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Abstract
Electricity grids are trying to meet their demand by using more
renewable energy as they move towards decarbonization. As the
amount of renewables in the grid increases, there are periods when
renewable supply exceeds the demand or when excess supply can-
not be transmitted to a different location to satisfy the demand
due to grid congestion. Consequently, renewable generators often
need to be curtailed so that they operate below their maximum ca-
pacity. Such curtailment represents unutilized “green” energy that
could have replaced energy produced from non-renewable “brown”
sources. While prior works have studied curtailment at the grid
level, curtailment is a local phenomenon that occurs at the level of
a generation node, where each node is a power plant at a specific
location feeding the grid. A grid may consist of hundreds of nodes,
but curtailment may only occur in some nodes and at some times.
Hence, understanding curtailment at the node level is important to
evaluate its potential for decarbonization.

We study curtailment at the node level for the Texas grid operated
by ERCOT,which consists of hundreds of nodes producingwind and
solar energy. Using extensive node-level data for the year 2023, we
show that curtailment is highly non-uniform and intermittent — 20%
of the nodes account for 77% of the total curtailed energy, while 70%
of the nodes are curtailed for less than 10% of the year. We find that
although wind curtailment is more prevalent, a greater fraction of
solar generation is curtailed than wind.We also develop a method to
identify the cause of curtailment from the Locational Marginal Price
(LMP), showing that 74.3% of the time, curtailment in Texas is due
to grid congestion. Overall, our analysis of node-level curtailment
implies that while curtailment can potentially be forecasted in only
a small fraction of the nodes, a considerable amount of curtailed
energy can be utilized by adding demand adjacent to these nodes.
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1 Introduction
Electricity demand has been rapidly increasing over the last decade
for several reasons ranging from the electrification of the residential,
industrial, and transportation sectors [28, 29] to the growth of AI
and data centers [22, 42]. At the same time, there is also a push
towards decarbonizing the grid to reduce the carbon emissions
associated with electricity generation, leading to a proliferation of
renewable sources in many regions. The electricity grid needs a
continuous supply to match the demand, and the supply in such
regions is increasingly coming from intermittent renewable sources.
However, renewable supply and demand are not always matched
in time and space. Renewable energy, like solar and wind energy, is
intermittent in nature and is available only when the sun shines or
the wind blows. Moreover, solar and wind plants may be situated
far from the demand location, and the grid may not have enough
infrastructure to transmit such energy to the place of demand. To
address this mismatch in supply and demand, grid operators often
turn off renewable plants and ramp up non-renewable plants when
required. Consequently, some renewable energy gets curtailed to
maintain stable grid operations, where curtailment is defined as
the difference between potential and actual renewable generation.
As many grids are adding more renewables to decarbonize the
electricity supply, renewable energy curtailment is increasing year
after year in such grids [5, 7, 10].

Since a lot of clean energy is being wasted via curtailment, re-
searchers have recently proposed optimization techniques to utilize
curtailed renewable energy by modulating the electricity demand,
thus reducing the carbon footprint of electricity consumption. Some
works examine shifting flexible loads like EV charging or data cen-
ter computing through time and space [8, 49, 51] to consume energy
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that would otherwise be curtailed. Such curtailment-aware opti-
mizations need curtailment estimates and predictions at the node
level rather than at the grid level, where a node is defined as one
or more power plants at a specific location feeding the grid. This
is because curtailment is inherently a local phenomenon. Due to
transmission constraints, curtailment is often restricted to small
regions in the grid. Hence, if such optimizations do not know when
and where curtailment occurs at a node level, they may result in
increased carbon emissions instead of reducing them.

For example, the Texas grid covers a large geographical area and
is often congested. So, if there is curtailment in Southern Texas and
a curtailment-aware optimization shifts demand to Northern Texas,
the renewable supply from the South may not be able to reach the
demand location, and some non-renewable nodes in the North may
need to meet that extra demand, leading to more carbon emissions.
Consequently, understanding and analyzing curtailment at a node
level is essential for forecasting curtailment and leveraging curtailed
energy to reduce carbon emissions.

Node-level curtailment estimates and predictions, although cru-
cial, have not received much attention. Prior works have studied
curtailment only at the grid level [3, 20, 23, 26, 39, 41]. In this paper,
we take the first step to address this gap by providing an in-depth
analysis of solar and wind curtailment at a nodal granularity.
Our Contributions. Our work uses a data-driven approach to
analyze node-level curtailment in the Texas grid (ERCOT) in the
United States. We analyze where and when curtailment happens
at the different nodes across Texas. We also analyze how much
renewable generation is curtailed and how long those curtailments
typically last. Further, we develop a method to identify the cause of
the occurrence of curtailment events from the nodal pricing data.
Our specific contributions follow.

(1) We perform a detailed analysis of node-level solar and wind
curtailment for the year 2023 using publicly available data
from the Texas grid (ERCOT).

(2) We propose a method to identify the cause of curtailment
events (oversupply versus grid congestion) from the Loca-
tional Marginal Price (LMP).

(3) We perform a price-based analysis to examine if curtailment
can be detected and estimated from the LMP.

(4) Our datasets are derived by combining and curating multi-
ple data sources. We release our datasets1 to the research
community to support further research in this area.

Our Key Observations. We make several observations while ana-
lyzing the node-level curtailment and pricing data. The key obser-
vations from our analyses are below.

(1) Curtailment in Texas is highly skewed geospatially. The
majority of the curtailment (55%) occurs in the western part
of the state that has the lowest population density. Overall,
20% of the nodes account for 77% of the total curtailment.

(2) Solar generation is curtailed much more than wind genera-
tion. During curtailment events, almost all solar generation
is curtailed 25% of the time. In comparison, almost all wind
generation is curtailed only 10% of the time.

1https://github.com/codecexp/nodal-curtailment-analysis

(3) Curtailment is highly infrequent and intermittent at the node
level — 70% of the nodes are curtailed for less than 10% of
the year, and the median curtailment duration is 15 minutes.

(4) Curtailment is mostly weakly correlated even across geo-
graphically proximal nodes, and the correlation becomes
even weaker as the distance between the nodes increases.
Solar curtailment is more correlated than wind curtailment.

