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ABSTRACT
Electric vehicles (EV) are rapidly increasing in popularity, which is
signi�cantly increasing demand on the distribution infrastructure
in the electric grid. This poses a serious problem for the grid, as
most distribution transformers were installed during the pre-EV era,
and thus were not sized to handle large loads from EVs. In parallel,
smart grid technologies have emerged that actively regulate demand
to prevent overloading the grid’s infrastructure, in particular by
optimizing the use of grid-scale energy storage. In this paper, we
�rst analyze the load on distribution transformers across a small
city and study the potential impact of EVs as their penetration levels
increase. Our real-world dataset includes the energy demand from
1,353 transformers and charging pro�les from 91 EVs over a 1 year
period, and thus provides an accurate snapshot of the grid’s current
state, and allows us to examine the potential impact of increasing
EV penetrations. We then evaluate the bene�ts of using smart grid
technologies, such as smart EV charging and energy storage, to
mitigate the e�ects of increasing the EV-based load.
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1 INTRODUCTION
Advancements in battery and electric vehicle (EV) technology, com-
bined with public policy initiatives, is rapidly accelerating the elec-
tri�cation of transportation. Major car and truck manufacturers
have all announced new EV products, making it likely that EVs will
become mainstream in the coming years. Nearly 200,000 EVs were
sold in 2017 in the U.S. alone—a 25% increase in sales over 2016 [1].
Reports from Norway indicate that 70% of all new cars being sold
are now EVs. Of course, EVs are powered by batteries that must be
charged frequently, e.g., often daily, using electricity from the grid.
Consequently, as EVs become commonplace, their impact on the
electric grid will be profound. At a macro scale, all of the energy
used to power automobiles, currently supplied by gasoline, will
need to be provided by the electric grid, resulting in a manifold
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increase in electricity usage. At a micro scale, the residential dis-
tribution grid was built in a pre-EVA era and was not designed to
account for EV loads. For example, a typical home in the U.S. has
an average load 1.2kW, while an electric car such as Nissan Leaf
adds an additional load of 6.6kW, e�ectively doubling or tripling
the peak electric demand of the home. As a result, distribution grid
transformers that were sized before EVs may become overloaded
and not be able to reliably support high EV penetrations.

At the same time, the emergence of the smart electric grid has
resulted in new technologies for more �exible demand-side load
management and load mitigation in the grid. In particular, grid-
level energy storage is emerging as a key technology for supporting
future smart grids, since it can smooth out �uctuations from inter-
mittent renewable energy sources, such as solar and wind, as well as
enable grid optimizations, such as shaving peak loads and serving as
backup power to reduce outage durations [28, 30, 31]. Interestingly,
grid-level energy storage can also be used to mitigate the impact
of EV loads on distribution transformers. If judiciously deployed
adjacent to distribution transformers, energy storage batteries can
reduce or eliminate transformer overloads due to EV charging and
increase transformer lifetimes. A complementary smart grid tech-
nology is intelligent load management via load shifting [11, 32]. In
the context of electric vehicles, this technique translates to smart
charging where the EV intelligently coordinates its charging with
the distribution grid often by deferring its charging from peak to
o�-peak periods whenever necessary [39, 41]. Together, energy
storage and smart charging have the potential to mitigate the im-
pact of EV loads on the distribution grid, but howmuch and to what
extent is unclear based on actual transformer capacities, projected
EV loads, and current demand pro�les.

In this paper, we study the impact of residential EVs on the
demand experienced by a city-wide distribution grid in the New
England region of United States and then analyze whether and how
much grid energy storage and smart charging technologies can
mitigate this increased demand. Our study is empirical in nature
and is based on analyzing real load data from i) 13,523 residential
homes and 1,353 distribution transformers gathered at 5 minute
granularity over a 2-year period and ii) real charging data from over
91 EVs in use over a one year period. While there has been prior
work on analyzing the impact of EV loads [9, 35, 43], our study
di�ers from priorwork in several key aspects. For example, Clement-
Nyns et al. [9] largely focuses on characterizing the aggregate load
impact from EVs, and does not consider the issue of mitigating the
load impact using grid storage, while Verzijlbergh et al. [43] focuses
on peak load analysis and thus only considers mitigating the one
day that experiences the peak annual load.

In contrast, we analyze the impact of EVs on transformer loads
throughout the grid over a 2-year period and speci�cally study
how the distribution of loads changes as the penetration of EVs
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increases. As we show later, understanding the impact on the proba-
bility distribution of loads is as important as analyzing the peak load
alone. While Ramanujam et al. [35] examines a similar problem, it
drives its simulations using synthetic estimates of existing loads,
rather than real-world empirical data, and is thus not an accurate
characterization of real-world conditions. We analyze long-term
�ne-grained transformer load data across an entire city to char-
acterize the real-world implications of increasing EV penetration,
and examine ways to mitigate problems using grid-scale energy
storage. In conducting our empirical analysis, this paper makes the
following contributions:
Transformer Distribution Analysis. We use a city-scale dataset
to conduct an in-depth analysis of the existing transformers and
quantify their di�erent load pro�les. Surprisingly, we observe that
most transformers are not over provisioned in the network and all
transformers are already designed to gracefully handle temporary
overloads. Moreover, we �nd that 19.2% of transformers are heavily
overloaded, having a utilization of over 100%.
Impact of Electric Vehicles. We analyze the e�ect of increas-
ing penetrations of EVs and the e�ect on the load experienced by
transformers in the grid and their lifetime under multiple di�erent
scenarios, e.g., uniform and skewed distributions of EVs. Our results
indicate that the percentage of critically overloaded transformers is
low for small levels of EV penetration (1-5% of homes), but increases
signi�cantly at higher penetrations levels (20-40% of homes).
Mitigation Strategies. Since our results demonstrate that the cur-
rent distribution system is not provisioned for high levels of EV
penetration, we examine the e�ect of two mitigation strategies—the
use of energy storage and smart EV charging—to reduce transform
overloads, extend their lifetime, and improve grid reliability. Our
results show that even deployed a small amount of energy storage
capacity, e.g., 24kWh, can dramatically reduce the risk of failures in
transformers. We also show that smart charging is highly e�ective
at reducing the number of critically overloaded transformers at
high EV penetrations levels. In addition, when used in conjunction
with energy storage, we show that smart charging can reduce the
battery capacity necessary (by 41.3%-69.6%) to prevent transformers
from exceeding their capacity.

