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ABSTRACT
AI applications are driving the need for large dedicated GPU clus-
ters, which are highly energy- and carbon-intensive. To efficiently
operate these clusters, operators leverage workload forecasts that
inform resource allocation decisions to save energy without sacri-
ficing performance. The traditional forecasting methods provide a
single-point forecast and do not expose the uncertainty about their
predictions, which can lead to an unexpected loss in performance. In
this paper, we present an uncertainty-driven GPU demand forecast-
ing framework that exposes the uncertainty in its predictions and
provides a mechanism to configure the trade-off between energy
savings and performance. We evaluate our approach using multiple
GPU workload traces and demonstrate that the forecasting frame-
work, called CUFF, outperforms state-of-the-art point predictions.
CUFF predictor meets performance goals 83% of the time compared
to 7.6% for the point predictions under high GPU demand. Further-
more, CUFF knob enables users to configure up to 98% performance
target while providing 26% energy savings, comparable value to
point forecasts that only ensure 68% performance target.

1 INTRODUCTION
Advances in artificial intelligence (AI) and deep learning have en-
abled novel applications ranging from autonomous driving to chat-
based question-answering tools like ChatGPT. These advances are
driven by AI workloads that have been doubling roughly every 3.5
months, a rate much faster than Moore’s law [15]. At the same time,
the size of deep learning models is growing exponentially, with
OpenAI’s GPT-3 model comprising of 175 billion parameters and
a memory footprint of 350GB [2]. It is estimated that training this
model cost over $12M in cloud compute cost, requiring a supercom-
puting scale AI cluster. Not surprisingly, researchers have begun
to consider the environmental impact of such AI workloads, with
one study estimating that the emissions from training a single AI
model can exceed many common activities, such as a long plane
trip or driving a gasoline automobile for months or years [4, 14].

Consequently, green AI where AI workloads are run in a sus-
tainable manner is quickly emerging as an important research area.
Since AI-based training workloads run on large dedicated GPU clus-
ters, which are significantly more power-hungry than CPU clusters,
reducing the energy and carbon footprint of GPU clusters is an
important challenge in this area. Researchers have recently pro-
posed many promising techniques to optimize energy and carbon
footprint of large cloud workloads [18]. This includes time-shifting
batch workloads such as ML training to time periods with plentiful

low carbon electricity, intelligent power management of GPUs to
eliminate idle power consumption, and even spatial shifting the
training workloads to “green” cloud regions [13].

An important prerequisite for higher-level sustainability opti-
mizations is accurate forecasting of loads from cloud and AI ap-
plications; since such forecasts are key for decision-making. Load
forecasts (aka demand forecasts) is a well-studied problem both
in cloud computing and energy grids [8, 11]. Conventional load
forecasting techniques have ranged from time series forecasting [8],
regression-based techniques [7, 9], hidden markov model [1], and
more recently deep learning models. In general, these approaches
work well when the demand patterns vary in a smooth manner or
have temporal correlations. Load forecasting becomes more chal-
lenging when the workload exhibits burstiness or load spikes, such
as flash crowds in web workloads. Current techniques produce
point forecasts of future workload in both cases even though there
may be a greater uncertainty in the predictions in the later case.

Our work argues that the load forecasting should incorporate
uncertainty quantification, where confidence in the forecasts is pro-
vided alongside the forecasts themselves. Such uncertainty quan-
tification based forecasting can significantly improve higher level
methods such as optimizing energy or carbon used in AI clusters
since optimizations can become more conservative when uncer-
tainty is high (i.e. confidence is low) or more aggressive when
uncertainty is low. It is also important to quantify the impact of
uncertainty on the performance of the cluster and its energy sav-
ings, i.e. there should be a mapping between the confidence level,
energy savings, and performance quantified as the percentage of
time cluster can serve all of the incoming AI workloads. Such a
mapping, or a configurable knob, will enable an explicit control of
the tradeoff between energy or carbon efficiency and performance.

