloads in Figure 6

exhibit different performance characteristics.

The performance of the ALS workload (Figure 6a) scales

fairly linearly with VM-level deflation—the running time in-

creases to 1.5× at 50% deflation. However, using self-deflation

increases the running time to 2.2×. Self-deflation for Spark

involves terminating tasks, which requires recursive recom-

putation. The RDD recomputation graph for ALS is shuffle-

heavy and involves significant amount of recomputation.

Based on our Spark deflation models developed earlier in sec-

tion 4.1, our deflation policy (denoted by “Cascade” in Fig-

ure 6) chooses VM-level deflation for ALS, since it does not

involve terminating tasks. With VM preemption, the run-

ning times increase to 2.5× at 50% deflation, again due to the

recomputation costs. However, we note that the recompu-

tation costs (and hence the running times) for self-deflation

are lower by about 15% compared to preemption, because

self-deflation allows recovering some RDD partitions from

Spark’s RDD cache instead of recomputing from input data

sources.

K-means (Figure 6b) has lower recomputation costs, and

hence lower degradation due to deflation. Self-deflation is

preferred by our policy, resulting in an 18% and 38% increase

in running time at 25% and 50% deflation respectively.

The performance characteristics of the deep neural net-

work training workloads shown in Figures 6c and 6d differ

significantly from conventional Spark workloads (like ALS

and K-means). As described in section 4.1, synchronous oper-

ations are used in neural network training, and loss of even

a single task requires restarting the entire job, from a previ-

ous model checkpoint if available. Thus, self-deflation and

preemption, which kill tasks, result in significantly higher

running times compared to the VM-level deflation technique

which does not require restarts. For CNN training (Figure 6c),

the increase in running time even at 50% deflation is only

20% with VM-level deflation. Compared to preemption, the
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Figure 6. Performance of various Spark workloads with different deflation techniques and deflation amounts. Cascade deflation

uses the Spark deflation policy developed in section 4.1 to select the “best” deflation mechanism to minimize overhead.

current transiency mechanism used by cloud providers, de-

flation results in a 2× decrease in running time.

Similarly, the RNN workload (Figure 6d) sees its running

time increase by 25% at 50% deflation. Compared to preemp-

tion, the running time is lower by 25%.

In addition to the characteristics of the RDD graph, ap-

plication performance also depends on when it was deflated

(Equation 1). Figure 7a shows the running time of ALS when

the application is deflated at different points in its execution.

Early in the execution, self-deflation achieves better perfor-

mance since the recomputation required is smaller, and a

cross-over point is reached at around 30% deflation. Since

deflating reduces resource allocation, the overhead trends

downwards for both techniques since a smaller fraction of

the job needs to be run with reduced resources.

With deflation, long-running applications such as neural

network training can respond gracefully to resource pres-

sure. Figure 7b shows the throughput of the CNN training

workload over time, when the application faces 50% deflation

for 30 minutes. During the period of deflated execution, the

application continues to run, albeit with throughput reduced

by 20%.With preemption, periodic checkpointing is required,

which reduces the throughput by 20% even during normal

execution. Preemptions require restarting the entire job from

the latest checkpoint, which further reduces the through-

put. Thus compared to preemption, deflation improves CNN

training throughput by 20%, even with transient resource

pressure and periodic checkpointing.

Result: For Spark applications, performance overhead of de-
flation is up to 2× lower than preemption. Deflation enables
inelastic applications such as neural network training to grace-
fully respond to transient resource reclamation.

6.3 Cluster-wide Behavior
So far we have seen the effect of deflation on individual ap-

plications. We now look at how deflation impacts the global

behavior of virtualized clusters.

Throughput: We have already seen that the performance

degradation with deflation is not always proportional to the
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Figure 7. Spark performance overheads

amount of resources reclaimed. This facilitates overcommit-

ting cluster resources while at the same time increasing the

overall cluster throughput. We run Spark (CNN workload)

on low-priority deflatable VMs, and introduce resource pres-

sure by launching high-priority memcached VMs on the

cluster, causing the Spark VMs to be deflated. When the

memcached VMs start running, the Spark VMs are deflated

by 50%, and the cluster is effectively overcommitted by 50%.

Figure 8a shows the overall throughput of two applications :

Spark (CNN Training) and a memcached cluster. While the

Spark throughput decreases by around 20%, the total cluster

throughput peaks at 1.8 when both memcached and Spark

are running. Thus, deflation allows cluster managers to over-

commit resources and significantly increase total throughput
(or equivalently, revenue, in the case of cloud operators).