2 BACKGROUND
In this section, we present background on the distribution grid,
grid-based energy storage, and electric vehicles.

2.1 Distribution Electric Grid
The architecture of the electric grid has three key components: gen-
eration, transmission, and distribution. In this paper, we are only
concerned with the distribution grid. The distribution grid is primar-
ily responsible for supplying electricity to end consumers, which
include industrial, commercial, and residential customers. While
electricity is transmitted at high voltages through transmission
lines, the distribution grid network uses a series of transformers
to progressively step down the voltage and supply end-consumers
with electricity at voltages of 110V (North America) or 230V (Europe
and Asia). The distribution grid comprises sub-stations, feeders,
and transformers that are responsible for supplying electricity to
end consumers and can be viewed as a hierarchical network [5].

In our work, the exact topology of the distribution grid is not
important since we focus speci�cally on distribution edge trans-
formers — transformers at the edge of the distribution network that
are directly connected to the end users. Furthermore, since we are
speci�cally interested in EV charging, we consider the portion of
the distribution grid that serves residential and commercial/o�ce
customers and ignore industrial users (since EVs are unlikely to
be connected to transformers serving an industrial user, such as a
manufacturing plant). We assume that distribution edge transform-
ers serving homes or those serving business users are likely to see
increasing EV loads — resulting from users charging electric cars
at home or in o�ce parking lots with EV chargers.

Such distribution edge transformers come in a range of capac-
ities, varying from small 5-10 kilo-Volt-Ampere (kVA) pole-top
transformers to larger 500, 1000 and 1500 kVA transformers. Note
that transformer capacity is rated in kVA, which is the unit used
for apparent power, i.e., the product of the root mean square (rms)
of voltage and current in an AC power system. Small transformers
may serve a small number of homes (e.g., 2 to 4 homes), while the
larger ones serve apartment complexes or o�ce buildings.

Electric utilities size edge transformers based on their expected
load. However, typical capacity planning for transformers in the
grid works di�erently from capacity planning in server farms and
data centers, which is a well-studied problem [8, 27]. In particular,
server capacities are computed based on their expected peak load,
such that a server cannot service a peak load that exceeds its ca-
pacity, since they have a �xed computing capacity (based on their
clock speed and bus bandwidth) that they cannot exceed. Trans-
former capacity is also sized based on its expected peak load, but
a transformer is an analog device that can supply electricity that
exceeds its rated capacity. Ultimately, the more power a transformer
services, the more heat it generates. However, transformers have
built-in safety mechanisms, speci�cally mineral oil, that can absorb
some amount of excess heat generated from being overcapacity.
Thus, unlike servers, transformers are sized to operate over a wide
range of their rated capacity, e.g., up to 1.25 of their rated capac-
ity [22]. Even so, overloaded periods are undesirable as they reduce
transformer e�ciency (since the excess heat represents lost energy),
and over time they can cause the insulating oil to evaporate. Once
there is not enough oil to absorb the excess heat, it can melt the
transformers coils and cause it to fail.

Thus, limiting the time periods (and magnitude) when the trans-
former load exceeds its rated capacity is important in reducing
the negative impact on transformer lifetimes. For our analysis, we
consider a transformer with a peak load between 0.9 to 1.25 its
rated capacity to be highly utilized, a peak load between 1.25 to
1.5 to be overloaded and peak load exceeding 1.5 to be critically
overloaded. Transformers with loads less than 0.9 are considered
to have low to moderate utilization.

2.2 Electric Vehicles
Electric cars, which are the most common type of EV, are becoming
increasingly popular. Many manufacturers now include one or
more types of EV in their product line up (see Table 1). Two types
of electric vehicles are particularly common — pure EVs, which
are solely powered using batteries, and plugin hybrid EVs (PHEV),
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EV model Range Size Rate Charge Time
(mi) (kWh) (kW) (hour) at 220V

Nissan Leaf (electric) 150 40 6.6 8h
Tesla Model S (electric) 315 100 10 10.7h
Chevrolet Bolt (electric) 238 60 7.2 9.3h
Chevrolet Volt (hybrid) 53 18.4 3.6 4.5h
Prius Prime (hybrid) 25 8.8 3.3 2.1h

Table 1: Examples of popular electric vehicles with di�erent
battery characteristics.
which are powered using a combination of a gas-powered and
electric motor. Examples of pure EVs include the Tesla Model S,
Nissan Leaf, and Chevy Bolt, while examples of plugin hybrids
include the Chevy Volt and the Toyota Prius Prime. Many plugin
hybrids tend to have smaller batteries than pure EVs since they can
“fall back” to a gas-powered engine when their batteries run out.

