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Abstract

In this paper, we present techniques to maintain temporal consistency of replicated objects in data-centric peer-to-
peer overlay applications. We consider both structured and unstructured overlay networks, represented by Chord and
Gnutella, respectively, and present techniques for maintaining consistency of replicated data objects in the presence of
dynamic joins and leaves. We present extensions to the Chord and Gnutella protocol to incorporate our consistency
techniques and implement our extensions to Gnutella into a Gtk-Gnutella prototype. An experimental evaluation of
our techniques shows that: (i) a push-based approach achieves near-perfect fidelity in a stable overlay network, (ii) a
hybrid approach based on push and pull achieves high fidelity in highly dynamic overlay networks and (iii) the run-time
overheads of our techniques are small, making them a practical choice for overlay networks.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The design of distributed applications using
overlay networks has received increased research
attention in recent years. Overlay networks are dis-
tributed systems without any centralized control or
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hierarchical organization, where the software run-
ning at each node is equivalent in functionality;
such networks offer the promise of harnessing the
vast numbers of Internet hosts to implement large
distributed applications. Many data-centric appli-
cations such as global-scale storage [1], peer-to-peer
remote backup [2], decentralized file sharing [3,4],
distribution of large datasets, peer-to-peer caching,
distributed hash tables [5], distributed object loca-
tion [6,7], and multicast distribution systems [8,9]
have been designed using overlay networks.
ed.
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A peer-to-peer overlay network consists of a
collection of nodes that are interconnected via log-
ical links; each logical link spans multiple physical
links in the underlying physical network. Each
node (also referred to as a peer) in the overlay
can communicate with its neighbors via a logical
link. Communication with other nodes involves
traversing multiple logical links, and nodes in the
overlay typically participate in the routing of mes-
sages. Typically, overlay networks are dynamic,
with nodes that may join or leave at any time.
The network must reconfigure itself to handle
these topology changes.

Depending on the actual topology, peer-to-peer
overlay networks can be categorized into two
types: structured and unstructured. Structured
overlay networks, including Chord [10], CAN
[11], Pastry [12], Tapestry [13], and Kademlia
[14], assign each peer a uniform random peerID

from a large identified space, and assign each appli-
cation-specific object a unique identifier called key,
selected from the same id space. Each key is
dynamically mapped by the overlay to a unique live
peer, called the key�s root. Structured overlay net-
works also employ a key-based routing algorithm.
The routing algorithm supports deterministic rout-
ing of messages to a live peer with responsibility for
the destination key. Typically, each peer maintains
a routing table consisting of the peerIDs and IP ad-
dresses of the peers to which the local peer main-
tains overlay links; messages targeted at some key
f are forwarded across overlay links to peers whose
peerIDs are progressively closer to the key in the
identifier space. These systems guarantee that mes-
sages are delivered in the absence of failures.

In contrast, unstructured peer-to-peer overlay
networks do not employ key-based routing and in-
stead use a centralized index or flooding to locate
the destination peer. Unstructured overlays such
as Napster [15], Gnutella [3], and Freenet [4] are
primarily used by file sharing applications. These
systems can be centralized or distributed: Napster
uses a centralized model, while Gnutella and Free-
net use distributed models. Unlike structured net-
works, unstructured network such as Gnutella or
Freenet do not guarantee that files can be located
in the absence of failures. The centralized model
suffers from two limitations. First, the indexing ser-
ver can become a bottleneck and a central point of
failure. Second, the indexing server can return stale
information if a file is deleted at a peer (since the in-
dex information is only refreshed periodically).
Decentralized systems attempt to overcome these
drawbacks. In decentralized systems, queries prop-
agate through the network via flooding; the reach
of a query message is limited by a time-to-live
(TTL) value, which is decremented at each hop.
The responses are transmitted via the reverse path.

Since an overlay network may be dynamic with
frequent joins and leaves, replication is commonly
used by data-centric applications to ensure high
availability and also to improve performance.
With data replication comes the problem of main-
taining consistency of various replicas—if a data
object is modified by the application, all replicas
must be updated to ensure data consistency and
correctness. For example, in global-scale data stor-
age application [1], when a data block is modified
due to a write, all the replicas of modified data
blocks must be updated to ensure consistency. In
a peer-to-peer file sharing application used in a
collaborative setting, any update to a shared file
will require replicas to be either updated or inval-
idated. In a distributed hash table [5], when the
items of hash table are changed, all the replicas
of the updated items must be updated to maintain
consistency. In distributed object location systems
[6,7], once the object mappings are changed, all
replicas of the updated object mapping locations
must also be updated to reflect the new mapping.
In a recent work, we built a repository [16] of mul-
ti-gigabyte traces using BitTorrent [17]; our system
enables traces files to be updated with new versions
and uses consistency mechanisms to eliminate stale
replicas of these files from the system.

Data consistency techniques have been widely
studied in distributed systems, most recently in
the context of Web proxy caches [18–22]. How-
ever, most of these techniques are not directly
applicable to peer-to-peer overlay networks. Such
networks can be highly dynamic—nodes may
dynamically join and leave the network at any
time; studies have shown the mean session dura-
tion of a nodes is only a few hours for file sharing
applications [23]. Since nodes containing repli-
cated content may not be part of the network
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when an object is modified, maintaining consis-
tency is more challenging in these environments.
In contrast, much of the work on Web proxy cach-
ing has assumed that proxies are mostly available
and failures are rare. Bayou is an example of a dis-
tributed system that assumes weakly connected
replicas and implements a weak form of consis-
tency called eventual consistency to deal with dis-
connections and reconnections [24,25]. However,
many overlay network applications may have
stronger consistency requirements than a eventual
consistency mechanism can provide. Due to these
differences, novel data consistency techniques spe-
cifically designed to handle the needs of applica-
tions built using overlays are required.