Latency: An additional metric important for cluster man-

agement is the latency of resource allocation, which includes

the time required to find free resources and reclaim resources

if necessary. Since deflation performs gradual resource recla-

mation before new VMs can run, it increases the allocation

latency. In general, the deflation speed is dominated by de-

flating memory, since it often entails saving memory state to

stable storage (such as swap). We look at the worst-case de-

flation latency by deflating a single giant VM with 48 vCPUs

and 100GB memory by 50% in Figure 8b. With full cascade
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Figure 8. Cluster-wide properties with deflation

deflation (including application deflation), the deflation la-

tency even with 50% deflation is under 100 seconds. Even

with application deflation, the freed resources still need to be

reclaimed by the OS and the hypervisor, which contributes

to the deflation latency. At high deflation levels, the deflation

latency without application deflation is up to 2×—3× higher.

Note that deflation is concurrent across VMs and the single

large VM deflation is the worst-case scenario, and this worst-

case latency is comparable to the grace period required with

preemptions (2 minutes for Amazon EC2 spot instances).

Preemption:While deflation permits overcommitment, VMs

can only be deflated up to their minimum resource levels. In

cases of extreme overcommitment, our cluster manager pre-

empts VMs when they are deflated below their minimums.

We evaluate the probability of VM preemption with deflation

on a large 100 node cluster using a simulation approach. Our

cluster simulator implements the proportional deflation and

VM placement policies described in §5. We use the Euca-

lyptus cloud traces [2] to obtain VM arrivals, lifetimes, and

VM sizes. We assign some fraction of VMs as low-priority

VMs that are either deflated or preempted. We use empiri-

cally determined minimum levels for Spark, memcached, and

SpecJBB application VMs, and determine the VM preemption

probability when the cluster is overcommitted to different

degrees. Figure 8c shows that the preemption probability

with deflation is negligible even at 60% overcommitment, or

1.6× cluster utilization. Cluster overcommitment levels as

high as 60% are rare even in agressive cluster operation [79],

and overcommitment levels tend to be around 20%. Thus, pre-

emption is a rare event with deflation, and it is not necessary

for applications to implement preemption-mitigation.

VM Placement: Deflation uses modified VM placement

techniques that we develop in §5. Careful VM placement

is important for cluster load balancing and for increasing

overcommitment. We again use the trace-driven simulator

to evaluate the server level overcommitment using differ-

ent deflation-aware bin-packing policies. With deflation, our

goal is to maximize the overcommitment of servers, while

at the same time reducing the preemptions. Figure 8d shows

that all placement policies yield similar levels of server over-

commitment. The differences in the placement algorithms

are masked by the use of deflatable VMs, since suboptimal

online VM placement can be “fixed” by deflation.

Result: Deflation permits high cluster overcommitment, while
yielding high cluster throughputs (up to 1.8×), and low pre-
emption probabilities. Cascade deflation reduces reclamation
(and hence allocation) latency by 2×–3×.

7 Related Work
Our proposed deflation system draws upon many related

techniques and systems.

Systems for running applications on transient servers
use a combination of fault tolerance [40, 56, 67, 86] and re-

source allocation policies [68, 70, 74] to ameliorate preemp-

tions. Deflation is designed to avoid the performance, devel-

opment, and deployment costs associated with preemption.

Resource overcommitmentmechanisms have been well
studied and optimized to allow for more efficient packing for

VMs onto physical servers. Memory overcommitment mech-

anisms such as ballooning have received significant atten-

tion [16, 69, 80], but ballooning generally yields inferior per-

formance to hotplug due to memory fragmentation [47, 54].

The use of hotplug has also been proposed for reducing

energy consumption [89]. Our use of CPU hotplugging is

partly motivated by mitigating lock-holder preemption prob-

lems in overcommitted vCPUs [29, 62]. Application-level

ballooning [65] reclaims memory from database and JVM

applications—cascade deflation generalizes this to multiple

resource types, and does not require guest OS modifications.

Application deflation. Improving elasticity for popular

applications is an increasingly common pursuit. Dynamic

heap sizing [19, 20, 85] is a popular technique for improving

memory-elasticity of applications. The memory elasticity of

data-parallel applications is enhanced in [30, 45]. Applica-

tions can also respond to deflation by serving less optional

content [52], by reducing the quality of their results [73], or

by giving them incentives for improved efficiency [18, 66].

Cascade deflation can make use of these elasticity control

mechanisms. Incorporating elasticity into neural network

training [40] presents multiple challenges due to the synchro-

nous and inelastic nature of most deep learning frameworks.