The larger battery sizes of pure EVs imply a larger load, which
results in a higher peak charging load and a longer charging time
to fully charge the battery. Regardless of the type, EVs can impose
a signi�cant load on edge transformers in the distribution grid.
For instance, electric Type 2 chargers, a standard charger used for
charging electric cars, draws roughly 7kW of power, while a central
air conditioner, which is typically the “largest” load, draws 3.5kW.
In other words, an electric car charger imposes twice the load of
largest load, the central AC, in many homes on the distribution grid.
Since distribution edge transformers were sized based on pre-EV
era peak loads, increasing penetrations of EVs can have a signi�cant
negative impact. Thus, in the summer, a home with a central AC
and an EV may exhibit a peak load 3⇥ the previous peak load based
on central AC alone (e.g. 10.5kW versus 3.5kW).

2.3 Grid-based Energy Storage
Grid-level energy storage, in the form of batteries, has emerged
as a promising approach for various grid optimizations. Battery-
based grid energy storage can be deployed at various points in the
grid’s hierarchy — generation, transmission, or the distribution
part of the grid network. Prior studies have shown that battery-
based storage is especially appealing to handle the intermittency
exhibited by renewable energy sources, such as solar and wind,
by using storage to smooth out the �uctuations [6, 23]. Similarly,
battery-based storage has been used for peak load shaving [30, 31].

Although the cost of battery-based energy storage remains high,
prices are dropping more rapidly than expected even a few years
ago, and commercial products and deployments are beginning to
ramp up. For instance, Tesla sells PowerWall battery packs to both
residential users and to utility companies. The largest deployment
of grid batteries, a capacity of 100 MWh, was recently installed by
Tesla in Australia [2]. In this work, we consider the deployment
of energy storage batteries alongside distribution edge transform-
ers to mitigate overloads caused by EVs and enhance transfer for
lifetimes — a use of batteries that has not seen much attention in
the distribution network. Utilities are especially interested in using
such application in the future as prices continue to fall.

3 PROBLEM AND METHODOLOGY
In this section, we present the problem and key research ques-
tions we address in the paper, and then describe the datasets and
experimental methodology that we use to answer those questions.

3.1 Problem
The primary goal of our paper is to understand the impact of varying
levels of EV penetration on the loads experienced by distributed
edge transformers, so as to understand how much slack capacity is
currently present and to identify when grid transformers become
overloaded. An additional goal is to understand when emerging
technologies, such as smart EV charging or battery-based grid
storage, can alleviate the overloads or what extra upgrades will be
necessary to accommodate the growing number of EVs. Speci�cally,
we seek to answer the following research questions.

(1) What is the distribution of load experienced by edge trans-
formers? What are the daily and seasonal variations in this
load, speci�cally the peak load, seen by edge transformers?
What does this load analysis reveal about the current slack
present in the distribution grid? For those transformer with
little or no slack, how loaded or overloaded are they?

(2) How does progressively increasing the penetration of EVs
impact the load distribution seen by edge transformers? How
does the resulting load increase change the fraction of highly
utilized and overloaded transformers? At what penetration
levels does the distribution grid see signi�cant overload prob-
lems? How does skewing the deployment of EVs to particular
(e.g., a�uent) neighborhoods change these results?

(3) Can smart EV charging that defers (or rate limits) charging
loads during peak periods help alleviate transformer over-
loads? How much energy storage is necessary for overload
shaving of edge transformers at di�erent EV penetration
levels? How much additional bene�ts can be obtained by
combining smart charging and grid-level energy storage?
What do these results reveal about the relative size and fea-
sibility of energy storage as a mitigation strategy and how
much more penetration can be accommodated?

3.2 Datasets and Experimental Setup
The answers to these questions will vary from region to region, and
clearly depend on the current state of the distribution grid in terms
of its load over time, transformer capacities, and the resulting slack.
In this paper, we use a small city in the New England region of
United States and attempt to answer these questions for this city
by conducting a city-wide data analysis. Since the distribution grid
design in this city is typical of many regions in North America, we
believe that our high level insights are broadly applicable.
Distribution Grid Dataset. Our dataset consists of electricity us-
age (load) data recorded by 15,089 smart meters that serve every
residential and commercial user in the city. These 15,089 meters
are served by 1,353 distribution edge transformers. Our dataset
includes a mapping of each meter to its edge transformer, and also
includes a detailed speci�cation of each transformer, including its
rated capacity. The load data is recorded at a �ve minute granularity
and spans from 2015 to 2017. Since data from late 2017 was not yet
available when performing our analysis, we limit our analysis to
two full calendar years—2015 and 2016—for which data is available.

Since these edge transformers are low voltage transformers that
are directly connected to end-customers, the load on each trans-
former can be computed by summing the load recorded by each
meter connected to that transformer. Doing so yields highly detailed
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Num. of transformers 1353
Num. of commercial meters 1566
Num. of residential meters 13523
Transformer sizes 5kVA to 1500kVA
Electric meter granularity 5 minutes
Duration 2015 to Sep 2017

(a) Grid Distribution Dataset
Total num. of electric cars 91
Num. of Tesla S 12
Num. of Nissan Leaf 18
Num. of Chevrolet Volt 61
Granularity 5 minutes
Duration 2016

(b) Electric Vehicles Dataset
Table 2: Key characteristics of the dataset.

Figure 1: Distribution of transformer capacities.

Figure 2: Distribution of smart meters connected to trans-
formers of varying capacities in the distribution grid.
load information experienced by each distribution edge transformer
over the two year period of the study. The availability of detailed
load information for all 1,353 edge transformer in a city is a distin-
guishing feature of our study. Prior work has only considered the
total grid load across a city rather than transformer-level loads [35].
In contrast, we study probability distribution of loads as well as the
time of day/seasonal impacts that other studies did not consider.