1.1. Research contributions

In this paper, motivated by the need to support
data coherency for replicated objects, we propose
three consistency maintenance techniques for
data-centric peer-to-peer overlay applications.
Our first two techniques are based on the notions
of push and pull, respectively, and have comple-
mentary trade-offs. A push-based approach can
provide near-perfect fidelity but has high commu-
nication overheads and is suitable for overlay net-
works where nodes are mostly static. In contrast, a
pull-based approach has lower communication
overheads and is better suited for dynamic net-
works but provides weaker guarantees than push.
Based on these observations, we propose a hybrid
approach that combines the best features of push
and pull and attempts to provide good fidelity in
highly dynamic networks at a reasonable cost.
We propose enhancements to a structured overlay
network protocol such as Chord [10], and to an
unstructured overlay network protocol such as
Gnutella [3] to incorporate all three techniques.
We also implement our hybrid technique into
Gtk-Gnutella—a public source implementation
of the Gnutella protocol.

We evaluate our techniques using a combina-
tion of simulations and prototype implementation.
Our results show that while push is more suitable
for stable overlay networks, our hybrid approach
can provide good fidelity even in highly dynamic
environments. Our measurements from the proto-
type implementation on a laboratory testbed and
the PlanetLab testbed for a Gnutella file sharing
application indicate that this fidelity can be pro-
vided at a reasonable run-time cost.

The remainder of this paper is structured as fol-
lows. We present our consistency maintenance
techniques in Section 2. Enhancements to the
Chord and Gnutella protocol and details of our
prototype implementation are presented in Section
3. Section 4 presents our experimental results. Sec-
tion 5 presents related work, and finally, Section 6
presents our conclusions.
2. Consistency techniques for data-centric overlay

applications

In this section, we present techniques for main-
taining consistency of replicated objects in a data-
centric overlay application. Our techniques are
designed to work in the context of both structured
and unstructured peer-to-peer overlay networks.
Each data object in our system is assumed to have
a unique owner and a unique identifier (key). Typ-
ically, the owner of the object is the node where the
object originated (i.e., the node where the object
was created or first shared). Observe that, for
structured overlays, the owner node may be differ-
ent from the root node. In general, we assume that
the owner is the node that stores the master copy
of the object, while the root node stores the object
location information (i.e., the ID of the owner
node). In the event the object is replicated, we as-
sume that the root node maintains a list of all
nodes that hold replicas of the object. For unstruc-
tured overlays such as Gnutella, only the owner
node is assumed to be known for each data object.
The list of replicas is not known and must be dis-
covered dynamically if needed.

Each object is also associated with a version
number; the version number is incremented by
the owner upon each update. Modifications to an
object can only be made by its owner. While this
assumption may seem overly restrictive, it is
not—any user (node) may modify an object, but
upon doing so, it is required to transmit these
modifications to the owner to ‘‘commit’’ the
changes. This ensures that the owner always has
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the most up-to-date version of the object at all
times. Observe that additional mechanisms such
as distributed locking are required to prevent mul-
tiple peers from simultaneously updating an object
and introducing write–write conflicts; these tech-
niques can be implemented separately and are be-
yond the scope of this paper.

Next, we present three techniques for maintain-
ing consistency of replicated data objects.

2.1. Push: owner-initiated consistency

Our first approach is based on the notion of
push and puts the onus of consistency mainte-
nance on the owner node. In this approach, the
owner sends invalidation messages to all replicas
upon each update to the object (alternatively, the
new version of the object may be sent). Upon
receiving an invalidation message, the node deletes
the local replica if its version number is smaller
than that specified in the invalidation message. If
updates are sent instead of invalidates, the node
simply replaces the old version of the object with
the new version. While the choice to send update
or invalidation is indeed dependent on the size of
the update, and there exists cost–benefit trade-off
between sending invalidations and pushing up-
dates: (i) sending invalidations incurs smaller net-
work overhead than pushing updates since only a
small invalidation message compared to the up-
date itself traverses the overlay network; (ii) send-
ing invalidations may overwhelm the owner at a
later time since all replicas may request update
simultaneously or in a relatively short time inter-
val; while pushing updates does not encounter this
problem; (iii) pushing updates has smaller latency
compared to sending invalidations as replicas are
updated immediately once receiving updates while
they have to download updates from the owner
after receiving invalidations.

Due to their different routing mechanisms,
Chord and Gnutella handle the invalidation mes-
sages in different ways:

1. In Chord, the owner first sends the invalidate
message to the root node. The invalidate mes-
sage propagates from the owner to the root
via Chord�s overlay routing mechanism. Since
the root maintains a list of all replicas, the root
then forwards the invalidate message to each
node on the list. Again, messages propagate
via Chord�s overlay routing mechanism.

2. In Gnutella, the owner broadcasts the invali-
date message to all nodes. The broadcast mes-
sage propagates through the network via
flooding, much like query or ping messages—
the owner forwards the message to its neigh-
bors, who then propagate the message to their
neighbors and so on until the TTL limit is
reached.

The main advantage of such a push-style ap-
proach is its simplicity. Further, the approach pro-
vides good consistency guarantees, so long as all
nodes holding a replica are reachable. A limitation
of push for unstructured networks is the high
control message overhead due to flooding.
Although a push-based approach is suitable for
static overlays, the following limitations arise in
dynamic networks:

1. Not all the peers in the network may receive the
invalidation messages. There are two scenarios
when this can happen: one is if the network is
partitioned; the other, applicable only for
unstructured networks, is if a peer is beyond
the reach of the specified TTL limit.