(5) Curtailment is caused due to grid congestion 74.3% of the
time, making it the leading cause of curtailment in Texas.
Curtailment is due to an oversupply of renewable energy
the rest of the time.

(6) LMP can potentially be used to detect a curtailment event at
the node level. However, deriving the amount of curtailed
energy (in MWh) from LMP is not straightforward.

Implications of Our Work. Our future goal is to find ways in
which the curtailed energy can be put to use to serve demand. To
achieve this goal, one would need to forecast curtailment events
and then modulate the demand during those events to consume
the energy that would otherwise have been curtailed. The key
implications of our analysis for these two tasks are below.
(1) Forecasting Curtailment. Most nodes are curtailed infre-
quently. Our analysis shows that 70% of the nodes are curtailed for
less than 10% of the year. Forecasting curtailment in such nodes
may be difficult since a node may have long intervals of time be-
tween two consecutive curtailment events. The remaining 30% of
the nodes are curtailed more frequently, and future work could
focus on forecasting curtailment in these nodes using existing ML
techniques for carbon intensity forecasting [34]. Our analysis also
shows that these frequently curtailed nodes account for 65% of the
curtailed energy; hence, the events that account for a majority of
the curtailed energy can potentially be forecasted.

Our work also sheds light on what features are likely useful in
forecasting curtailment. We show that the nodal LMP values are a
strong indicator for detecting curtailment events, making LMP a
good feature for forecasting curtailment events. However, LMP is
not a good indicator of the actual amount of curtailed energy.

Further, we found that curtailment events across nodes are only
weakly correlated, even when the nodes are geographically proxi-
mal. This suggests that forecast models would need to be trained
individually for each node based on its own historical data. Models
trained for one node may not be effective in forecasting for another.
(2) Modulating Demand. Demand can be modulated at a location
by moving or creating new workloads that consume energy during
curtailment events. However, since the leading cause of curtailment
is congestion, one may need to add demand adjacent to the nodes
to bypass transmission constraints. For example, a cloud provider
could deploy server clusters colocated with nodes and shift work-
loads in those servers during periods of curtailment. A considerable
portion of the curtailed energy (77%) can be utilized by modulating
demand only at a few (20%) locations (i.e., nodes).

2 Background
In this section, we provide background on the electricity grid, how
the electricity market operates in many regions, and renewable
energy curtailment.

https://github.com/codecexp/nodal-curtailment-analysis
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Electricity Grid. The electricity grid has three components — gen-
eration, transmission, and distribution [12]. In any region, electric-
ity is usually generated from amix of renewable and non-renewable
sources. Once generated by the different power plants, electricity
is transmitted via a network of transmission lines and finally dis-
tributed to end consumers. The grid consists of generator nodes (or
nodes, for short), where each node is a collection of one or more
power plants at a specific location that feed the grid. A node can
generate electricity from a renewable source, such as wind or solar,
or a non-renewable source, such as coal or natural gas. The nodes
may offer electricity at different prices at different times of the day.

The electricity grid is managed by a grid operator who ensures
that the electricity supply always matches the demand. The grid
operator periodically solves the Security Constrained Economic Dis-
patch (SCED) problem [27] at the node level. SCED is an optimiza-
tion to dispatch the existing set of electricity generators in a way
such that the electricity demand is met with the lowest genera-
tion cost while adhering to grid and generator constraints like
transmission constraints, ramp rates of different generators, gener-
ation capacity, intermittency of the renewables, etc. SCED outputs
how much each generator should generate so that the total supply
matches the total demand, along with the price to generate the next
unit of electricity called the Locational Marginal Price (LMP).

Renewable Energy Curtailment. Renewable energy curtailment
events are a by-product of SCED and occur when solar or wind
nodes have the capability to generate electricity, but the grid oper-
ator instructs them to operate below capacity. A curtailment event
has two aspects — curtailment amount (in MWh) and curtailment
duration (in hours). Curtailments can be due to the following two
reasons:
(1) Congestion. Sometimes, renewable energy supply cannot reach
the demand location due to grid transmission constraints. In such
cases, a nearby non-renewable node may feed the demand while
the renewable node that is further away is curtailed so that total
supply matches total demand. We refer to this as curtailment of
renewable energy due to congestion.
(2) Oversupply. Even when there is no congestion, renewable en-
ergy may be curtailed when the total supply exceeds the demand.
Such curtailment ensures that the total supply matches the demand
and grid stability is maintained. We refer to this situation as curtail-
ment due to oversupply. When there is an oversupply, renewable
energy is curtailed for several reasons. First, renewable generation
might be a large fraction of the total supply due to local factors,
requiring that the renewable generation be ramped down. Second,
the cost of ramping down non-renewable generators such as coal
might be more expensive than turning off renewable generation.
This can also lead to curtailing renewable energy, even when it
could have replaced the non-renewable energy to meet the demand.

Note that during oversupply, nodes offering electricity at higher
prices may get curtailed before nodes with lower prices.

Curtailment amount is estimated by computing the difference
between the High Sustained Limit (HSL) and the Base Point (BP) [25,
31] of a node and multiplying that with the curtailment duration,
where HSL is the maximum power production capability of a node
at a particular time (in MW), and BP is the actual generation (in

MW) by the node determined by SCED. Thus,

Curtailment Amount (𝑖𝑛 𝑀𝑊ℎ) = (𝐻𝑆𝐿 − 𝐵𝑃) × Duration (1)

Locational Marginal Price (LMP). LMP (in $/MWh) at a given
node and time is the price of generating the next unit of electricity
at that node and at that time [30]. LMPs are obtained after solving
SCED, which considers the current demand, generation, and grid
conditions. Depending on the above variables, LMPs across nodes
and across times can vary significantly.

In recent years, LMPs in grids with an increasing renewable
penetration are sometimes zero or negative, due to a combination
of surplus renewable supply and various subsidies [11] offered
for renewable generation. Some generators cannot turn off or on
quickly, and hence may be willing to offer electricity at negative
prices if the systemwide electricity supply exceeds the demand
for short periods of time [9]. In those situations, solar and wind
generators may be curtailed to decrease the systemwide supply. On
the other hand, renewable generators like wind get Production Tax
Credits per unit of electricity generated [17], and may sell electricity
at negative prices to avoid curtailment as long as the net cost of
generation remains positive.