Motivated by these observations, in this paper, we present a
Configurable Uncertainty-driven Forecasting Framework (CUFF)
for GPU clusters used for AI workloads such as ML training. Our
framework comprises of two modules: the uncertainty-driven fore-
casting model and a higher level knob exposing the efficiency vs.
performance tradeoff. In the first module, we capture forecasting
uncertainty using quantile loss in the model objective function and
show how our quantile-based approach can forecast demand for
GPU resources in a cluster. Our forecasting approach allows us to
configure the confidence interval for forecasts and yields the num-
ber of GPUs that can meet the resource requirement with the given
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Figure 1: System architecture of Configurable Uncertainty-
driven Forecasting Framework (CUFF).

confidence. In the second module, we map the uncertainty configu-
rations to performance and energy savings to enable configurable
tradeoff between the two high-level objectives.

In designing and evaluating our GPU demand forecasting frame-
work, we make the following contributions.• Wepresent an uncertainty-drivenGPU demand forecastingmodel
that explicitly incorporates uncertainty information in forecasts.

• We expose a higher-level knob that leverages uncertainty-driven
forecasting and allows users to configure the trade-off between
energy savings and performance.

• Using multiple GPU workload traces, we demonstrate that CUFF
predictor meets performance goals 83% of the time compared
to 7.6% for the point predictions under high GPU demand. Fur-
thermore, CUFF knob enables users to configure up to 98% perfor-
mance target while providing 26% energy savings, comparable
value to point forecasts that only ensure 68% performance target.

2 BACKGROUND AND RELATEDWORK
Cloud and GPU workloads. Cloud GPU workloads are mainly
of two types: Deep Learning (DL) training jobs and DL inference
tasks. DL training workloads train models using existing data and
are very resource intensive. DL inference jobs make predictions
using inputs from users and often have strict latency requirements
(as less as 100ms) [3]. Most of the existing deep learning workloads
in the public infrastructure are of inference category [16].
Existing GPU cluster traces and analysis. Recently, companies
like Microsoft, SenseTime and Alibaba have published their GPU
cluster traces. It is observed from these traces that GPU nodes are
underutilized most of the hours. To overcome the issue of underuti-
lization, in [5] developed ANDREAS, a job scheduling algorithm
to keep the GPU nodes busy all the time. Similarly in [6] using
helios clusters data, proposed to turn on/off the servers leveraging
prediction values from Gradient Boosted Decision Trees.
GPU power management and their methodologies.With the
improved chip technologies, DVFS is an effective methodology
to reduce energy consumption in idle GPUs. When we scale the
frequency of the idle components to minimum, power consumption

Encoder Decoder

Co
nt

ex
t 

Ve
ct

or

𝑡! 𝑡" 𝑡#

𝑡#$! 𝑡#$" 𝑡#$%

Figure 2: Encoder-decoder based neural network architecture
used for the CUFF predictor.

also will be reduced to minimum. Additionally, dynamic power
management (DPM) is also utilized in GPU nodes to save energy
during idle times. This technique involves transitioning the node
into different sleep states, which can result in significant energy
savings compared to DVFS. However, DPM has a higher setup
time and not all machines support different sleep states, limiting
its applicability. Furthermore, power gating is another popular
technique where the power to idle functional units is turned off.
This results in a low power state and minimal energy consumption,
but also has a higher recovery time compared to DPM and DVFS.
Overall, GPU power management methodologies exist, each with
its own trade-off between energy savings and performance impact.
Load forecasting techniques. Load forecasting techniques have
been extensively studied in the last few decades. Initially, people
used statistics-based approaches such as ARIMA, Moving Average
for load prediction in data centers. With the advent of deep learning
models, people started using sophisticated models such as LSTM,
GRU, ensemble models, etc for better prediction accuracy. All of
the above methods can be categorized as point-based workload
prediction techniques, which provide no measure of prediction un-
certainty. Recently Rossi et. al [17] proposed a workload prediction
technique using a Bayesian layer in a neural network model pro-
ducing a gaussian distribution with a predicted mean and variance.
The parametric distribution is prone to noise and less robust when
compared to a specific quantile of the forecast distribution and thus,
not the most suitable value to use for optimal decision making [19].