2. Nodes in the overlay can join and leave the net-
work dynamically. After a node leaves the net-
work, it would not receive any further
invalidation messages. Upon a subsequent
rejoin, the node will contain a stale replica.

Based on the above observations, we conclude
push alone is not sufficient for maintaining consis-
tency in large overlay networks. Next, we present a
pull-based approach for maintaining consistency.

2.2. Pull: peer-initiated consistency

Unlike a push approach where the owner is
responsible for consistency maintenance, a pull ap-
proach puts the burden of consistency mainte-
nance on individual nodes holding replicas.
Implementing a pull-based consistency technique
in an overlay network is no different from imple-
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menting it in a client–server system such as the
Web. In this approach, a node polls the owner to
determine if a replica is stale. A node can employ
different policies to determine when and how fre-
quently to poll the owner to check for consistency.
Regardless of the policy, the following information
must be stored with each replica for consistency
maintenance:

1. Version number: the version number indicates
the version of the object currently stored at
the peer node. The last modification time of
the object also be used to determine this infor-
mation instead of explicit version numbers.

2. Owner ID: This allows a peer to locate the
owner of an object. In Chord, the peerId of
the owner is stored, whereas in Gnutella, the
IP address of the owner is stored.

3. Consistency status: The consistency status of an
object can take one of three values: (i) valid,
indicating the file is consistent with the version
at the owner, (ii) stale, indicating that the file
is older than the version at the owner, and (iii)
possibly stale, indicating that the object could
possibly be stale but the peer is unable to deter-
mine the actual status since the owner is
unavailable (i.e., has left the overlay network).

4. Time-to-refresh (TTR) value: The TTR denotes
the next time instant the node must poll the
owner, and thus, determines the polling
frequency.

Observe that a pull-based approach is more
resilient to dynamic joins and leaves. Upon rejoin-
ing the network, a node can poll the owners of all
locally cached objects to check if these objects were
updated in the interim, and thereby ensure consis-
tency of replicated objects.

Rather than determining the poll frequency
statically, we employ an adaptive poll approach
to dynamically vary the polling frequency based
on the update rate of the object.

A node can observe the frequency of updates to
an object and poll more often when the object is
being modified frequently and less frequently when
it is not. The update rate can be easily determined
since the response to each poll contains the last
modification time and the latest version number
of the object. A history of modification times can
be maintained and used to determine the update
rate to the object. Rather than using a history of
modification times, a simpler approach is to vary
the poll frequency based only on the result of the
most recent poll: the TTR is increased by an addi-
tive amount if the object was not modified since
the last poll and reduced by a multiplicative factor
if the object was modified. This notion has been
explored in the context of Web cache consistency
[20,26] and we use a similar idea here. In essence,
an additive increase multiplicative decrease
(AIMD) algorithm (see Eq. (1)) is used to probe
for the update rate. A key advantage of the tech-
nique is that it can adapt to changing update rates
by recomputing the TTR value after each poll.

TTR¼
TTRoldþC if object did not change between two polls
TTRold

D otherwise

(

ð1Þ

where the TTRold is previous TTR value, C > 0 is
an additive constant and D > 1 is the multiplica-
tive decrease constant.

After the above computation, the TTR is bound
by a maximum and minimum value to prevent the
TTR from becoming very large or very small, both
of which can be problematic. Thus,

TTR ¼ maxðTTRmin;minðTTRmax;TTRÞÞ ð2Þ
in which TTRmin and TTRmax is the minimum
TTR value and the maximum TTR value, respec-
tively. In general, the values of TTRmin and
TTRmax are dependent on the coherency tolerance
of users—while there are not optimal values for
these parameters.

This TTR value is used to determine the time of
the next poll. Such adaptive TTR techniques have
the following advantages:

1. They provide tunable parameters C and D

which allow a peer to control its behavior.
The constants determine how quickly the TTR
is increased or decreased after each poll.

2. Only the most recent TTR and the last modifi-
cation time (i.e., version number) needs to be
stored with each file. No other history informa-
tion is necessary, resulting in a very small per-
file state space overhead.
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3. The techniques can handle dynamic joins and
leaves. Upon rejoining the network, the node
simply resets the TTRs of all cached files to
TTRmin. This enables the node to poll each
owner quickly to determine the consistency
information.
2.3. Hybrid push and adaptive pull technique

A push-based technique can provide good con-
sistency guarantees for peers that are on-line and
reachable from the owner. Pull, on the other hand,
is better suited for dynamic networks but provides
weaker guarantees. Push can be combined with the
adaptive pull approach in a hybrid technique that
combines the best features of the two approaches.

The push part of the hybrid approach works ex-
actly as the invalidation-based push technique. In
addition, the hybrid technique requires peers to
occasionally poll the owner to check if the object
was updated. Ideally, only those peers who are un-
able to receive invalidation messages should poll
the owners of objects. An invalidation may not
reach a peer either because it is beyond the reach
of the specified TTL, or because the peer has tem-
porarily left the network or because the overlay
network is partitioned. In either case, a poll at a
subsequent time allows the peer to refresh an ob-
ject with the updated version. In general, it is dif-
ficult to achieve the ideal scenario where only
peers who miss an invalidation message poll the
owner, but we can modify the adaptive pull tech-
nique to make the polling less aggressive. Less
aggressive polling reduces wasted polls from peers
who are within the reach of the owner.

