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ABSTRACT
Solar arrays often experience faults that go undetected for long peri-
ods of time, resulting in generation and revenue losses. In this paper,
we present SunDown, a sensorless approach for detecting per-panel
faults in solar arrays. SunDown’s model-driven approach leverages
correlations between the power produced by adjacent panels to
detect deviations from expected behavior, can handle concurrent
faults in multiple panels, and performs anomaly classification to
determine probable causes. Using two years of solar data from a
real home and a manually generated dataset of solar faults, we show
that our approach is able to detect and classify faults, including
from snow, leaves and debris, and electrical failures with 99.13%
accuracy, and can detect concurrent faults with 97.2% accuracy.

CCS CONCEPTS
• Hardware → Renewable energy; • Computing methodolo-
gies → Anomaly detection.
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1 INTRODUCTION
Recent technological advances and falling prices has led to a signifi-
cant increase in deployments of both large utility-scale and smaller
residential solar arrays. Large utility-scale solar farms tend to be
instrumented with sensors for monitoring real-time generation to
identify production issues. Due to cost reasons, smaller residential-
scale systems lack such sensing and instrumentation and may only
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have coarse-grain monitoring capabilities, at best, to detect system-
level faults. Thus, it is not uncommon for residential solar arrays to
encounter power anomalies or other local faults that go undetected
for long periods, resulting in generation and revenue losses.

To address these challenges, we present SunDown, a sensorless
approach for detecting per-panel faults in small-scale solar arrays.
Prior work on per-panel solar anomaly detection are based on time
series [15] or statistical [3, 30] analysis of a panel’s output or use
of sensors such as a pyranometer [12] to detect faults. In contrast,
our approach uses the actual output from other nearby panels to es-
timate each panel’s expected output and find anomalous deviations
from this estimate. Our model-driven approach is based on machine
learning and, similar to [15], can detect physical anomalies, such as
snow, leaves, and electric faults at panels. In designing, implement-
ing, and evaluating our SunDown system we make the following
contributions.
1. We present a model-driven approach that leverages correlations
in the generated output between adjacent panels to predict the
expected output of a particular panel and flags anomalies when
the model predictions deviate from the expected values. Further,
our approach can handle and detect multiple concurrent faults in
the system, a key challenge that has not been addressed by prior
work. We present a random forest-based classification technique to
classify the probable cause of the observed fault.
2. We construct a real-world labelled dataset of solar anomalies
that we release to the community. Using this dataset, we show that
SunDown has a MAPE of 2.98% when predicting per-panel output,
demonstrating the efficacy of using nearby panels to performmodel-
driven predictions. Furthermore, SunDown is able to detect and
classify faults such as snow cover, leaves, and electrical failures with
99.13% accuracy for single faults and is able to handle concurrent
faults in multiple panels with 97.2% accuracy.

2 BACKGROUND
This section presents background on solar anomaly detection.
Residential Solar Arrays. Our work primarily focuses on resi-
dential solar arrays that are typically small-scale installations with
capacities of 10kW or less and comprise a few to a few dozen solar
panels (see Figure 1). We assume that the power generation of the
array can be monitored at a per panel level. This is a reasonable
assumption since many residential arrays are equipped with micro-
inverters (e.g. Enphase micro-inverters [1]) or DC power optimizers
[2]. As shown in Figure 1, such systems provide real-time per-panel
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Figure 1: A residential solar array (left) with 31 panels de-
ployed on four roof planes, and per-panel power data (right).

generation data, which is essential for our approach. We seek to de-
velop a sensor-less approach for per-panel solar anomaly detection
and do not assume any other sensor or instrumentation.
Solar Generation. Solar generation at any site depends upon on
its location, time, physical characteristics, cloud cover, and tempera-
ture [6, 18]. For the purpose of this work, we assume that per-panel
solar generation on any given day can be reduced to two factors:
transient, which consists of factors that temporarily impact power
output, and faults which consist of factors that have a prolonged
negative impact on output. Transient factors include weather con-
ditions such as cloud cover, wet panels caused by rain or dew, as
well as site specific factors, such as shading caused by nearby trees
or other structures. We classify transient factors into two classes—
common transient factors that affect all the panels on a site or local
transient factors that impact only a subset of panels on that site.
Solar Faults. Anomalies in our case are defined to be factors that
cause a persistent drop in production but can be rectified by the
owner of the site. We are particularly interested in the following
three types of faults (1) snow cover on one or more panels, (2) partial
occlusions such as dust or leaves on a panel, (3) electric faults such
as module failure, short circuits or open circuits. These faults cause
either a reduction in output or zero output for a particular panel or
a subset of panels. Due to their close proximity, multiple panels in a
residential array may experience the same fault—for example, snow
may cover multiple adjacent panels (or even the entire system),
resulting in concurrent faults. Of course, a site may also suffer a
full system outage, which is also a fault but is easier to detect.
Problem Statement. Consider a solar array with N solar panels.
We assume that the panels are mounted on a residential roof across
one ormore roof planes. Given such a setup, our problem is to design
a technique that monitors the power output of each panel and the
entire system, and labels the observed output in each time interval
(e.g. a day) as normal or abnormal. Further, our technique should
identify specific solar panels in the system that are experiencing
faults and also determine the possible cause of the fault (e.g. snow,
partial occlusion, or electric fault).