Table 2 summarizes the key characteristics of our dataset dis-
cussed above. Figure 1 then depicts the diversity of transformer
capacities in the distribution grids and the distribution of trans-
formers across varying sizes. Note that, since the rated capacity is

Car Model Summary (kWh) Max Median Std.
Tesla S Daily Energy Demand 28.07 13.69 4.25

#Charging Session 340 235 112.8
Nissan Daily Energy Demand 10.41 4.98 1.64
Leaf #Charging Session 337 174.5 122.7
Chevrolet Daily Energy Demand 7.19 5.01 0.92
Volt #Charging Session 351 266 123.3
Table 3: Charging Summary of electric vehicle models.

in apparent power as kVA , in our later analysis, we use the average
power factor to convert it into kilowatts (kW) to make our results
more intuitive. We use the equation below for the conversion.

kW = kVA · PF (1)
Here, 0  PF  1 is the power factor. For our analysis, we use

power factor of 0.9 and 0.95 for summer and winter, respectively,
which represents the average power factor in these seasons.

Figure 1 shows that transformer capacities can vary from 5 kVA
all the way to 1500 kVA. Most of the deployed transformers are
"small" and have a rated capacity of less than 150 kVA — a few trans-
former are large with a capacity of 500 kVA to 1500 kVA. Generally,
the small transformers serve a small number of residential cus-
tomers (e.g., 2-4 homes). The larger transformers serve apartment
complexes, o�ce buildings, other light commercial customers.

Figure 2 shows the distribution of meters connected to trans-
formers of various sizes. We observe that the number of connected
residential meters increases with the increase in transformer capac-
ity. In contrast, fewer meters are connected to transformers that
provide electricity to commercial buildings as they tend to consume
higher energy. The median number of meters connected to these
transformers ranges from 2 to 28.
Electric Vehicle Dataset. Since our study seeks to understand
the impact of electric vehicles, we use the Dataport dataset from
Pecan St.1 — a real-world trace that consists of power consumption
from 91 electric vehicles gathered at �ve minute resolution in 2016.
The 91 EVs in the dataset represents a mix of 3 popular electric
car models — Tesla Model S, Nissan Leaf, and Chevy Volt. Table 3
depicts the di�erent types of EVs in the dataset. The dataset includes
detailed information, such as the power drawn and the time and
duration the car was connected to the power outlet. Table 3 also
shows the statistics of the charging pro�les for each car model in
the dataset.

Since our dataset only includes 91 EV traces, we supplement our
dataset by constructing additional synthetic EV traces as follows.
First, we randomly choose a particular car from the existing dataset.
We then take the charging data for the entire year and permute the
weekdays and weekends over the year for that car. That is, each
weekday trace is mapped to a random other weekday and each
weekend is randomly mapped to a di�erent weekend. Doing so
yields a synthetic trace that is based on permutations of the initially
chosen trace. We repeat this process to construct 24,000 synthetic
EV traces, 8000 for each model to supplement our real dataset in
our analysis of increasing EV penetrations.

To simulate the e�ect of increased EV penetration on the distribu-
tion transformers, unless otherwise speci�ed, we randomly assign
EVs to residential homes. We then calculate the net load in each
1Dataport dataset. http://dataport.pecanstreet.org
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Figure 3: This graph illustrates the seasonal variation in the
load pro�le of a representative transformer.
transformer after the addition of the electric vehicles. We repeat the
above simulation 50 times and show the results for the average case
over multiple runs. We also study skewed EV deployment, where
we concentrate a greater fraction of EVs to speci�c neighborhoods,
such as a�uent neighborhoods that are more likely to experience a
higher fraction of EV adopters, rather than uniformly distributing
them across the whole city.

4 ANALYSIS OF EDGE TRANSFORMER LOADS
In order to understand the impact of EV penetration on transformer
loads, we must begin with an analysis of the current (“as-is") loads
on edge transformers before the introduction of any EVs. Such an
analysis reveals the slack available at various transformers, as well
as the transformers that are already heavily utilized and have little
available slack.

4.1 Demand Pro�les of Edge Transformers
We begin with an analysis of the monthly and daily loads seen by
the 1,353 edge transformers across the city. Figure 3 depicts the
monthly load experienced by a representative transformer over
2016. The �gure illustrates the seasonal variation in the load, and is
characterized by two peak demand periods — winter and summer.
The winter peak occurs due to increased use of electric heaters dur-
ing the winter, while the summer load coincides with the increased
use of air conditioning on hot summer days. Although the winter
peak is slightly higher than the summer one, the summer peak has a
greater impact on transformer e�ciency and lifetimes. Prior studies
have shown that a high ambient temperature can have an adverse
impact on transformer lifetimes [13, 42], as a high ambient temper-
ature contributes to the e�ect of overloading by further heating up
(and evaporating) the insulation oil, which protects transformers
from overheating. With increased energy demand from EVs, sum-
mers are likely to have a greater adverse impact on transformers
than other seasons. Since the spring and fall seasons see lower peak
loads, there is more slack and cooler temperatures, which makes
the transformers less vulnerable during these periods.

Next, we analyze the daily load pro�le of edge transformers to
identify the most common types of transformers based on their load
pro�le. For this analysis, we clustered the average daily pro�le of
all transformers using k-Means clustering. Since the transformers

Group Name Utilization #Transformers
Low to Moderate < 90% 976 (72%)
Heavy utilization �90% to <125% 283 (21%)
Overloaded �125% to <150% 63 (5%)
Critically overloaded �150% 31 (2%)

Table 4: Summary of the peak utilization of transformers

are of di�erent sizes, we normalize the daily load pro�le of each
transformer to a range between 0 and 1 (e.g., using MinMaxScaler
in scikit-learn), and then perform clustering. Figure 4 depicts the
�ve clusters that emerge when using k-means with k=5; the �gure
shows the result for 2016 (the other years yield qualitatively similar
results and are omitted). We selected k=5, since 5 was the highest
value of k that yielded clusters that were qualitatively di�erent, and
also did not yield an outlier cluster with few transformers. The red
line depicts the centroid of the clusters, while the grey line shows
the energy pro�les of all the transformers in the cluster.