Since an invalidation message is an indicator of
an update and the reachability from the owner, the
TTR value must be updated upon receiving a
push-based invalidation message to reduce wasted
polls from peers who are within the reach of the
owner. We use a simple approach to modify the
TTR value upon receiving invalidation message as

TTR ¼ 2� Time difference between two versions

Versionnew � Versionold

ð3Þ
where Versionnew is the version number in the
invalidation message and Versionold is the previous
version number. This TTR is used for future polls
if the object is subsequently refreshed by the user.

Furthermore, in addition to adapting the TTR
to the update rate and the receiving of invalidation
messages, we can take into account the stability of
the overlay network when computing the TTR. In
general, a peer should poll more frequently when
the network sees frequent joins and leaves, since
frequent changes to the overlay topology increases
the probability of missing an invalidate message.
Similarly, the peer should poll less frequently when
the network is stable.

In Chord, the number of updates to the routing
table can be used as an indicator of network
dynamics—a peer should poll more frequently
when it sees frequent changes to its routing table.

In Gnutella, we use the number of active neigh-
bors of a peer as an indicator of the network
dynamics. Suppose that a peer has Nconn active
connections to its neighbors and let Navgconn de-
note the average connectivity of a peer in the net-
work (Gnutella uses Navgconn as a pre-defined
parameter to ensure good connectivity—upon
joining, a peer attempts to create logical links to
these many other peers). In such a scenario, the
TTR is chosen more aggressively when the number
of neighbors drops below average and is made lar-
ger when a peer is well-connected and has more
neighbors than the average peer. Therefore, the
TTR value from Eq. (1) is further tuned as

TTR ¼ TTR þ N conn

N avgconn

� a ð4Þ

where a is a constant. The TTR is decreased if the
peer has a small number of neighbors and in-
creased otherwise. As before, this TTR value is
constrained by the maximum and minimum allow-
able TTR values TTRmax and TTRmin.

2.4. Analysis of our techniques

In this section, we analyze the control message
overhead and scalability of our techniques, and
discuss issues related to dynamic IP addresses.

2.4.1. Control message overhead

Both the push and pull techniques introduce
some amount of control message overhead.
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Regardless of the overlay networks used (Chord
and Gnutella), the total control message overhead
introduced by the pull technique is proportional to
the number of replicas and the poll frequency. The
total control message overhead introduced by the
push technique is proportional to the update rate
and the message overhead introduced by each
invalidated message. Due to the different routing
mechanisms used in Chord and Gnutella, the con-
trol message overheads introduced by an invalid
message in these two overlay networks are
different.

As shown in [10], routing a message toward
the destination key in Chord requires that
O(logN) messages be exchanged with high proba-
bility where N is the number of servers in the
Chord network. Therefore, the control message
overhead introduced by one push-based invalida-
tion in Chord is given by O(R logN), where R

is the number of replicas of a file. While this
O(R logN) message overhead is comparable to
O(logN) for unpopular (also referred as cold) ob-
jects that are cached only at a few peers, it can be
much larger than O(logN) for popular (also re-
ferred as hot) objects that are likely to be cached
by a large number of peers. For very popular ob-
jects, the number of duplicate intermediate mes-
sages introduced by unicasting invalidation
message to each replica can be very large. In this
case, it is more efficient to multicast invalidate
messages in Chord by using the object key as
the multicast group address [27]. Each replica will
then join the group with the same group ID as
the key of their cached object. This multicast-
based invalidation mechanisms for popular
objects can totally eliminate the duplicate inter-
mediate messages introduced by unicasting mes-
sage to each replica. An owner can distinguish
between hot and cold object based on the fre-
quency of query messages—hot objects will be
queried more frequently than cold objects.

In Gnutella, a peer simply drops the messages
which it has seen before. Thus a message can only
traverse the logical link between any two adjacent
peers once, and then the control message overhead
introduced by one push-based invalidation in
Gnutella is simply the number of all logical links
within the reach of TTL limit from the owner
(assuming only one logical link between any two
adjacent peers). The number of all logical links
within the reach of TTL is more than the number
of peers within the reach of TTL. Given a fixed
overlay topology, the control message overhead
introduced by one push-based invalidation is only
affected by the specified TTL. As shown in [28],
95% of all peers are less than seven hops away
(more than 50% are less than five hops away).
Therefore, given the message time-to-live
(TTL = 7) preponderantly used and the flooding-
based routing algorithm employed, the control
message overhead introduced by on push-based
invalidation is in the order of X(N) where N is
the number of servers in the Gnutella network.
From the perspective of efficiency, a different set
of concerns arise for hot and cold objects. Since
invalidations are broadcast in Gnutella using
flooding, the resulting overhead is wasteful for
cold objects as only a few peers need to receive this
invalidation message. One possible approach to re-
duce this control message overhead is to use push
infrequently (e.g., push every kth update) and de-
pend on adaptive pull for consistency maintenance
of cold objects. The weaker consistency guarantee
provided by pull may suffice in this scenario, since
cold objects are not of interest to a majority of the
peers in the system. Alternatively, multicast can be
used to address this issue. While the use of IP
multicast can simplify the design of the overlay
network, it has some limitations: (i) replicas of dif-
ferent objects may be in the same IP multicast
group, since the possible object�s key space is much
larger than the possible IP multicast address space,
and hence, the wasted overhead of invalidations
for cold objects cannot be totally eliminated; (ii)
native multicast requires support from the Internet
Service Provider (ISP) and is frequently not always
available. A second alternative is to use applica-
tion-level multicast. Similar to the multicast mech-
anisms proposed for Chord, application-level
multicast uses the object key as the multicast
group address, and each replica joins the group
with the same group ID as the key of their cached
object. Such an application-level multicast mecha-
nisms can eliminate the high overhead for cold ob-
jects and the need for ISP support, while making
the overall system design more complex (since
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the mechanism needs to be supported within the
overlay network).