3 Data Sources
Our goal is to analyze curtailment at the node level. However, while
many grids publish nodal pricing data, it is still not common to
publish electricity generation or curtailment data at the node level.
In the US, ERCOT is one of the few ISOs that make nodal electricity
data publicly available. So, we specifically focus on the Texas grid
in this paper. This section lists the data sources we used. We also
describe the data preprocessing and cleanup methodology that we
used to curate the datasets from the raw data.
Nodal Electricity Generation. ERCOT provides node-level SCED
reports with a 60-day lag [15]. The reports contain various generation-
related data at a 15-minute granularity, including data regarding
generation capability (HSL), actual generation (BP), type of genera-
tor, etc. We downloaded SCED reports for 2023 and built the nodal
HSL and curtailment datasets for our analysis. Our datasets com-
prise 281 nodes across Texas — 112 solar and 169 wind nodes. We
replaced any missing data with the data from the closest available
time interval. We also used hourly ERCOT electricity data from the
US Energy Information Administration (EIA) [13] to validate and
clean our dataset. For example, we set any non-zero solar HSL in
our SCED dataset to zero whenever there is no solar generation in
the EIA dataset. We estimated curtailment amount using Eq. 1 and
set any curtailment values less than 0.5 to 0 to minimize reporting
errors. The HSL and curtailment data for any solar or wind node
are time series vectors of length 35040.
Nodal LMP. ERCOT also provides nodal LMP data in 5-minute
granularity in almost real-time [16]. We downloaded the 2023 LMP
data for our analysis, filtered the LMPs for only solar and wind
nodes, and used the values reported at each 15-minute interval
since SCED data is every 15 minutes. We replaced any missing data
with the closest available LMP values. Like the curtailment dataset,
the LMP data set also has 35040 rows for each node.
Node Capacity and Location. We estimated the capacity of a
node (in MW) by taking the maximum HSL for that node in 2023.
Since HSL is the generation capability for a node, we posit that our
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Hub
Solar
nodes
(%)

Solar
curtailment
amount (%)

Wind
nodes
(%)

Wind
curtailment
amount (%)

West 37.5 77.0 53.2 46.6
Pan-

handle 1.8 5.1 11.8 18.2

South 21.4 6.9 23.7 32.3
North 30.3 9.0 10.7 2.7
Houston 8.9 1.8 0.6 0.02

Table 1: Distribution of solar/wind nodes and yearly so-
lar/wind curtailment amount across hubs. West has propor-
tionally more curtailment than other hubs.

estimate accurately reflects a node’s capacity. Solar (resp. wind)
node capacities go up to 457.1 MW (resp. 669.5 MW) in our dataset.

We obtained the locations (latitude and longitude) for 248 out
of 281 power nodes from the US Solar Photovoltaic Database (US-
PVDB) [43], the USWind Turbine Database(USWTDB) [44], the En-
ergy Information Administration (EIA) power plant database [46],
and ERCOTs Monthly Outlook for Resource Adequacy (MORA)
report [18]. Due to insufficient information, we could not match
node names to locations for the remaining nodes.
Population Density. We fetched population density data at the
county level from the US Census Bureau website [45].

While the raw data is available publicly, collecting, compiling and
aggregating the data is not straightforward and involves numerous
manual steps, which adds to the challenge of finding good-quality
node-level curtailment data. Hence, we release all the datasets used
in our analysis to the research community to accelerate curtailment-
related research. All the curated datasets are publicly available at
https://github.com/codecexp/nodal-curtailment-analysis.

4 Nodal Curtailment Analysis
We begin our analysis using the curtailment data for 2023 and ana-
lyze where, when, how much, and how long curtailments occur in
Texas. We enquire if nodal curtailments have any seasonal patterns
and if they are correlated across the different renewable nodes.

Analyzing how curtailment is distributed geospatially would
help understand the cause of curtailment — if there is more cur-
tailment away from population centers, then the curtailment may
be primarily due to grid transmission constraints. Also, since both
curtailment and demand are mainly localized, optimizations trying
to leverage curtailed energy by modulating demand should know
where to add or shift demand at a nodal granularity. Adding demand
at places where the supply cannot reach may increase carbon emis-
sions instead of reducing them because a non-renewable source
may need to meet that demand.

Such optimizations also need to know the amount of curtailed en-
ergy available at a specific location and how long it will be available.
Adding more demand than available curtailed energy or scheduling
demand when no renewable energy is curtailed may again be detri-
mental. Using system-wide curtailment estimates and predictions
may not be sufficient since such estimates are usually an order of
magnitude higher than nodal curtailment, and such predictions
may hide the intermittent nature. For example, we find that the
average system-wide curtailment in ERCOT in a 15-minute interval
is 555.2 MWh — more than the capacity of all but one wind node

Figure 1: Comparing total yearly renewable curtailment
amount with population density. Curtailment is more at hubs
with lower population densities.

Figure 2: CDF of nodal curtailment amount. 20% of the nodes
account for 77% of the total curtailment amount, but represent
only 23.1% of total solar and wind generation capacity.

in our dataset. Also, some wind energy is always curtailed at the
grid level in 2023, but nodal wind curtailment lasts less than 1 hour
90% of the time (§ 4.3). Hence, analyzing the amount and duration
of curtailment at the node level is crucial to developing accurate
curtailment-aware optimizations and curtailment forecasts that
such optimizations can use.

Further, suppose optimizations need to add more demand than
the available supply at one location. In that case, they need to know
which other nodes are also experiencing curtailment simultaneously
so that they can distribute the demand accordingly if feasible. For
example, data center workloads like batch processing may need a
considerable amount of electricity supply, and hence, can utilize
such information to distribute the computation across multiple
locations. Consequently, we try to answer the following questions:
Q1. How is curtailment distributed geospatially? How is it corre-

lated to population centers? (§ 4.1)
Q2. How much energy is curtailed in a node on average? What

fraction of potential generation is curtailed at any instant? (§ 4.2)
Q3. How long and how often do curtailments typically occur? (§ 4.3)
Q4. How do curtailment events vary across seasons? (§ 4.4)
Q5. When a node is curtailed, which other nodes are also curtailed?