The �ve clusters reveal interesting patterns. For example, Fig-
ures 4(a) and (b) depict transformers that exhibit daytime peaks,
while Figures 4(c), (d) and (e) depict transformers that exhibit
evening peaks. The captions depict the number and percentage
of transformers in each cluster. We hypothesize that the transform-
ers exhibiting daytime peaks, in Figures 4(a) and (b), serve o�ce
buildings that have a 9 am to 5 pm workday or businesses, such as
retail stores, that have 9 am to 9 pmwork hours. These transformers
have a low load during the late evening and nighttime hours.

The clusters shown in Figures 4(c), (d), and (e) all exhibit evening
peaks and also exhibit a nontrivial amount of nighttime usage — we
hypothesize that these are large residential customers with di�erent
daily routines. The cluster in Figure 4(c) shows transformers that
see a low load during the day — these are likely users who are
away from home (i.e., working) during the day and at home in the
evening and night. Figures 4(d) and (e) show residential customers
with evening peaks, but also a non-trivial amount of daytime and
nighttime usage. These are likely to be families where someone is at
home during the day, where the increased evening activities result
in an evening peak — these two clusters (d) and (e) also account for
a large fraction of the transformer, 37.5%, and 46.2%, respectively.

From the perspective of EV loads, these load pro�les have in-
teresting implications. Transformers with daytime peaks, which
are o�ces and businesses, may deploy EV chargers in their park-
ing lots that will service users charging their EVs while at work,
and thus causing the already-high daytime peaks to rise further.
Transformers, such as those in Figure 4(c), where users are away
during the day, will likely see evening charging of EVs when users
return home, causing evening peaks to increase further. In both
cases, EVs may exacerbate the already-high peaks. Transformers
in clusters (d) and (e) have the most �exibility, since users may be
home during the day and may charge their vehicles at day or night.
Of course, charging during the peak load periods, when feasible,
exploits more slack in the transformer than the other way around.

4.2 Analyzing Peak Loads
Next, we analyze the peak loads (de�ned as the 99.9th percentile
of the load serviced by a transformer over the year) experienced
by the edge transformers. Using raw meter readings as they are
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(a) Cluster1: 134 (9.9%) (b) Cluster2: 65 (4.8%) (c) Cluster3: 22 (1.6%) (d) Cluster4: 508 (37.5%) (e) Cluster5: 624 (46.2%)

Figure 4: Demand pro�le clusters across transformers. The number and percentage of transformers in each cluster is listed in
the caption. The clusters are qualitatively di�erent, with some exhibiting daytime peaks and others exhibiting evening peaks.

leads to erroneous estimates of transformer peaks brought about by
spurious reads, often way higher than the normal peaks. We use the
99.9th percentile to eliminate these values. Using (1), we compute
the rated capacity of transformers in kW and then compute the
utilization by normalizing the load observed at the transformer
with its rated capacity.

We then group the transformers into four categories, explained
in Section 3.2 and depicted in Table 4: low-to-moderate, highly
utilized, overloaded, and critically overloaded. Figure 5 depicts the
peak load distribution of the transformer across the whole city,
while Table 4 shows the number and percentage of transformers
that fall in each category. Since transformers have a typical lifetime
of 20-30 years, one would expect careful sizing, such that the peak
load is well below the rated capacity. However, as shown in Table 4
and Figure 5(a), only 72% of the transformers service a peak load of
less than 90% utilization over the course of the year. Around 21% of
the transformers are heavily utilized and service a peak load of up
to 125% of capacity. Note that this implies that the transformer op-
erated at or above its rated capacity for at least part of the time over
the year. Around 3.8% of the transformers are overloaded and see a
peak load that exceeds 125% utilization, while an additional 2% of
the transformers are critically overloaded with peak load exceeding
150%. As explained earlier, it is not “abnormal" for a transformer to
exceed 100% utilization for short periods, since they have mineral
oils to insulate them from overheating, although sustained over-
loads for long periods are dangerous. Therefore, we next analyze
the duration of the overloads experienced by transformers.

We consider only the transformers that are in the overloaded and
the critically overloaded groups and compute the number hours
over the year for which they service a load exceeding 125% of their
rated capacity, and also compute the maximum "session duration"
over which the transformer is continuously overloaded. Figure 5(b)
plots the total number of hours for which transformers are over-
loaded or critically overloaded over a year. The �gure shows that the
overload distribution is long-tailed — the majority are overloaded
for 162 hours over a year, while a few see overloads of as many as
1000 - 3000 hours. Figure 5(c) analyzes each continuous period that
experiences an overload, and plots the longest continuous duration
for which a transformer was overloaded. The �gure, plotted on a
log scale, shows the median duration of overload was 45 min, while
some transformers see a sustained overload of 143 hours.
Implications.. Our analysis shows that roughly two-thirds of the
transformers have slack due to low-to-moderate peak loads. How-
ever, our temporal analysis reveals that the amount of slack has

high seasonal variations — i.e., there may be less slack during the
summer or winter peaks and less slack during peak hours of the
day, which vary based on the transformer’s load pro�le. Conversely,
around 21% of the transformers are heavily utilized and have al-
most no slack to accommodate EVs, while around 6% are already
overloaded or critically overloaded. Further, energy storage may be
bene�cial for these 6% of the transformers to absorb the overloads,
even without any EV. Finally, one surprising aspect of our analysis
is our �nding that shows roughly 19% of the transformers routinely
operate over capacity at least for a portion of time each year, with
some experiencing long sustained overloads of many days.