Since the control message overhead introduced
by a push-based invalidate is determined by the
routing algorithms employed in Chord and Gnu-
tella, we can only control the total message over-
head introduced by push and pull techniques by
controlling the push and pull frequency,
respectively.

2.4.2. Scalability

From the perspective of scalability, the over-
head of pull becomes an issue for hot objects. If
an object is hot, a large number of peers will cache
the object and begin to poll the owner for updates
to this object. For very popular objects, the over-
head of polls can be excessive for the owner. An
orthogonal issue is the stability of the owner peer.
If the owner of a popular objects leaves the net-
work frequently, then peers will no longer be able
to poll the owner, nor will the owner push invali-
dations during such periods. Scalability and avail-
ability can both be improved by sharing owner
responsibilities among a small set of peers. Rather
than assigning a single owner for a file, each object
can be collectively owned by a small group of
peers. This allows the various owners to share
the burden of polls—each peer can randomly
choose a peer from the group of owners for pur-
poses of polling. Further, it is more likely that at
least one owner peer will be available at any given
instant, which in turn improves availability and al-
lows for better consistency guarantees. Note that
owners of an object will need to ensure that an up-
date received by any one owner is transmitted to
all other owners as soon as possible to ensure that
owners themselves store consistent version of the
object. We note here that the notion of super-
nodes used by P2P system such as Kazaa [29]
can be used in this context when choosing owners
of an object—since a super-node has good band-
width connectivity and has long-lived sessions,
having at least one super-node as an owner of an
object will improve availability and scalability.

2.4.3. Handling nodes with dynamic IP addresses

Many Internet nodes use dynamic IP ad-
dresses via the DHCP protocol; this is especially
prevalent for nodes that use cable modem and
DSL broadband technologies. Our techniques
associate a unique owner with each object. The
IP address of an owner can potentially change
every time they rejoin a network, making it hard-
er to identify owners by their IP addresses. This
can be problematic, since the IP address of the
owner is necessary to poll for changes in the
adaptive pull and the hybrid approaches. One
solution to this problem is to use the Dynamic
DNS service [30]. In this service, a hostname is
associated with each node and the DNS map-
pings associated with the hostname are transpar-
ently changed every time the IP address of the
node changes (this is often done via an update
script that tracks changes to the host IP address
and updates the DNS servers automatically on
each change). Addressing the node via its host-
name ensures that the node can be accessed de-
spite changes to its IP address. Dynamic DNS
is a increasingly popular service for home broad-
band users, and more than two dozen organiza-
tions offer free or commercial dynamic DNS
services to DHCP users. This simple solution
can be used for consistency maintenance as well.
All owners can be tracked by their hostnames
(e.g., peer5.dyndns.org) rather than their IP ad-
dresses, which makes the effects of DHCP trans-
parent to our techniques.

While a dynamic DNS service is essential for
consistency maintenance in Gnutella networks,
nodes in Chord can use either a dynamic DNS
hostname or use the owner�s peerID for addressing
the node—so long as the peerID remains un-
changed across joins and leaves, this form of
addressing is also resilient to changes in the node�s
IP address.
3. Prototype implementation

In this section, we first describe how to imple-
ment our hybrid push–pull algorithm into the
Chord protocol with Chord�s library. We then
present details on implementing our hybrid
push–pull algorithm into Gtk-Gnutella [31], an
open-source implementation of the Gnutella
protocol.
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3.1. Implementation in Chord

In [27], Dabek defines a key-based routing API

(KBR), which represents basic capabilities that
are common to all structured overlays. They also
demonstrate the ways to build distributed hash ta-
bles, group anycast and multicast, and decentral-
ized object location and routing upon the basic
KBR. The KBR API supports a route method to
forward a message to a peer. Our implementation
is based on this method.

The push-based invalidation message an-
nounces the availability of a new version. First,
the owner of the object sends an invalidate mes-
sage to to the root node using route. The root
maintains a list of all replica peers, and upon
receiving this message, sends invalidates to all rep-
lica peers using route. Upon receiving invalidates,
a peer marks the cached object as stale.

The adaptive pull can be implemented by
HTTP/1.1 through the if-modified-since (IMS)
HTTP messages.

3.2. Implementation in Gnutella

To implement our hybrid push–pull algorithm
into Gtk-Gnutella version 0.17 [31], we extend
the Gnutella protocol to incorporate push-based
invalidations and use HTTP/1.1 to implement
adaptive pull. We add a new message type for
push-based invalidations. Each invalidation mes-
sage contains a 16 byte object identifier (an MD-
5 [32] hash of the object name), the object name,
its last modification time, the owner�s IP address,
port number, and the TTL for the invalidate mes-
sage. Upon receiving an invalidate, a peer invali-
dates the object if present in its local cache,
decrements the TTL, and forwards the message
to its neighbors.

Gtk-Gnutella uses HTTP to download objects
from a peer. Since support for HTTP is already
built into the system, we can use this functionality
to implement adaptive pull. Specifically, a peer
uses if-modified-since (IMS) HTTP messages to
poll for updates to objects. Each peer computes
TTR values as discussed in the previous section.
The TTR value is recomputed after each poll
and in response to changes in a peer�s neighbors.
Out prototype sets the TTR value of an object
to TTRmin when it changes from Stale or Possible
Stale to Valid or if the object is newly downloaded.
In order to be backward compatible with current
Gnutella protocol, we always set the status of the
objects downloaded from peers that do not sup-
port cache consistency to valid and set the TTR
value to �1. We do not poll cached files with neg-
ative TTRs.
4. Experimental evaluation

In this section, we demonstrate the efficacy of
our techniques using simulations and experiments
with our prototype implementation. We use simu-
lations to explore the parameter space along vari-
ous dimensions and use our GTK-Gnutella
prototype to measure implementation overheads
(an aspect that simulations do not reveal). In what
follows, we first present our experimental method-
ology and then our experimental results.