Is curtailment strongly correlated across nearby nodes? (§ 4.5)

https://github.com/codecexp/nodal-curtailment-analysis
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4.1 Geospatial Distribution of Yearly
Curtailment Across Hubs and Nodes

We first look at one level below the grid level: the hub level. A hub is
a subregion in the grid comprising a collection of nodes. The Texas
grid is divided into five hubs [19] — North, Panhandle, West, South,
and Houston. We map all the nodes to their respective hubs using
the MORA report [18] and add up their respective curtailments to
get the yearly hub-wide curtailment. Oncewe analyze the geospatial
distribution at the hub level, we proceed to the nodal level to see
which nodes contributed more towards the total curtailment and
where they are located.

Table 1 and Fig. 1 shows the geospatial distribution of the renew-
able nodes and solar/wind curtailment across the five hubs in 2023.
Most solar and wind nodes are located in the West. Curtailment
is also similarly skewed across the hubs. 55.8% of the total yearly
curtailment in 2023 is in the West. When divided into solar and
wind curtailment, this amounts to 77% (resp. 53.2%) of the annual
solar (resp. wind) curtailment.

Fig. 1 also plots the relation between total yearly curtailment
and the population density in the different hubs. We aggregated
the population density of all counties in a hub using [19] to get
the population density of a particular hub. In general, we see that
curtailment is more prevalent in hubs with lower population den-
sity than in hubs with higher population density. That is, there is
more curtailment away from population centers. West has the most
curtailment but the lowest population density, whereas Houston
has the highest population density but the least curtailment.

While high curtailment in the West may be partially due to an
oversupply of renewable energy within the hub, it may also be
because electricity cannot be transmitted to other hubs due to grid
congestion. Similarly, low curtailment in Houston may be partially
because most of the renewable supply is utilized by demand. On the
other hand, renewable plants need large areas to operate, whichmay
not be available in regions with high population density. Hence, low
curtailment in Houston may also be due to low renewable supply
in Houston. We need information about the local demand and grid
topology to find the definitive reason, and such analysis is kept as
future work.

Curtailment is also highly skewed at the node level. Fig. 2 shows
the cumulative percentages of curtailment and capacitywith respect
to the total system-wide curtailment and solar/wind generation
capacity. We find that 20% of the nodes are responsible for 77% of
the total yearly curtailment in 2023, although they constitute only
23.1% of total solar and wind generation capacity in Texas. Thus,
curtailment is not evenly spread out across the nodes. Instead, some
nodes are curtailed much more than the rest. Among those 20%,
65% of the nodes are located in the West. The remaining are located
in the South and the Panhandle.
Key Takeaways. Curtailment is highly non-uniform and mostly
away from population centers. West has the lowest population
density and accounts for 55% of the total curtailment in 2023, while
Houston, having the highest population density, only accounts for
0.5% of the total curtailment. The top 20% of the nodes with the
most yearly curtailment are in the West, South and the Panhandle
and account for 77% of the total curtailed energy.

(a) Solar. (b) Wind.

Figure 3: Distribution of the amount of energy curtailed in
15-minute intervals. Solar (resp. wind) curtailment in a 15-
minute interval can be as large as 105MWh (resp. 122.5 MWh).

Figure 4: CDF of normalized curtailment amount over all 15-
minute intervals with curtailment events. When curtailment
occurs, a larger fraction of solar is curtailed than wind.

4.2 Curtailment Amount Distribution
Next, we take our nodal curtailment dataset and consider the cur-
tailment reported in any 15-minute interval for 2023, ignoring all
intervals when there is no curtailment. We then analyze the dis-
tributions of solar and wind curtailment separately. During those
intervals, we also normalize the curtailed amount with respect
to the HSL to calculate how much of the potential generation is
curtailed in that interval, where

𝑁𝑜𝑟𝑚. 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑 𝐴𝑚𝑡 .(%) = 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 𝐴𝑚𝑜𝑢𝑛𝑡

𝐻𝑆𝐿 × 0.25
× 100 (2)

Fig. 3 shows the curtailment amount distribution across the
nodes. Solar (resp. wind) curtailment in a 15-minute interval ranges
from 0.25MWh to 105MWh (resp. 122.5MWh).Most of those events
are curtailments of small amounts — during periods of curtailment,
solar (resp. wind) curtailment in a 15-minute interval is less than
1 MWh 43% (resp. 68%) of the time. Still, there are many intervals
across nodes with a high amount of curtailed energy.

Fig. 4 shows the CDF of the normalized curtailment amount
(in %) in a 15-minute interval during curtailment events. The me-
dian normalized curtailed amount during such events is 16% and
2%, respectively. We see that the normalized amount is more than
99% during 25% (resp. 10%) of the solar (resp. wind) curtailment
events. Hence, although the total wind curtailment exceeds the total
solar curtailment, typically, a larger fraction of solar generation
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Figure 5: CDF of the daily solar and wind curtailment amount
(only days with curtailment events are considered).

is curtailed than wind. This may be because wind usually offers
electricity at a lower price than solar [25, 47]. Hence, SCED would
curtail solar before wind without any other constraints. However,
more analysis is needed to find exactly why solar generation is
curtailed more than wind.

Many workloads require more energy than the curtailed energy
available in a 15-minute interval and run for longer periods but are
delay-tolerant. Such workloads can often be executed successfully
if there is enough curtailed energy available over a day. Hence, we
also look at daily solar and wind curtailment distributions. Recall
from § 4.1 that 20% of the nodes account for most of the curtail-
ment. So, we also show the distribution of daily curtailment for
the top 20% of nodes with the most amount of curtailment. Note
that we only consider the days with at least one curtailment event
since there are often days without curtailments. Fig. 5 shows the
solar and wind curtailment distributions. Daily solar (resp. wind)
curtailment ranges from 0.12 MWh to 3.6 GWh (resp. 9.7 GWh),
with a median value of 0.47 MWh (resp 3.1 MWh). For the top
20% of the nodes, daily curtailment ranges from 0.12 MWh to 9.7
GWh, with a median value of 25.5 MWh. Thus, while the amount of
daily curtailment across nodes is highly non-uniform, the top 20%
of the nodes experience considerable curtailment over a day and
can potentially execute delay-tolerant workloads with high energy
requirements.
Key Takeaways. Curtailment amounts across nodes have a wide
range. Although nodal curtailment amounts in a 15-minute interval
are mostly small (< 1 MWh), they can be as much as 122.5 MWh.
During curtailment events, a larger fraction of solar is curtailed
than wind — more than 99% of the generation is curtailed during
25% (resp. 10%) of the solar (resp. wind) curtailment events.