3 PER-PANEL SOLAR ANOMALY DETECTION
In this section, we describe our model-driven approach for per-
panel solar fault detection.

3.1 Basic Idea
Consider a solar installation with N panels. Suppose that k panels
are experiencing an anomaly that results in a reduction, or loss, of
output from those panels. Initially, let us assume k = 1 (only one
panel out ofN is faulty). Since allN panels are mounted on the same
roof in close proximity to each other, it follows that they experience
highly correlated weather conditions, and produce similar output.

Thus, our “sensorless” approach first constructs a model to predict
the expected output of a panel from n neighboring panels (n ≥ 1).
For example, a simple predictor is one that uses the mean output of
n neighboring panels to estimate a particular panel’s output. Under
normal conditions, the model prediction will match the observed
output of that panel with high accuracy.

When a panel experiences an anomaly, however, the model pre-
dictions will continue to estimate the “normal case” output of that
panel, while the observed output will deviate from this normal case.
If the deviation is “large” and persists over an extended period of
time, it is indicative of a fault, rather than an error in the model
prediction. The cause of the fault can be separately determined by
analyzing the amount of loss or the power pattern exhibited by the
panel. Such a model-driven approach only uses the panels’ observed
output to detect anomalies—no other instruments or sensors are
needed for anomaly detection unlike some approaches [5].

3.2 Model-Based Predictions
We now present two model-driven techniques for predicting the
power output of an individual panel using neighboring panels.

3.2.1 Linear Regression-Based Model. Since the power generated
by solar panels in close proximity of one another are highly corre-
lated, we can use regression to predict the output of a panel given
the observed output of neighboring panels.

Let Pi denote the observed power output of panel i at time instant
i . Let us assume we wish to predict the output of panel i using n
other panels. A linear regression model allows us to estimate the
output of desired panel as a linear function of the others:

Pi = wiPi1 +w2Pi2 +w3Pi3 + ... +wnPin + ϵi (1)

where X = {i1, i2, ..., in } is the set of n panels used to model the
output of the ith panel. We can use linear regression to estimate
the weightwi that minimizes the error term ϵi .

Such an approach yields N distinct regression models, one for
each panel in the system, where each model makes a prediction
using the observed output of n other panels. To determine if a panel
has a fault, we compare the model prediction Pi (t) at time t with the
observed value P̂ . If the difference between the model’s prediction
and observed value is large and persists over a period of time (e.g.,
a day or multiple days), the approach flags that panel as faulty.

3.2.2 Graphical Model and Half-Sibling Regression. Our second
model is based on a recently proposed machine learning technique
called half-sibling regression that uses a Bayesian approach to re-
move the effects of confounding variables [28]. This approach is
based on our prior work on SolarClique[17] that predicted the
output of an entire array using nearby solar arrays. We draw inspi-
ration from the half-sibling regression method [28] and SolarClique
[17] for SunDown’s per-panel anomaly detection. Additional details
of our the approach, which is summarized below, can be found
in [11]. Using the Bayesian approach, our algorithm to estimate the
amount of production loss due to anomalies is as follows.

We first use regression to estimate the power output of a particu-
lar panel, denoted by a random variable P , using the power output
of n other panels in the system, denoted by a random variable X
(a vector of size n). The regression yields E[P |X ] - an estimate of P
given the observed output of n neighboring panels that constitute
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Figure 2: A forecasting model is used to ensure non-noisy
inputs to our Bayesian model.

X . Since P itself is observed, subtracting E[P |X ] from P yields an
estimate of the output loss L̂ due to transient factor and anomalies.
A key difference between the linear regression model of Section
3.2.1 and here is that we use bootstrapping to construct multiple
regression models by subsampling the data (instead of a single re-
gression model) and use an ensemble method based on Random
Forest that uses the mean of multiple models to estimate E[P |X ].

Next, since L̂ contains effects of transient factors such as shade
on panels as well anomalies, we must remove the impact of tran-
sient factors to obtain the “true” anomalies. We can use time series
decomposition to extract the seasonal component that represents
the shading effects that occur daily at set time periods and remove
it from L̂ [17]. The remainder of L̂ then represents production loss
at that panel due to any anomalies. Under normal operation L̂ will
be close to zero (no anomalies and no loss of output). When L̂ is
significant and persistent over a period of time, our model-driven
approach flags an anomaly in the panel.