3 CUFF DESIGN
In this section, we present an high-level overview of our Config-
urable Uncertainty-driven Forecasting Framework (CUFF). We also
describe the design and implementation of its different modules.

3.1 CUFF Architecture
Figure 1 shows the high-level architecture of CUFF. In addition to
CUFF module, architecture diagram shows two additional entities
that CUFF interacts with for its operation: users and cluster manager.
Users submit jobs to the cluster manager and job specs are also
provided to CUFF module. Users also specify the configurations for
the performance vs. energy efficiency tradeoff. For example, a user
may want to maximize the energy efficiency while satisfying the
resource requirements for 90% of the time.
Cluster manager, in our context, takes cluster configurations
from CUFF and controls the state of GPUs within the cluster. It
also monitors the physical GPU cluster to get energy consumption,
which is provided to CUFF alongside other job related statistics such
as percentage of jobs rejected and job resource requirements.

We describe the different sub-modules of CUFF module next.
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3.2 CUFF Predictor
Goal. The goal of this module is to take a time series data of GPU
resource allocation with 𝑛 observations from the past and predict
the next𝑚 values with a predefined quantile confidence value 𝑞.
Prediction model. Our forecasting approach uses a multi-horizon
strategy instead of a recursive forecasting strategy. To do so, we
directly predict next 𝑚 values (𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝑚) based on the
past 𝑛 values (𝑦𝑡−𝑛 , ...,𝑦𝑡−1,𝑦𝑡 ) to avoid error accumulation that can
happen in a recursive approach. As we want to estimate an upper
bound of the predicted resources with a desired confidence level,
we use quantile regression to forecast the conditional quantiles,

𝑃 (𝑦𝑡+1, 𝑦𝑡+2 ...𝑦𝑡+𝑚/𝑦𝑡−𝑛, ...𝑦𝑡−1, 𝑦𝑡 ) = 𝑞. (1)

In quantile-based forecasting, we train the models by jointly mini-
mizing the quantile loss calculated across all quantiles.

𝐿(𝑦,𝑦∗) =𝑚𝑎𝑥 (𝑞(𝑦 − 𝑦∗), (1 − 𝑞) (𝑦∗ − 𝑦)) (2)

here, 𝑦 is the true value, 𝑦∗ is the predicted, value and 𝑞 is the given
quantile. At 𝑞 = 0.5, we get the mean prediction values.
Neural network architecture. To train our uncertainty-driven
forecasting model, we use the encoder-decoder architecture for
neural networks. Figure 2 shows the high-level encoder-decoder
architecture. Input to the encoder is the observed time series val-
ues and input to the decoder is the context vector/output from
the encoder. The choice of this architecture is motivated by their
suitability for sequence-to-sequence (seq2seq) predictions and abil-
ity to handle variable input and output sequences, which may be
needed if an insufficient historic data is available or forecasts on a
longer/shorter horizon are needed to handle variable workload.

3.3 CUFF Knob
This module models the energy savings vs. performance relationship
and allows users to configure the desired performance level while
maximizing the energy savings. Here, we define performance as the
percentage of jobs that are allocated resources and are executed.
For example, if a user submits 100 jobs and only 80 get to run since
GPUs are not available, its performance is 80%. Energy savings are
defined as the ratio between the amount of reduced energy and the
total energy when all GPUs are ON. For example, if there are 100
homogeneous GPUs, an energy savings of 25% would mean turning
off 25 GPUs in anticipation of under-utilization. As the performance
requirements increase, the energy savings decrease and vice versa.

Given these definitions, the task of the module is to learn the
energy savings vs. performance relationship on per user, workload,
and cluster basis. Since learning this relationship may require sig-
nificant data, we anticipate that the knob module is trained using
historical workload traces, cluster configurations, and energy usage
information from similar clusters. Any simple or a machine learn-
ing model can be used for this task. At run-time, the trained knob
model receives the full distribution of GPU demand predictions,
cluster status from cluster manager, and the performance goals from
the users. Given these variables, it decides on the minimum number
of GPUs required to satisfy the performance objectives.