5 IMPACT OF ELECTRIC VEHICLES
In this section, we analyze the impact of increasing EV penetra-
tions on the peak loads experienced by edge transformers. We �rst
assume a uniform distribution of EVs across households (and trans-
formers) in the city, and analyze the impact of varying levels of
EV penetration on transformer peak loads. We also examine the
impact of a skewed distribution, where EVs are disproportionately
concentrated in speci�c (e.g., a�uent) neighborhoods, and study
the e�ects of di�erent penetrations for such skewed distribution.

We �rst introduce di�erent levels of EV penetration into the
grid, namely 1, 2, 5, 10, 20 and 40% — where penetration represents
the percentage of smart meters that service an EV load. To do so,
we randomly select an EV trace (from our synthetic trace of Tesla,
Chevy and Nissan EV, as described in Section 3) and map it to a
randomly chosen smartmeter (selected from a uniform distribution).
The EV charging trace is overlaid on the smart meter trace, and
the transformer load is recomputed accordingly. We repeat each
experiment for 50 runs with a di�erent random mapping of EVs to
transformers to ensure our results have tight con�dence intervals.

Figure 6 shows the impact of varying levels of EV penetration on
the peak loads. Figure 6(a) depicts the distribution of transformers
seeing di�erent peak loads for the no EV case (current grid) and at
10% and 40% penetration. As expected, the peak loads experienced
by a transformer increases due to EV loads, such that the mass and
tail of the distribution shifts to the right. Furthermore, while the
median peak load is 0.7 in the no EV case, the median peak load
increases to 0.76 and 1.03 at 10% and 40% penetration respectively.

Next, we analyze the increase in the number (and percentage) of
highly utilized, overloaded, and critically overloaded transformers
at di�erent penetration levels. We assume the current state (from
Table 4) as the baseline such that Figure 6(b) reports the additional
percentage of transformers in each group (over the baseline) at
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Figure 5: Distribution of transformer overloads over a year, based on the peak transformer utilization (a), the number of total
hours the transformers experienced overloads (b), and the maximum sustained period of overloading (on a log scale) (c).

(a) (b) (c)

Figure 6: Peak utilization distribution of the transformers for varying EV penetration levels (a). Additional transformers that
are at risk of overloading or are overloaded due to EVs (b). As EV penetration increases, the maximum sustained overloading
in transformers increase depicted by the distribution shifting to the right (c).
each penetration level. The �gure shows that for low penetration
levels of 1%, 2%, and 5%, the additional transformers that become
heavily utilized or overloaded are relatively small (1-2% in each
group). In these cases, since the number of EVs is relatively small,
there is su�cient slack in the transformer load to accommodate
them. Generally, we see that as penetration levels rise, so does the
percentage of transformers in each category. At 10% penetration,
an additional 4% transformers become heavily utilized, while an
additional 3% transformers see overloads or critical overloads. The
peak loads rise quickly at 20% and 40% penetration, with up to 18%
of transformers becoming overloaded or critically overloaded. Since
many transformers become overloaded, rather than highly utilized,
this case yields a slight drop in the heavily utilized transformers.

Figure 6(c) shows the maximum sustained duration of overloads
seen by all transformers in 2016 for the no EV case, and for 10%
and 40% penetration levels. The �gure shows that with increasing
EVs, not only do the peak loads rise, the duration for which these
peak loads persist also rises. The median overload duration rises
from 0.75 hours in the no EV case to 1.1 and 2.8 hours for 10% and
40% penetration respectively.
Implications. Overall, the results show that the distribution grid
can easily accommodate up to 5% EV penetration, and potentially
up to 10% penetration. The impact of 5% penetration is relatively
small, while a 10% penetration level causes an increase in highly
utilized transformers (which are still considered within normal

operating range) and a moderate 3% increase in the overloaded
transformers. Higher penetration levels above 10% cause an in-
creasing problem with overloading, and indicate that mitigation
strategies are necessary to accommodate these higher levels of EVs.

5.1 Impact of Skewed EV Penetration
While the above analysis assumes that EVs are uniformly distributed
across meters and transformers, it is entirely likely that “early
adopters” of EVsmay be concentrated in certain neighborhoods (e.g.,
a�uent households can pay the higher price for electric cars). In this
scenario, EVs will be concentrated in a certain neighborhood and
not uniformly distributed. To understand the impact of a skewed
distribution, we repeat the above analysis for a skewed mapping of
EVs to transformers. We perform two types of analysis representing
both an optimistic best case and a pessimistic worst case scenario.
For the optimistic case, we disproportionately skew the assignment
of EV to low and moderately utilized transformers — by assigning
75% of the EVs to the group and the remaining 25% to the remainder
of the transformers. For the pessimistic case, we do the opposite, and
disproportionately skew the assignment of EVs to highly utilized
and overloaded transformers. Like before, we conduct at least 50
runs for each penetration level. The two scenarios study the impact
of EVs in neighborhoods with transformers with the greatest and
the least slack, respectively. Figures 7 and 8 depict our results for
the optimistic and the pessimistic scenario, respectively.
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Figure 7: Best case scenario, where EV adoption is skewed to
low-to-moderate transformers, causing fewer transformers
to become overloaded or critically overloaded.

Figure 8: Worst case scenario, where EV adoption is skewed
to highly utilized and above transformers, causing the num-
ber of transformers at risk to increase.