However unlike prior work, our approach does not require

extensive application-level modifications.
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Cluster resource management. Improving the utilization

and performance of large computing clusters is a long stand-

ing challenge, and is typically tackled via resource alloca-

tion [28, 34, 37] and scheduling [35, 41]. However, many of

the optimizations for fast job and task scheduling [27, 49, 50]

are not relevant for VMs which are longer running, have

strict resource reservation requirements, no notion of com-

pletion times, and do not expose application-level perfor-

mance metrics. Dynamic VM resource allocation [38, 39, 61]

and bin-packing based VM placement [78] are common tech-

niques for increasing the efficiency of virtualized clusters.

Our work extends these ideas to multiple resource classes

(deflatable and non-deflatable), and adds application-level

deflation into a unified cascade deflation framework. Incor-

porating predictive resource management [26] for deflatable

VMs is part of our future work.

8 Discussion and Future Work
Deflation is a departure from preemption, and can affect the

execution and deployment of VMs in the cloud. In this sec-

tion, we discuss how deflation can fit into cloud ecosystems,

and potential impact on cloud providers and applications.

Impact on Cloud Providers: While preemption is rela-

tively straightforward to implement, deflation introduces

additional policy decisions for cloud and data center opera-

tors, which can further increase the complexity of resource

management, both at a server and at a cluster level.

Further research is required on how our policies for place-

ment and VM deflation interact with existing resource al-

location and pricing policies. To this end, we deliberately

developed relatively simple policies in Section 5, so that they

can be composed with other existing cluster management

policies for admission control, SLO-aware allocation, VM

placement, global cluster-wide optimization, pricing, etc.

As a possible pathway to adoption, running internal and

first-party workloads (which make up a non-negligible por-

tion (20%) of cloud workloads [26]), can allow providers to

test and refine deflation policies before they are rolled out

to third party VMs.

On a per-machine level, deflation introduces additional

complexity to VM management, especially due to the dy-

namic resource allocation. We argue that the additional com-

plexity would be at-par with burstable VMs [81] that are

already being offered by cloud providers. While deflation

also adjusts memory allocation (in addition to dynamic CPU

and I/O allocation that even burstable VMs offer), the key

difference is that deflation is only performed under resource

pressure, and not over the entire lifetime of the VM as is the

case with burstable VMs.

Finally, while VM overcommitmentmechanisms have long

been studied and implemented in the context of smaller, pri-

vate clouds and enterprise clusters [38], more research is re-

quired on their robustness at cloud-scale. For instance, while

our system runs all VMs inside cgroups to limit performance

interference, the large-scale implications of co-locating de-

flatable and non-deflatable VMs remain to be explored.

Pricing: Given their similar roles in clearing surplus cloud

resources, we envision that deflatable VMs will be offered

at similar discounted rates as the current preemptible VMs.

Deflation is amenable to multiple pricing models. Providers

could continue to offer flat discounted prices, or dynamic

supply-demand based pricing. The resource-as-a-service

model [14] also fits well for deflatable VMs: providers can

dynamically charge VMs based on the amount of resources

allocated. If deflatable VMs present a higher utility to ap-

plications (which we believe they do), then they can allow

providers to charge higher prices for their surplus resources.

Impact on Applications: Deploying applications on de-

flatable VMs also introduces additional complexity in the

deployment model. Implementing application-level deflation

policies that is required for cascade deflation is the primary

concern when deploying applications on deflatable VMs.

However, we have shown that these policies can be easily

implemented for popular cloud applications [31] such as key-

value stores, Java-based enterprise applications, distributed

data processing, and machine learning
2
.

There are also questions about whether applications prefer

frequent fail-stop failures (current preemptible VMs), or the

occasional performance variation imposed by deflation. High

deflation levels, albeit rare, could increase the likelihood

of gray failures [43]. Finally, the superior performance of

deflatable VMs and their significantly higher availability may

prove to be a significant driving force behind their adoption.

9 Conclusion
We proposed the notion of resource deflation as an alterna-

tive to preemption, for running low-priority applications.

Deflatable VMs allow applications to continue running even

under resource pressure, albeit at a lower performance. Our

cascade deflation approach uses hypervisor, OS, and applica-

tion level reclamation mechanisms and policies. This multi-

level approach allows many applications, such as distributed

deep learning training, to run with only 20% performance

degradation even when half their resources are dynami-

cally reclaimed. Deflation is a promising cluster-management

primitive, and compares favorably to preemption, in terms of

cluster throughput, utilization, and application preemptions.
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