4 IMPLEMENTATION AND EVALUATION
In this section, we evaluate the accuracy of CUFF predictor in fore-
casting GPU demand with the desired confidence level. We also
establish a relationship between performance and energy savings.

Figure 3: GPU cluster daily trends- 3 representative traces
from each of the dataset.

Dataset GPU-specific Attributes Duration GPUs
Alibaba allocation, utilization 2 months 6000
Venus (Helios) allocation, utilization 2.5 months 2490
Philly (Microsoft) allocations, utilization 6 months 1064

Table 1: Summary of datasets used in evaluation.
Dataset Delay (at 1 minute) Delay (at 2 minutes)
Alibaba 17 kWh 26.3 kWh
Venus (Helios) 11.85 kWh 20.55 kWh
Philly (Microsoft) 26 kWh 39 kWh

Table 2: 24hrs energy overhead from state-transition delays.
Model Alibaba Venus Philly

under (%) MAE under (%) MAE under (%) MAE
GRU 76.72 10.09 76.72 10.09 28.18 8.66

Bi-LSTM 59.32 7.54 58.27 14.56 14.21 9.95
CNN 68.90 12.41 82.72 19.71 33.12 11.75

Table 3: 5-step prediction performance of point predictor across
all three traces using mean squared error loss.

4.1 Experimental Setup
Datasets. We use three publicly available GPU traces: Alibaba
trace [20], Microsoft Philly trace [10], and Helios trace [6]. Table 1
shows a high level summary of all the datasets. Figure 3 shows the
average demand on a typical day from each dataset. It demonstrates
that there is a significant variation in GPU demand and the GPU
clusters are not fully utilized most of the time.
Models for CUFF predictor and baseline. We use different deep
learning models, including Bi-LSTM, GRU and CNN, to implement
the encoder-decoder architecture of CUFF predictor. In training
these models for uncertainty-driven forecasting, we train with a
quantile loss function with the desired 𝑞 values. As a fair baseline,
we use these same models trained with mean squared error (mse)
as a loss function to generate point-predictions for GPU demand.
Training and testing procedure. We first compute the overall de-
mand for GPUs at every minute by aggregating resources allocated
to all running jobs. We use a look-up horizon of 2 hours (𝑛 = 120)
with a prediction length of 5 minutes (𝑚 = 5). While forecasts for
shorter horizon of up to 1 minute are possible, we make predictions
for the next five minutes to avoid fluctuations in number of GPUs
required and provide cluster manager time to enforce the config-
uration decisions. For training, we use quantiles with 0.1 interval
up to 0.9 and 0.01 from 0.9 to 0.99. The hyper-parameters for all
models for each dataset are selected using grid search.
Metrics.We use three metrics while evaluating CUFF. First metric
is the mean absolute error between the actual GPU demand and the
forecasted demand, which quantifies the accuracy of forecasting
model. Second metric is the under-prediction (%), which is com-
puted as the percentage of time slots when the forecasted demand
was less than the actual demand and jobs could not be served. It
quantifies the performance and lower value is better. Finally, the
third metric is the percentage energy savings, which are computed
as the amount of energy consumption reduced as compared to
always on status for all GPUs. Higher value is better.
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Figure 4:Mean absolute error (left y-axis) and under-prediction (right y-axis) results for both point predictions and CUFF predictor
for all datasets. Look at the red curves for MAE comparison and look at the dark violet curves for under-prediction comparison.
Circles (•) represent CUFF predictor and squares ( ) represent point predictions.

Model Alibaba Venus Philly
under (%) MAE under (%) MAE under (%) MAE

GRU 69.68 8.68 69.04 12.21 54.83 7.06
Bi-LSTM 27.63 10.92 32.32 16.20 77.95 8.91
CNN 77.18 13.79 52.99 16.03 51.63 10.77

Table 4: 5-step prediction performance of CUFF predictor across
all three traces using median quantile settings (𝑞 = 0.5).