Figure 7 shows that skewing EV adoption to neighborhoods that
have transformers with low-to-moderate loads (and the greatest
slack) allows a higher penetration level compared to the uniform
distribution (Figure 6). Speci�cally, at low penetration levels of up to
5%, there is minimal impact on overloaded transformers and a small
increase in the heavily utilized transformer. Even at 20% penetra-
tion level, the increase in heavily-utilized and critically overloaded
transformers is minimal, although the number of overloaded trans-
formers nearly doubles. The 40% penetration level sees a dramatic
increase in the percentage of critically overloaded transformers,
increasing from 9.1% (in Figure 6(b)) to 17.8%

Figure 8 shows that skewing EV penetrations to neighborhoods
with highly utilized transformers permits a lower penetration level.
Interestingly, even in this pessimistic worst case scenario, there is
only a modest rise of 4.6% of overloaded transformers at a 5% pene-
tration level, indicating that there is adequate slack to accommodate
up to 5% EVs even in the worst case. However, the percentage of
overloaded transformer rises quickly at 10% and higher penetration
levels, indicating that additional mitigation strategies are necessary
to handle the worst-case scenario.

6 MITIGATION STRATEGIES
Having examined the e�ect of EV-based loads on distribution edge
transformers, we now evaluate mitigation strategies to help allevi-
ate transformer overloads. Speci�cally, we explore two emerging

(a) (b)
Figure 9: Energy storage capacity required to limit utiliza-
tion to no more than 125% across all transformers (a), and
the distribution of energy storage capacity needed to limit
overloading based on transformer capacities (b).

technologies in the smart grid — energy storage and smart charging
to understand how using them in isolation or in combination can
help in reducing the number of overloaded and critically overloaded
transformers in the grid. We also evaluate how many additional
EVs can be accommodated if utilities introduce these technologies.

6.1 Energy Storage
In Section 4, we show that even in the absence of EV-based loads, a
small fraction of the grid consists of overloaded or critically over-
loaded transformers. Since we are only concerned with how EVs
impact the grid, we �rst examine how much energy storage capac-
ity is required to eliminate the overloaded and critically overloaded
transformers. We then examine how much additional energy stor-
age is required when EVs are serviced by the edge transformers.

To calculate the energy storage capacity required per transformer,
we propose a simple peak-shaving algorithm that clips the max-
imum contiguous peak above a given threshold. Speci�cally, for
each transformer, our algorithm scans over its load and computes
the contiguous period when the load exceeds the threshold. Our
algorithm then computes energy storage capacity by computing
the energy above the threshold across the periods, and selects the
maximum. Our premise is that the energy storage that can �atten
the maximum contiguous peak can also provide energy to �atten
the smaller peaks experienced at other periods.

We begin by analyzing the distribution of storage capacity re-
quired to limit the maximum transformer utilization to 125%. Fig-
ure 9(a) shows that energy storage capacity can vary between 1kWh
and 915kWh. We note that the 90th percentile of energy storage is
24kWh, which indicates that even a small battery size can dramati-
cally reduce the risk of failures in transformers. In particular, 85%
of overloaded and critically overloaded transformers can bene�t
from an energy storage capacity of 24kWh or less.

Since, the battery capacity is a function of the size of the trans-
former capacity, we plot the distribution of battery size against
transformer size. Figure 9(b) shows the median energy storage ca-
pacity increases with increases in transformer capacity. The larger
energy storage capacity can be attributed to the higher number of
homes that larger transformers serve.

Figure 10 shows that the median battery capacity required to
eliminate overloads in the overloaded and heavily utilized trans-
formers increases from 1.9kWh prior to introduction of EVs to
15.6kWh at 40% penetration. The di�erence in energy storage ca-
pacity between heavily utilized and overloaded transformers is also
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Figure 10: Increase in themedian battery size necessarywith
di�erent EV penetration levels to limit overloaded trans-
formers (above 125%), utilization exceeding 90%

Figure 11: Reduction in number of overloaded and heavily
utilized transformers with increasing battery scale factor
without EVs.

small, not exceeding 2kWh at all penetration levels, showing that
most of the transformers are in the overloaded region.

Next, we analyze the e�ect of adding storage as a function of
transformer sizing. We de�ne battery scale factor as a 1:1 ratio to a
transformer’s kVA rating i.e. for each kVA, what e�ect would adding
1kWh of storage to the transformer have on the transformer’s
overload status. Figure 11 shows the result of adding storage using
this factor in the no EV case. By adding a 0.1 factor of storage, we
are able to reduce the number of heavily utilized and overloaded
transformers by up to 42% and 55% respectively. Figure 12 shows
that at 10% EV penetration, the number of heavily utilized and
overloaded transformers can be reduced by up to 70% and 76%
respectively using a 0.5 factor of storage.

6.2 Smart Charging
We now evaluate the reduction in peak utilization due to smart
charging of electric vehicles. The goal of our analysis is to under-
stand how �exibility in EV charging can reduce the number of
overloaded transformers. Our hypothesis is that the demand pro-
�les of transformers have su�cient low usage periods, especially
during the night, such that EVs can be charged without signi�cantly
increasing the peak utilization of the transformers.

For the purpose of our analysis, we assume an ideal EV charging
algorithm that has full knowledge of future transformer loads and
EV charging pro�les. We also assume that transformers and EV

Figure 12: Reduction in number of overloaded and heavily
utilized transformers with increasing battery scale factor at
10% EV penetration.

Figure 13: Reduction in the number of transformers that are
overloaded when using smart charging policy.

chargers are able to communicate over a network. We then compute
an optimal threshold that minimizes the transformer’s utilization
while ensuring that all EV requirements are met ahead of time. In
the event that transformers do not have enough future slack for
EV charging, our smart charging algorithm allows the threshold
to be exceeded in order to meet EV demands. We then allocate EV
charging schedules on a �rst come �rst serve basis. Whenever the
threshold is reached, additional chargers are not allowed to start
charging immediately. As additional slack becomes available either
due to connected EVs reaching full capacity or general household
power usage reducing, the remaining EV chargers are scheduled.