4.1. Experimental methodology

4.1.1. Simulation environment

We have extended the Chord simulator [33] to
include our push–pull cache consistency tech-
niques. We also designed an event-based Gnutella
simulator to evaluate our cache consistency tech-
niques for unstructured networks. The topology
of the overlay and various system parameters
are initialized using observed statistics. We bor-
row heavily from recent measurements studies
[28,34,35] to initialize parameters such as link band-
widths, network diameter, node connectivity,
session times, object popularities, etc.

In these two simulators, each peer is responsible
for answering queries and propagating query mes-
sages to successors (Chord) or neighbors (Gnu-
tella), and for servicing object download
requests. Each peer can also initiate query re-
quests; inter-arrival times of queries are exponen-
tially distributed and a certain fraction of the
query responses is assumed to result in object
downloads. Our simulators also incorporate an
update process that generates updates to objects
stored at owners. An update causes the last
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modification time and the version number of the
object to be updated at the owner, and initiates a
push-based invalidation message being sent to the
root of the object in Chord or being broadcasted
in Gnutella. The default values of various parame-
ters used in our simulations are listed in Table 1.

The workload for generating queries, object
downloads and updates to objects is generated
synthetically. While measurements of query rates
and object downloads are available from recent
studies, realistic distributions of object update
rates are not available since current file sharing
applications only share static objects. Conse-
quently, we use update distributions of Web pages
[18,19] as a reasonable indicator of updates in
overlay environments. Specifically, we assume four
types of objects: highly mutable, very mutable,
mutable, and immutable. Each category has a dif-
ferent mean update rate. The percentage of the ob-
jects in each category and the mean update rate in
each category is (0.5%, 15 s), (2.5%, 7.5 min), (7%,
30 min), and (90%, 1 day). Note that the mean life-
time of an immutable object is longer than our
simulation duration of 10 h.

4.1.2. Metrics for performance analysis

We use two different metrics to evaluate our
techniques.

• Fidelity: Fidelity is the degree to which a tech-
nique can provide consistency guarantees. We
use a metric called False Valid Ratio (FVR) to
determine the fraction of query responses or
downloaded objects that return stale requests
(i.e., are falsely reported as valid by their peers).
The query false valid ratio (QFVR) is the frac-
tion of query responses that list stale objects. A
query that returns some stale objects is not nec-
Table 1
Parameters for the dynamic network environment

Parameter Description

Lsim Length of simulation
Fenable This flag turns on/off the failure mode
Rf Percentage of maximum offline nodes
If Average time between successive disconnections
Df Average offline duration
Itopochk Average time between successive topology checks (o
essarily bad, since the user can pick one of the
matches for an actual download (e.g., a match
with the largest version number or the most
recent modification time). The download false
valid ratio (DFVR) is the fraction of the down-
loaded objects that are stale. The false valid
ratio for queries and downloads should be as
close to zero as possible. It is possible to reduce
the false valid ratios by having a peer return the
version number/last modification time of a
object in response to query messages. The infor-
mation can be used by a peer to download the
most recent version of an object (note that this
version can still be stale if the owner of an
object has a newer version and is not within
reach of the query message).

• Control message overhead: The control message
overhead is the number of control messages
that are exchanged to maintain consistency of
replicas. In the push approach, this is evaluated
by the number of invalidates per Update. In the
pull approach, the control message overhead is
defined to be the number of poll messages per
Update. We note that, while flooding of invali-
dations in Gnutella is not necessarily efficient,
flooding is currently the mechanism of choice
to propagate queries and ping messages in Gnu-
tella. Thus, the overhead of pushing invalidates
is not significantly larger than other overlay net-
work functions. It is also possible to reduce this
overhead by piggybacking invalidates on query
or ping messages; we do not consider such opti-
mizations in this paper.

4.1.3. Network environment used in the simulations

Our simulations are conducted in dynamically
changing overlay networks. We assume peers leave
Default value

10 h for Gnutella, 48 h for Chord
[FALSE,TRUE]
50%
5 s
2 h

nly in Gnutella) 5 min
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and rejoin the network randomly, based on the
three parameters Rf, If, and Df, as defined earlier.
This situation is close to the P2P overlay networks
in use today. However, the size of the network
used in our simulation is much smaller than a real
network, since the memory and computation over-
head required to run large-scale simulations are
prohibitive. Unless specified otherwise, we assume
a Gnutella overlay network consisting of 500 peers
and 5000 objects, and a Chord overlay network
consisting of 5000 peers and 50,000 objects.

We also show experiments with up to 5000
peers and 50,000 objects in a Gnutella overlay net-
work and up to 15,000 peers and 150,000 objects in
a Chord overlay network to demonstrate that our
results apply to larger overlay networks as well.
We note that it is very memory-intensive to simu-
late large P2P networks (simulating caches in a
Gnutella overlay network consisting of 5000 peers
and 50,000 objects requires more than 2 GB of
memory). The memory limitation on our machines
is the primary reason why we do not present re-
sults for Gnutella overlay networks larger than
5000 peers.