(a) Alibaba

(b) Philly

(c) Venus
Figure 5: Configuring performance versus energy saving knob.
4.2 Benchmarking Experiments
There are a number of ways to reduce the power consumption of
a GPU cluster when the demand is low. These methods provide a
trade-off between energy savings and state transition delay (time
needed to bring the GPU online). First, our empirical experiments
on in-house GPUs suggest that power consumption of a single GPU
can be reduced by up to 25W by transitioning to the lowest possible
frequency. The state transition delay would be small, but the energy
savings would also be small. As an alternative, we can save more
than 50% of the power by putting a GPU node into a deep sleep
state, but bringing it online will incur a significant delay.

In addition, a large state transition delay can incur significant
energy overhead. We conduct empirical experiments with all the
dataset traces assuming we make decisions every one minute and
save 25W power by transitioning to the lowest possible frequency.
Table 2 shows the results of the experiment that higher state tran-
sition delay leads to high energy overhead and less energy savings.
Key takeaways. Cluster managers should choose power management
approach with low transition delay when GPU demand is fluctuating
and use deep sleep states when GPU demand is stable.

4.3 Evaluating CUFF Predictor Accuracy
We evaluate the accuracy of our forecasting module in two steps.
First, we compare the MAE and under-prediction percentage for
various DLmodel options for all the datasets using a quantile setting
of 0.5, as shown in Table 4. We compare it with the baseline of point
forecasts, shown in Table 3. Our uncertainty-driven forecasting
approach achieves comparable performance to point forecasts on
MAE for all the traces (within 2 points), but significantly outperform
point forecasts on under-prediction percentage for Alibaba and
Venus traces. Point forecasts for Philly trace are better on under-
prediction metric and we plan to investigate the reason in the future.
Furthermore, as GRU fairs much better than other models across
three traces, we pick it for all the future experiments.

Second, we compare the performance across all the quantiles, as
shown in Figure 4. This will allow us to understand how CUFF pre-
dictor compares with the point forecasts as the GPU load changes.
On MAE, at higher than median workload, CUFF predictor always
have a comparable performance to the point forecasts. Also, as clus-
ter sizes are in the range of hundreds to thousands, an MAE value
of under 50 across all datasets is reasonable. A better metric is the
under-prediction percentage as it tells how often these small errors
occur, which can be problematic. Again, under high workloads,
CUFF significantly outperforms point forecasts.
Key takeaways. CUFF always performs better on under-prediction
metric and has best performance for Alibaba trace, 7.6% versus 83%
(lower is better). It has a comparable performance on MAE metric.

4.4 Configuring CUFF Knob
As discussed in CUFF design, the purpose of the knob module is to
establish a configurable mapping between performance and energy
savings. To do that, we run both point forecasts, threshold-based
forecasts (point prediction + 5% extra GPUs) [12], and CUFF pre-
dictor at different workload levels and monitor the performance
(measured in under-prediction percentage) and energy savings. The
results for all the traces are shown in Figures 5. The performance
impact of CUFF is very low at high workloads, as establish in the pre-
vious section, but the energy savings almost remain constant. The
threshold approach has absolutely no case of under-provisioning.
This is because we added a larger value to the point predictions
to hedge against under-predictions. However, this hedging costs
additional energy and results in reduced energy savings across
all approaches. Similarly, there is a decreasing trend for under-
predictions for an increase in value of 𝑄 values.
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Key takeaways. CUFF knob enables users to set precise performance
targets and take over the task of maximizing energy savings. It rovides
upto 98% performance guarantee while yielding 26% energy savings.
5 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we present an uncertainty-driven GPU demand fore-
casting framework, called CUFF. We demonstrate that CUFF predic-
tor meets performance goals 83% of the time compared to 7.6% for
the point predictions under high GPU demand. Furthermore, CUFF
knob enables users to configure up to 98% performance target while
providing 26% energy savings, comparable value to point forecasts
with only 68% performance measure. As a next step, we plan to
extend our work by adding an optimization module to decide the
energy state of individual GPUs considering various constraints
such as predicted GPU usage, state-transition delays etc.
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