Figure 13 shows the reduction in the number of transformers
that are heavily utilized, overloaded, and critically overloaded at
di�erent EV penetration levels. The graph demonstrates that smart
charging becomes more important as the EV penetration increases.
Smart charging has little to no e�ect on reducing over-capacity
transformers at small EV penetrations between 1% and 5%. How-
ever, the reductions in over-capacity transformers increases for EV
penetrations between 10% and 20%. Once EV penetration reaches
40%, smart charging becomes critical, as it is able to reduce the
number of critically overloaded transformers by nearly 20% and
the number overloaded transformers by 7.4%. These results demon-
strate that smart charging is an important tool for maintaining grid
reliability as EV penetration ramps up.
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Figure 14: Reduction in the necessary battery capacity when
smart charging is combined with energy storage.

6.3 Combing Storage and Smart Charging
Finally, we examine the e�ect of combining grid-level battery-based
energy storage with EV smart charging. Since batteries are still
expensive to deploy and maintain, we examine how much battery
capacity is necessary to limit utilization to no more than 125%
across all transformers when used in conjunction with our smart
charging algorithm. Figure 14 shows the results at di�erent levels
of EV penetration. The graph shows that smart charging can reduce
the battery capacity substantially, ranging from 41.3% to 69.6%. At
low penetration, smart charging is able to take advantage of the
available slack. As penetration increases, the threshold boundary
is crossed, because EVs still need to be charged within the time
period, and the reduction in overall battery size reduces. Since smart
charging would incur very little capital expenses on the utility side,
this reduction would signi�cantly decrease the capital expenses
related to deploying and maintaining batteries.

7 RELATEDWORK
In this section, we discuss some of the prior work on optimizing
the distribution grid network for EVs, smart charging of EVs, and
the use of energy storage for grid optimizations.
Distribution Grid Network. There have been numerous studies
on the distribution network [4, 26, 40]. For instance, [4] studied the
grid’s resilience to disruptions in the distribution network. Others
have studied the feasibility, or have examined the cost-bene�t anal-
ysis, of integrating renewables in the distribution network [26, 40].
However, these studies do not analyze the load on distribution edge
transformers or examine the e�ects of EVs on edge transformers.
Prior work has also studied the impact of load on transformer life-
times [7, 17, 18, 38, 42]. These approaches provide thermal modeling
of transformers, and examine how load and external factors a�ect
transformer lifetime. Our work is complementary to this work, as
we provide a broader analysis of the current state of distribution
edge transformers in a city over a 2-year period. In addition, these
studies do not characterize the impact of increased penetration of
large EV loads. Prior work has also studied demand patterns at both
the household and grid level [3, 21, 24, 36]. These include studies
to understand the types of demand pro�les for setting power tari�s
or enabling demand-response programs [29, 44]. Again, our work

di�ers, as we focus on classifying load pro�les across edge trans-
formers, and characterize the current state of the grid to study the
e�ect of emerging technologies, such as EVs and energy storage.
Electric Vehicles. There has also been a signi�cant amount of
prior research on EVs [5, 10, 15, 16, 18, 25, 33, 37, 43]. While some
studies have focused on the e�ects of EVs on power quality [15, 16,
33, 37], other work has focused on controlled EV charging [5]. In
contrast, our work focuses on characterizing the load impact from
EVs on edge transformers, and approaches to mitigate these impacts.
Prior work has also studied �exible charging or co-ordinated EV
charging in the grid [39, 41]. Our work is complementary to this
work, as these smart charging methods can be employed reduce
the overloading of distribution edge transformers. Prior work has
also analyzed the impact of EVs on the distribution grid [9, 35, 43].
However, as discussed in Section 1, our work di�ers from this work,
as the dataset used is limited or synthetically generated. Instead,
we use �ne-grained load data and provide empirical analysis on
potential strategies that can be used to mitigate impact of EVs.
Energy storage. Prior studies have explored the bene�ts of using
energy storage in conjunction with renewable energy [14, 19, 23,
34]. These studies focus on control policies to meet certain cost
objectives. In addition, the use of energy storage has been studied
in the context of load shifting, where energy storage charges itself
during periods of excess generation (or o�-peak pricing periods)
and discharges when the demand is high [11, 12, 20, 32]. Similarly,
prior work has proposed algorithms to shave peaks at both the
individual home or the grid level [28, 30, 31]. Again, our work
is complementary, as this work does not study the use of peak-
shaving techniques to mitigate the impact of EVs on distribution
edge transformers at city-scale.

8 CONCLUSIONS
This paper analyzes both the current load on transformers from a
small city, and the expected load as EV penetrations increase. We
�nd that many transformers are over-provisioned in today’s grid,
but a signi�cant fraction of them will become overloaded once EV
penetrations reach 20% and above. We then examine mitigation
strategies for reducing transformer overloads using grid-level en-
ergy storage and smart EV charging strategies. Our results indicate
that both mitigation strategies can reduce over-capacity transform-
ers at high EV penetration levels, and can also be used in combi-
nation to achieve signi�cant reductions. At 40% EV penetration,
we can reduce the number of critically overloaded transformers
by 18% using smart charging, and up to 90% by deploying energy
storage of up to 15kWh per transformer. We expect our work to
spur further work on the impact of the changing electric grid, with
higher penetrations of EVs and renewable energy sources, on the
grid’s distribution system and its edge transformers.
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