4.3 Curtailment Duration and Frequency
Distribution

We now analyze how long nodal curtailment lasts on average. To do
so, we count the number of contiguous 15-minute intervals when
curtailment events occur in 2023 and analyze the distributions. We
do this separately for solar and wind. Additionally, we add up all

(a) Solar. (b) Wind.

Figure 6: Distribution of curtailment event durations. Solar
(resp. wind) curtailment events can last up to 16 hours (resp.
over a week).

Figure 7: CDF of hours of curtailment across solar and wind
nodes in Texas. Most of the nodes are curtailed infrequently.

such intervals over the whole year for individual nodes to calculate
how frequently a node experiences curtailment over the year.

Fig. 6 shows the nodal solar and wind curtailment duration
distribution. Curtailments at the node level can occur continuously
from 15 minutes to 16 hours (resp. over a week) in solar (resp. wind)
nodes. However, the median curtailment duration is 15 minutes,
and solar (resp. wind) curtailments last less than 2 hours (resp. 1
hour) 90% of the time. Hence, curtailment at the node level is highly
intermittent most of the time. However, we observe a significant
number of curtailment events lasting several hours across the nodes,
even though they constitute only a small percentage of the overall
number of curtailment events. Thus, there is considerable potential
to leverage curtailed energy for long-running workloads.

We observe that when all curtailment events over a day are
aggregated, the duration of wind curtailment is typically more than
that of solar. This is because while solar curtailment is limited by
the hours of sunlight available, wind curtailment can occur during
both day and night. Hence, there are more intervals available for
potential curtailment. In extreme cases, wind curtailment can occur
in a node during all hours of the day.

The frequency of curtailment is highly non-uniform across nodes.
Fig. 7 shows the CDF of the number of hours of curtailment events
across the nodes in 2023. 90% (resp. 57%) of the solar (resp. wind)
nodes experienced some curtailment for less than 876 hours, which
is equivalent to less than 10% of the year. Overall, 70% of the nodes
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(a) Solar. (b) Wind.

Figure 8: Solar and wind curtailment amount distribution
(in MWh) across seasons in ERCOT. Curtailments are usually
more in the Spring and Winter than in the Summer and Fall.

are curtailed for less than 10% of the year. In this paper, we refer to
the remaining 30% nodes as frequently curtailed nodes.

In general, nodes with high yearly curtailment are frequently
curtailed. However, some nodes among the top 20% nodes with the
most curtailment are not curtailed frequently (Fig. 7). On the other
hand, we also observe nodes that are curtailed very frequently but
have significantly low yearly curtailment. More analysis is needed
to know why some nodes are curtailed more frequently than others.
Key Takeaways. Nodal curtailment is highly intermittent, with a
majority of them lasting less than an hour and the median duration
being 15 minutes. However, there are still a significant number of
curtailment events that can last several hours, even though they
constitute only a small percentage of the total number of events.
Over the year, only 30% of the nodes are curtailed frequently, with
wind nodes usually getting curtailed more frequently than solar.

4.4 Seasonal Patterns of Curtailment
Since weather conditions and electricity demand influence curtail-
ment — both of which have distinct seasonal patterns — curtailment
is likely to vary across seasons. Lin et al. [33] observed that system-
wide wind curtailment in ERCOT is more during the Spring and
Winter than during Summer or Fall. They concluded that higher
electricity demand coupled with lower wind generation during
Summer and Fall results in less wind curtailment.

In this section, we analyze if nodal curtailment also shows similar
patterns. We divide our dataset into four seasons — Spring (March
to May), Summer (June to August), Fall (September to November),
andWinter (December to February). We see that the seasonal trends
for the amount of nodal wind curtailment are similar to the findings
reported by Lin et al. [33]. Interestingly, the amount of nodal solar
curtailment also follows the same seasonal patterns even though
solar production peaks during Summer and is less during Winter.
Fig. 8 shows the CDF of node-level solar and wind curtailment
amounts per 15-minute interval across seasons in ERCOT. Although
the maximum curtailed energy in a 15-minute interval is similar
across the seasons, median wind curtailment can be up to 1.2×
higher in Spring and Winter than in Summer or Fall. Similarly, the
median amount of curtailed solar energy in a 15-minute interval
can be up to 2.8× (resp. 7.1×) higher in Spring (resp. Winter) than
in Summer or Fall. We posit that more solar curtailment during
Spring may be due to the same reason (rising generation combined
with less demand). However, determining the reason behind higher

solar curtailment during Winter needs more analysis and is kept as
future work.

Additionally, we observe that wind curtailment durations do not
show any significant difference across the seasons.
Key Takeaways. Solar and wind are curtailed more in Spring and
Winter than in Summer or Fall. Median curtailment amount can be
up to 7.1× more in Spring or Winter over other seasons. However,
there is no significant seasonal difference in curtailment durations.

4.5 Curtailment Correlation Across Nodes
Finally, we examine the curtailment correlation across the different
nodes in ERCOT. To do so, first, we partition all pairs of nodes
based on their pairwise distances. Each partition has a radius of 50
miles; that is, we cluster all pairs located within 50 miles, then we
cluster all pairs more than 50 miles apart but within 100 miles, etc.
We continue this till we exhaust all possible pairs of nodes. Then,
we use Pearson’s correlation [48] on all pairs of nodes, where each
node has a time series vector containing the curtailment for the
whole year. This gives us the correlation between nodes at different
distances. If Pearson’s correlation coefficient (r) for a pair of nodes
is > 0.6 (resp. < -0.6), we say that the pair has a high positive (resp.
negative) correlation.

We analyze two types of correlation: (1) temporal correlation of
curtailment events: in this case, each time series is a binary vector
of 1s and 0s, with “1” denoting a curtailment event, and (2) temporal
correlation of curtailment amount: in this case, the vectors also
have the amount of curtailment.