4.2. Simulation results

Our experiments are run with Fenable set to
TRUE which means a dynamic network. All other
parameters are set to their default values.
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Fig. 1. Impact of maximum offline peers on false valid ratio—Chord n
ratio.
In a dynamic network, peers will frequently
leave and rejoin the network. We simulate this
behavior by incorporating a ‘‘failure’’ process that
determines the lifetime of a peer session; a peer
leaves the network when its session lifetime is ex-
ceeded. We simulate this behavior with three
parameters: the maximum offline ratio, Rf, which
is the maximum percentage of peers that are dis-
connected from the network at any given time;
the session lifetime or the time between successive
disconnections, If; and the average duration that a
peer remains offline, Df.

4.2.1. Impact of the dynamics of the overlay

network

To understand the effects of the dynamics of the
overlay network, we first vary the fraction of off-
line peers Rf from 5% to 50% in the Chord and
Gnutella overlay networks, and measure the im-
pact on the QFVR and DFVR. As shown in Figs.
1 and 2, push can provide better consistency guar-
antees than a pure pull approach, even in a
dynamic network. The FVRs degrade as the frac-
tion of offline peers increases. However, the hybrid
approach outperforms both push and pull, since it
employs a combination of the two and can employ
pull in scenarios where push is ineffective. The ap-
proach can provide good fidelity and is relatively
unaffected even when the fraction of offline peers
is as high as 50%.
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Fig. 2. Impact of maximum offline peers on false valid ratio—Gnutella network. (a) Query false valid ratio and (b) download false
valid ratio.
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Next, we vary the time between successive dis-
connections If in Chord and Gnutella overlay net-
work. Intuitively, as If increases, fewer peers leave
the network. The results are similar to the previous
scenario (see Figs. 3 and 4). Push outperforms a
pure-pull approach; both techniques yield better
consistency guarantees in more stable networks.
As before, the hybrid approach performs well
and is relatively unaffected by the dynamics of
the network.

Overall, our results demonstrate that a hybrid
push–pull approach works well in highly dynamic
overlay networks.
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4.2.2. Impact of the interval between successive

topology checks
When a peer leaves the Gnutella overlay net-

work, it tears down all connections to its neigh-
bors. This causes each of its neighbor to lose one
of their active connections. In the scenario where
many peers leave the network, the network may
become partitioned. To overcome this drawback,
actual Gnutella implementations [29,36,3] let a
peer form new links with other active peers if a
neighbor leaves the network. To simulate this
behavior, we implement a topology checking pro-
cess that periodically checks the connectivity of
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Fig. 4. Impact of time between successive peer disconnections on false valid ratio–Gnutella network. (a) Query false valid ratio and
(b) download false valid ratio.
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each peer and constructs new logical links if a peer
has fewer neighbors than a threshold.

In this section, we study the effects of topology
checking process on the Gnutella overlay network
by varying the Itopochk values from 5 s to 170 s.
This parameter effectively determines the delay
between a broken connection and the instant
when a new connection is formed by a peer. Ob-
serve that this parameter only impacts push, since
the pull technique does not rely on the Gnutella
overlay network and then is not affected by the
connectivity of the overlay network. Hence, we
focus on the push and the hybrid push–pull ap-
proach. Fig. 5 shows the query FVR and the
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Fig. 5. Impact of time between successive topology checks on false
(b) download false valid ratio.
download FVR for the two approaches. As
shown, the longer the delay for replacing broken
links with new neighbors, the worse the perfor-
mance of push. In contrast, the hybrid approach
is unaffected by the topology changes, since the
approach can resort to pulls when invalidates do
not reach a peer.

4.2.3. Impact of the network size

We also conduct experiments to investigate the
effects of network size on fidelity of Push and Push

with Adaptive Pull. We vary the network size from
200 to 5000 nodes, Iquery and Iupdate from 1 s to
200 ms in Gnutella overlay network. The TTL
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for invalidations is set to six hops. Fig. 6 plots the
QFVR and DFVR for the two techniques. Since
the TTL value is fixed, invalidates reach fewer
peers as the network size increases. Consequently,
the QFVR and DFVR for push increases with
increasing network size. In contrast, the hybrid ap-
proach provides significantly better fidelity, since
the adaptive pull enables distant peers to maintain
consistency when push is ineffective. The result
shows that the effectiveness of push is crucially
dependent on proper choice of the TTL value for
invalid messages. The hybrid push–pull approach
is less sensitive to the choice of this value, since
it can fall back on the pull approach for consis-
tency.

We also vary the network size from 5000 to
15,000 nodes, Iquery and Iupdate from 1 s to
200 ms in the Chord overlay network. Different
from the Gnutella overlay network, there does
not exist a TTL limit in the Chord overlay net-
work, and the Chord overlay network guarantees
the delivery of invalidation messages given that
the path from source to destination is online.
Fig. 7 plots the QFVR and DFVR for the two
techniques. Since we use the same value of Maxi-

mum offline peers ratio (Rf) in all network sizes,
the invalidates reach a similar portion of peers as
the network size increases. Consequently, the
QFVR and DFVR for push and the hybrid ap-
proach do not vary much with increasing network
size. The result shows that the hybrid push–pull
approach outperforms the pure push approach in
all cases.
4.2.4. Control messages overhead

As shown in Section 2.4.1, the control message
overhead introduced by the pull technique is only
proportional to the number of replicas and the poll
rate and is not affected by the routing mechanisms
used in overlay networks. Therefore, we only eval-
uate the control message overhead introduced by
push-based invalidations with different network
size in this section. Fig. 8 plots the invalidation
messages per Update for Chord and Gnutella over-
lay networks. The result shows: (i) the number of
invalidation messages per Update in Chord varies
from 17 to 32 which is comparable to logN (N is
the network size) as the network size varies from
5000 to 15,000; (ii) the number of invalidation
messages per Update in Gnutella varies from 500
to 1300 which is comparable to N (N is the net-
work size) as the network size varies from 200 to
5000. This result is consistent with the discussion
about control message overhead in Section 2.4.1.