Fig 9 shows the temporal correlation of curtailment events be-
tween pairs of nodes (ignoring the curtailment amount). Solar pairs
are more correlated than wind pairs, and the correlation decreases
as the distance between them increases. However, only 9.9% (resp.
0.5%) of solar (resp. wind) pairs are highly correlated within a 50-
mile radius. Most pairs of nodes show a weak positive correlation
(0 < 𝑟 ≤ 0.3). The high correlation in some nodes may be due to
similar weather patterns and electricity demand. However, grid con-
ditions surrounding the nodes can be considerably different even
when two nodes are geographically proximal. Since curtailment is
also affected by grid conditions like congestion, this may be the
reason why most nodes show only weak correlations.

Fig. 10 shows the temporal correlation of curtailment amounts
between pairs of nodes. More pairs of nodes have stronger corre-
lations in this case — within a 50-mile radius, 29.2% solar and 6%
wind nodes are strongly correlated. This implies that there are a
lot of weakly correlated curtailments of low amounts, and curtail-
ments of higher amounts are more correlated, which increases the
Pearson coefficient in the second case. Most node pairs are still
weakly correlated, and the correlations still weaken as the distance
between the nodes increases.

When solar and wind nodes are paired together, 23.9% of the
node pairs within a 50-mile radius have a weak negative temporal
correlation (−0.3 ≤ 𝑟 < 0). The percentage of pairs with a weak neg-
ative correlation increases to 31.3% when the curtailment amount is
also considered. This means there are periods when there is either
solar curtailment or wind curtailment, but not both. Hence, there is
potential to get a longer supply of curtailed energy by aggregating
solar and wind curtailments.
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(a) Solar-Solar. (b) Wind-Wind. (c) Solar-Wind.

Figure 9: Temporal correlations of the occurrence of curtailment between pairs of nodes. Solar pairs have a higher correlation
than wind pairs. Most pairs of nodes are weakly correlated, and correlation weakens with the distance between the nodes.

(a) Solar-Solar. (b) Wind-Wind. (c) Solar-Wind.

Figure 10: Temporal correlation of curtailment amount between the pairs of nodes. More pairs are strongly correlated, but most are
still weakly correlated. This suggests many weakly correlated small curtailment events and some strongly correlated larger events.

Key Takeaways. There are many weakly correlated small curtail-
ment events and a few strongly correlated larger curtailment events.
Consequently, most pairs of nodes are weakly correlated even when
they are geographically proximal. In general, solar nodes are more
correlated than wind nodes.

5 Price-Based Curtailment Cause Identification
Recall that curtailment can be broadly due to an oversupply of
renewable energy or due to grid congestion when renewable energy
cannot reach demand locations. Identifying the cause of curtailment
is crucial to reduce curtailment or utilize curtailed energy effectively.
For example, if the curtailment is due to congestion, adding demand
to a place where the renewable supply cannot reach may result in a
non-renewable nodemeeting that additional demand and increasing
the system-wide carbon emissions. In this section, we develop a
method to identify the cause of curtailment in a node at a specific
time by looking at the nodal price (LMP).

LMP varies both spatially across nodes and temporally depend-
ing on the supply, demand, and grid conditions like transmission
congestion. Thus, we posit that we may be able to derive the cause
of curtailment from LMP signals. Specifically, we ask the question:

Can we identify the cause of curtailment in a node at a particular
time by looking at the LMP signals?

To that end, we analyze the LMP at a node during curtailment.
The LMP at any node is the sum of three components:
(1)Marginal cost of generating the next unit of electricity (MEC).
(2)Marginal cost of grid congestion (MCC).

(3)Marginal cost of electricity transmission losses (MLC).

∴ 𝐿𝑀𝑃 ($/𝑀𝑊ℎ) = 𝑀𝐸𝐶 +𝑀𝐶𝐶 +𝑀𝐿𝐶 (3)

MCC becomes zero when the grid has no congestion [38]. Hence,
if MCC is zero when there is curtailment, then the curtailment is due
to oversupply. Otherwise, curtailment is due to congestion. Since
many grids provide information about MCC publicly [14, 24], the
reason for curtailment in a node at a specific time can be determined
by simply looking at MCC.

In our case, while ERCOT provides only the LMP values and not
the value of each component, ERCOT ignores transmission losses
in their LMP data [14, 24]. Thus, for ERCOT,

𝐸𝑅𝐶𝑂𝑇 𝐿𝑀𝑃 ($/𝑀𝑊ℎ) = 𝑀𝐸𝐶 +𝑀𝐶𝐶 (4)

ERCOT provides LMPs at both nodal and hub levels. The LMP of
a hub is an average of the LMPs of all the nodes in that hub. When
there are no transmission losses, LMP is the same across all nodes
when there is no congestion [30]. Consequently, the LMP averaged
over all the nodes in a hub will be equal to the nodal LMP. Thus,
we can indirectly determine whether MCC is zero for a particular
node by looking at the difference between the nodal LMP and the
LMP of the hub where that particular node resides. If the LMP of a
node is not equal to the LMP of a hub when there is curtailment,
then MCC is non-zero, and that curtailment is due to congestion
somewhere in the hub (and hence, in the grid). On the other hand,
if the LMP of a node is equal to the LMP of all the other nodes in
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(a) Solar. (b) Wind.

Figure 11: Distribution of % of curtailment events occurring
due to oversupply. Most solar and wind nodes are curtailed
primarily due to congestion.

Figure 12: Comparison of amount of curtailment (%) due to
oversupply and congestion. 93.4% of the total curtailed energy
is curtailed due to congestion.

the hub and hence the hub LMP when there is curtailment, MCC is
zero, and that curtailment event is due to oversupply.

We evaluate the cause of curtailment across the nodes in Texas
using our methodology. Figure 11 shows the histogram plots of
the percentage of times solar or wind nodes are curtailed due to
oversupply in 2023. During other times, curtailment is due to con-
gestion. We see that in 79.4% (resp 100%) of the solar (resp. wind)
nodes, less than 50% of the curtailment events are due to oversupply.
Out of all the solar (resp. wind) curtailment events in 2023, 26.4%
(resp. 25.6%) of the time, the nodal LMP is the same as the hub
LMP. When added together, 25.7% of the time, the nodal LMP was
the same as the hub LMP during curtailments. Thus, 74.3% of the
curtailment events in ERCOT in 2023 are due to congestion.

Figure 12 shows the percentage of solar and wind curtailment
that occurs due to oversupply or congestion. 91.2% (resp. 94.3 %)
of the curtailed solar (resp. wind) energy is due to congestion, and
the rest is curtailed due to oversupply. Together, 93.4% of the total
curtailed energy in ERCOT is due to congestion.

Our method can also be used to pinpoint which transmission
line in a grid is congested at a certain time. If the nodes at the
start and end of a transmission line have different LMPs, then that
transmission line may be congested (ignoring MLC). However, such
analysis requires information about grid topology. Since ERCOT

Figure 13: CDF showing LMP at different amounts of curtail-
ment. LMP is typically less when there is curtailment and
decreases with an increase in the amount of curtailment.

does not publish any topology information, we are unable to include
such an analysis in this paper.
Key Takeaways. During 74.3% of the curtailment events, MCC is
non-zero. Based on our methodology, it means that those events are
due to congestion. Curtailment events due to congestion account for
93.4% of the total curtailed energy. Thus, congestion is the leading
cause of curtailment in Texas. Curtailment is due to oversupply
the remaining 25.7% of the time (accounting for 6.6% of the total
curtailed energy), as MCC is zero.

6 Price-Based Curtailment Detection
While curtailment data at the node level is scarce, many grids pro-
vide nodal LMP data. Thus, if we can somehow identify when and
where curtailment occurs from LMP signals, researchers can use the
easily accessible LMP data to overcome the data-related challenges
associated with curtailment. For example, suppose there is a strong
correlation between LMP and curtailment in a way that whenever
the nodal LMP is below a certain threshold, it is likely that the node
experiences curtailment. If that is true, then curtailment-aware
optimizations can use LMP as an indicator to detect curtailment
and modulate demand accordingly, even when curtailment data is
unavailable. Hence, we ask the following question:

How is the curtailment in a node correlated to its LMP? Can we
use LMP to detect or estimate curtailment?

To answer the questions, first, we investigate the LMP distribu-
tion when a node experiences curtailment versus when there is no
curtailment. Fig. 13 shows the cumulative distribution of LMP at
different amounts of curtailment. We see that the LMP distribution
is typically less during curtailment than at other times. The median
LMP when there is curtailment is 15.1 $/MWh. In contrast, the
median LMP when there is no curtailment is 21.1 $/MWh. We also
observe that LMPs decrease further as the amount of curtailment
increases. If we consider curtailment of at least 5 MWh, the median
LMP decreases to -1.5 $/MWh from 15.1 $/MWh.

Next, we examine the chance of curtailment given a certain
price. Acun et al. [1] observed that in California and the South
West, there are usually threshold prices below which curtailment
is more likely to occur. If we can find a similar threshold price for
ERCOT, that price may be a useful indicator of curtailment events.
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Figure 14: Probability of curtailment given the LMP is less
than a certain amount (x). The probability of curtailment for
frequently curtailed nodes increases as LMP decreases.

Figure 15: Distribution of correlation between LMP and cur-
tailment across nodes. LMP has a weak correlation with the
amount of curtailed energy.

To do so, we compute the fraction of time an average node faces
curtailment given the price is less than a specific value. Fig. 14 shows
the results. In general, the probability of curtailment increases as the
LMP decreases. However, for infrequently curtailed nodes (nodes
curtailed less than 10% of the year), the probability of curtailment
decreases when the price goes below -33$/MWh before increasing
again at very low prices. On the other hand, the probability of
curtailment increases for frequently curtailed nodes as the price
decreases, and there is no significant dip. For those nodes, there is
more than 70% probability of a curtailment event when the price is
below -15 $/MWh. Thus, for frequently curtailed nodes, LMP may
be a useful indicator for detecting curtailment events.

Finally, we analyze the temporal correlation between the amount
of curtailment and LMP at a single node to determine if LMP can
indicate curtailment amounts and trends in addition to detecting
curtailment events. For each node, we treat the curtailment and
LMP for the whole year as two vectors and calculate the year-long
temporal correlation between them using Pearson’s correlation [48].
Fig. 15 shows the CDF of the correlation coefficients across the
nodes. All the nodes have a weak correlation between LMP and
curtailment, regardless of how frequently they are curtailed.

Key Takeaways. LMP has the potential to indicate curtailment
events in frequently curtailed nodes, as the probability of curtail-
ment is more than 70%when the price is below -15$/MWh. However,
estimating the curtailment amount from LMP is complicated since
there is only a weak correlation, and needs more analysis.

7 Implications of Our Analyses
Our curtailment analyses shed light on the eventual goal of finding
ways for using the renewable energy that would otherwise have
been curtailed, thus decreasing the usage of “brown” energy. A
natural way of achieving that goal is forecasting curtailment events
and thenmodulating the demand during those events to consume the
energy that would otherwise have been curtailed. We now discuss
the implications of our analysis from these two perspectives.
(1) Forecasting Curtailment.Curtailment forecasts can be treated
as either a classification or a regression problem. The classification
problem (CP) forecasts whether there will be curtailment at a spe-
cific node and at a specific time, while the regression problem (RP)
forecasts how much energy is likely to be curtailed. In general, RP
is more difficult to solve than CP [23]. Specific implications follow.

(i) Our analysis in § 4.3 shows that most nodes are curtailed in-
frequently, with 70% of the nodes curtailed for less than 10% of the
year. Many of these nodes have long periods of time — often span-
ning several days — without any curtailment events. Consequently,
both CP and RP may be difficult in such nodes.

(ii) On the positive side, the remaining 30% of the nodes are
curtailed more frequently. These nodes are likely amenable to ML-
based forecasting techniques such as those used for carbon intensity
or grid-level curtailment forecasting [23, 34, 41]. Although the
fraction of frequently curtailed nodes is smaller, these nodes account
for 65% of the curtailed energy. Hence, most of the curtailed energy
can potentially be forecasted.

(iii) While factors like local weather conditions, renewable sup-
ply, and local demand may be helpful for forecasting curtailment,
ML models may need additional features to increase their accuracy.
Our work sheds light on what features are likely useful in forecast-
ing curtailment. § 6 shows that nodal price is a strong indicator for
detecting curtailment events. Hence, LMP can be a good feature for
forecasting curtailment events (CP). However, since LMP only has
a weak negative correlation with the amount of curtailed energy, it
is not a good feature for forecasting curtailment amount (RP).