4.3. Results from the prototype implementation

using Gtk-Gnutella

In this section,we study the implementationover-
heads of various operations need for consistency
maintenance in our hybrid push–pull approach
using our Gtk-Gnutella prototype. We conduct
two sets of experiments, one on our laboratory test-
bed and another on PlanetLab [37], a distributed
testbed of experimental machines. We only summa-
rize our key results here and refer interested readers
to our technical report [38] for more details.
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Our measurements in the laboratory testbed
show that the overhead of event processing for
incoming poll, outgoing goll, incoming invalida-
tion, and outgoing invalidation are 181.83 ls,
1.36 ms, 150.24 ls, and 265.34 ls, respectively.
The results from our PlanetLab experiments show
that the overhead of event processing for incoming
poll, outgoing goll, incoming invalidation, and
outgoing invalidation are 172.46 ls, 1085.66 ms,
93.27 ls, and 98.78 ls, respectively.

Overall, these results indicate that the overhead
of incoming poll processing, incoming invalidation
processing and outgoing invalidation processing is
very small, and the overhead of an outgoing poll
highly depends on the round trip time of the route
to the owner.
5. Related work

Several research efforts have investigated the
design of push-based, pull-based, and push–pull-
based cache consistency techniques in Web envi-
ronments. Push-based techniques that have been
developed include leases [22,18,21]. Pull-based
techniques include time-to-live (TTL) values [39]
and adaptive polling [40]. Adaptive combinations
of push and pull have also been considered in
[40]. Whereas these efforts have focused on Web
proxy environments where proxies and/or servers
are seldom off-line, they are not directly applicable
to peer-to-peer environments that use their own
routing techniques using overlays and where peers
can freely join and leave the network at any time.

Push-based techniques developed for Web cach-
ing requires a server to maintain state of all proxies
that cache an object. Further, it has been shown
that push provides strong guarantees and is more
efficient than pull. In contrast, our push-based
invalidations are propagated using broadcast and
require no state at the origin peer. Further, unlike
the case of Web proxies, push, due to its broadcast
nature, incurs two orders of magnitude more over-
head than pull. We also note that push-based
invalidations are less effective in dynamic networks
or in networks with large diameters (thus, the
guarantees provided by push for P2P networks
are weaker than in Web environments).

The effectiveness of adaptive pull-based tech-
niques employed by Web proxies is crucially
dependent on proper choice of the TTR value
for dynamic files. These techniques employ predic-
tion capabilities at the clients/peers. An alternative
of course is to leave the prediction to the servers/
origin-peer. Such schemes are discussed in [41,21].
These schemes work as follows:

• The client does not use a TTR or prediction
algorithm, but instead depends on some meta-
data associated with the data to decide the time
at which to poll the server.

• Since the server has access to all the data, it can
use a prediction algorithm to predict a time
when the data is going to change. The server
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then attaches this time value to outgoing data.
The client will use this meta-data to decide
when to poll next.

• Since the server has better access to data than
the client, server predictions will be in general
more ‘‘accurate’’ than using a TTR algorithm
at the client.

Though the Server-Prediction approach looks
like a better option than the TTR algorithm in
PAP, it runs into the following problems:

• The approach requires previous history for the
relevant data to be maintained at the origin-
peer. This implies increased state information
and computational needs at the origin-peer
which in turn affects scalability.

• The approach is more suitable for data that
changes in a predictable manner. We are inter-
ested in updates that are inherently unpredict-
able. For dynamic data, the performance will
be slightly better than adaptive TTR, but at a
cost of origin-peer resources and scalability.

The Bayou system [24,42] and the Coda file sys-
tem [43,44] also maintain consistency in weakly
connected environments similar to P2P overlay
networks (e.g., disconnections of mobile users).
Bayou uses an eventual consistency model based
on the theory of epidemics; our push–pull consis-
tency techniques provide stronger consistency
semantics than eventual consistency. Consistency
in Coda is concerned with write–write conflicts that
occur as a result of disconnections. Since we as-
sume that all updates are only made at the origin
peer, write–write conflicts are not an issue in the
system model considered in this paper. Lastly,
P2P overlay networks can have thousands or tens
of thousands of nodes [28] and it is important for
the consistency techniques to scale to these sizes.
6. Concluding remarks

In this paper, we presented techniques to main-
tain temporal consistency of replicated objects in a
peer-to-peer overlay network. We considered
Chord and Gnutella and presented techniques for
maintaining consistency in these two overlay net-
works even when peers containing replicated ob-
jects dynamically join and leave the network. We
presented extensions to the Chord and Gnutella
protocol to incorporate our consistency techniques
and implemented the extensions of the Gnutella
protocol into a Gtk-Gnutella prototype. An exper-
imental evaluation of our techniques showed that:
(i) a push-based approach achieves near-perfect
fidelity in a stable overlay network, (ii) a hybrid ap-
proach based on push and pull achieves high fidelity
in highly dynamic networks and (iii) the run-time
overheads of our techniques are small, making
them a practical choice for overlay networks.

As part of future work, we plan to extend our
techniques to the BitTorrent peer-to-peer system
and evaluate their effectiveness in maintaining the
consistency of traces disseminated from our Bit-
Torrent-based trace repository [16].
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