(iv) Finally, we found in § 4.5 that curtailment events across
nodes are only weakly correlated, even when the nodes are geo-
graphically proximal. This suggests that forecast models would
need to be trained individually for each node based on its own
historical data. Models trained for one node may not be effectively
transferred for forecasting curtailment at other nodes, thus limiting
the efficacy of transfer learning for this problem.
(2) Modulating Demand. Specific implications are as follows.

(i) The geospatial distribution of curtailment (§ 4.1) implies that
optimizers trying to reduce carbon emissions by using curtailed
energy should primarily add or shift demand to theWest, South, and
the Panhandle rather than densely populated hubs like Houston.

(ii) Since 20% of the nodes account for 77% of the curtailment
(§ 4.1), there is potential to significantly reduce curtailment and
leverage curtailed energy by adding demand at only one-fifth of the
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nodes. However, the grid is congested 74.3% of the time when there
is curtailment (§ 5). So, demand should be added carefully to avoid
increasing the congestion. One way to avoid more congestion is by
adding demand adjacent to the nodes — for example, by building
data centers or deploying server clusters colocated with the nodes.
When curtailment is due to oversupply and not congestion, demand
can be added anywhere within a hub. In those situations, already
existing data centers can scale up and add demand to use curtailed
energy. Since renewable energy is typically cheaper, SCED would
ensure that renewable nodes supply the additional demand.

(iii) While nodal curtailment is highly intermittent and infre-
quent, § 4.5 shows that when solar and wind nodes are paired
together, 31.3% of those pairs have a weak negative correlation in
terms of curtailment amount. Grouping such nodes may provide a
much more stable supply of curtailed energy over longer periods of
time. Hence, there is potential to execute long-running workloads
using only curtailed energy by colocating server clusters in these
nodes and then spatio-temporarily shifting such workloads.

(iv) Finally, many optimizations apply to workloads that can be
shifted only temporally but not spatially. For example, researchers
have looked at scheduling EV charging during curtailment events
or low-carbon periods [8, 40]. However, EVs can only be charged at
specific locations and cannot always be shifted to a location near a
curtailed node. Our analysis extends to these types of optimizations
and workloads, too. For example, our price-based curtailment cause
identification methodology (§ 5) can enable such optimizations to
schedule EV charging when curtailment is due to oversupply and
there is no grid congestion. In this case, the renewable energy can
flow from a curtailed source to a non-proximal node where there is
demand.
Extensibility to Other Grids. Our analysis in this paper is re-
stricted to ERCOT due to challenges in obtaining publicly available
data for other regions. While our observations and implications are
for the ERCOT grid, we hypothesize that some of them should apply
to other grids as well. For example, similar to ERCOT, congestion is
the primary cause of curtailment in the California grid (CAISO) [4].
However, verifying our observations and implications with data
from other grids is future work.

8 Related Work
Curtailment Estimates and Studies.Curtailment is awell-known
phenomenon in the electricity grids, and there are curtailment stud-
ies ranging over a decade. Bird et al. [2] report the curtailment
practices in several US grids, examine the general causes of curtail-
ment, and suggest practices that can potentially reduce curtailment.
Chien et al. [6, 7, 33] characterize the growth of curtailment in
different US grids and ways to leverage such energy. Nycander et
al. [37] estimate curtailment in the Nordic grids by developing a
power dispatch model. Numerous other works estimate curtailment
both in the present as well as in the future in different geographical
grids and countries [20, 39, 50]. All these works estimate curtail-
ment at the grid level, whereas our work analyzes at a much finer
node-level granularity. Frysztacki et al. [21] evaluate nodal cur-
tailment by building a SCED model for a small-scale simulation
of the German grid. In contrast, we use a data-driven approach to

estimate and analyze curtailment. Additionally, we also analyze
LMP to identify the cause of curtailment at different nodes.
Curtailment Forecasts. Recently, some works have forecasted
solar and wind curtailment. Gorka et al. [23] detect and predict
solar curtailment in California in real time. Hadian et al. [26], and
Shams et al. [41] predict the amount of solar and wind curtailment
in California, while Bunodiere et al. [3] predicts the same in Japan.
Memmel et al. [35, 36] forecast curtailment in a simulated grid of
Germany by detecting grid congestion. While these works forecast
curtailment, our work is complementary to such works. We analyze
the distribution and causes of curtailment by looking at node-level
generation and pricing data. Our paper also describes how our data
analysis insights can inform future prediction research and whether
LMP can be used as an input to such forecasting methods.
Curtailment-Aware Computing. There is also growing attention
to demand-side optimizations to utilize curtailed energy and reduce
carbon emissions. Researchers have looked at shifting flexible loads
like EV charging [8, 40] or data center computing [32, 49, 51] to
places and periods of renewable curtailment. Our work is com-
plementary to these works. All these optimizations need to know
where, when, and why curtailment occurs at the node level, and
our analysis tries to provide these answers.

9 Conclusions
As electricity grids move towards decarbonization, they are increas-
ingly meeting their demand with renewable energy. As the amount
of renewables in the grid increases, there are periods when renew-
able supply exceeds the demand or cannot reach the demand loca-
tions due to grid congestion. Consequently, a significant amount
of renewable energy often needs to be curtailed. Since curtailment
represents wasted renewable energy that could have potentially
replaced “brown” energy, analyzing curtailment at the node level is
crucial to understanding its potential for decarbonization.

In this paper, we study nodal solar and wind curtailment for
the Texas grid. Using a data-driven approach, we show that nodal
curtailment is highly non-uniform and intermittent — 20% of the
nodes account for 77% of the total curtailed energy, while 70%
of the nodes are curtailed for less than 10% of the year. We also
develop a price-based method to identify the cause of curtailment
and show that 74.3% of the curtailment events in 2023 are due to
congestion. Overall, our analysis implies that while curtailment can
potentially be forecasted in only a small fraction (30%) of the nodes,
a considerable amount of curtailed energy (65%) can be utilized by
adding demand adjacent to these nodes. Following this analysis,
we plan to explore the feasibility of systems running exclusively
on curtailed energy as future work.
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