3.3 Handling Multiple Concurrent Faults
Next we consider the case where k > 1 and multiple panels are
faulty. To handle this case, we construct multiple models for each
panel by choosing different subsets of n panels out of N for each
model. Any model that uses faulty panels as input will have higher
errors while a model that uses all non-faulty inputs will continue
to provide good predictions. Our goal then is to construct multiple
models, and then choose one of these models at each instant that
uses non-faulty inputs. To distinguish between faulty and non-
faulty inputs, we use a solar forecasting approach that predicts
the output of the solar panel based on weather forecasts [6, 18].
Using the forecasting model, we label panels as “normal” or “noisy”
if the model predicted power is close to the observed power or
deviates significantly, respectively. Anymodel that uses one ormore
noisy panels as an input should be eliminated from consideration
for anomaly detection purposes. Figure 2 illustrates the process,
where a model based on B and C panels is discarded as B is noisy.
A model based on panels with normal output, C and D, is used
to make a prediction for panel A. Note that, forecasting models
cannot be directly used for anomaly detection as they exhibit high
error leading to higher false positive as compared to the Bayesian
approach that uses the actual panel output.

4 CLASSIFYING SOLAR ANOMALIES
Given anomalies detected by our Bayesian model we use a random
forest classifier to label the possible cause of the fault for each panel
that is faulty. The classifier needs to distinguish between three
types of faults: snow, partial occlusion and open circuit. Note that
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Figure 3: Machine Learning Model

partial snow over a panel and partial occlusion faults both result in
diminished, but non-zero output. Full snow cover on a panel and
open circuit faults both yield zero output. To distinguish between
these cases, we first sample 40 randomly chosen points over an
entire day and compute the percentage reduction in power output
when compared to the model’s predictions for each of these points.
This power loss vector is a key feature of our classifier. We also use
two other features: month of the year and snow depth values from
NOAA’s weather service.We train our random forest classifier using
a training dataset of real snow and synthetic anomalies. Depending
on the season (winter versus other seasons) and the observed power
loss over a period of time, our classifier can label the probable cause
of the fault for each panel. Our approach can also label system-wide
faults, caused either by a system-wide electrical failure or full snow
cover, both of which cause near total loss of power output.

5 EXPERIMENTAL EVALUATION
We evaluate SunDown by quantifying (1) the accuracy of model-
based power inference where we infer the output of a single panel
using nearby panels and (2) the accuracy of our anomaly classifica-
tion. We quantify the accuracy of predicting a panel’s output using
Mean Absolute Percentage Error (MAPE) between the inferred
output and the actual solar generation, as below.

MAPE =
1
m

m∑
t=1

���PO (t) − PI (t)
¯PO

��� (2)

Here,m is the number of samples, PO (t) is the observed solar
power at time t , PI (t) is the inferred power at time t , and ¯PO is the
mean of observed power generation. We use three different metrics
to quantify different aspects of the classification task: accuracy,
sensitivity, and specificity.
Solar AnomalyOpenDataset. Since there are no datasets of solar
faults available for research use, we constructed a labelled dataset
using two arrays: a 31-panel production residential site, and a 20-
panel ground-mounted site where we introduced anomalies, such
as dust, leaves, and electrical faults, to mimic real-world faults. Our
dataset is available at http://traces.cs.umass.edu and details of our
dataset construction can be found in [11].

5.1 Prediction Model Accuracy
We begin by evaluating the accuracy of predicting the power output
of an individual panel using neighboring panels.

5.1.1 Machine Learning Model. To evaluate the accuracy of model
inference, we choose test data only from the days where the site
experiences no anomaly. We then use the normal days of the home
dataset to train our linear regression and graphical model. We also
compare their performance with a naive approach that infers the
power output of a panel as the mean output of n other panels. As

http://traces.cs.umass.edu
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Figure 5: Synthetic fault injection of different types.

shown in Figure 3, the MAPE values for the Bayesian model, linear
regression, and naive approach are 3%, 4%, and 8.6%, respectively.
The naive approach has the worst accuracy since it assumes all
panels produce similar output, which is not true in many cases due
to panel level variations. Linear regression works well when the out-
put of different panels is highly correlated, which is not true when
some of the panels experience partial shading. Our graphical model
is able to capture non-linear relationships, and yields the highest ac-
curacy and a tight confidence interval. We use the graphical model
for our subsequent experiments, unless stated otherwise.

5.1.2 Impact of Training Data Size . Next, we evaluate model ac-
curacy for different amounts of training data. If a model requires
a lot of training data for good accuracy, it can hinder its use for
solar sites that have been recently deployed or for the sites where
long-term panel level data is not available. We vary the training
data size and evaluate its accuracy for predicting output using a
test dataset. Figure 4 demonstrates that our model can achieve rea-
sonable accuracy and a 10% MAPE with only one day of per panel
data. If the number of days is increased to 4, the MAPE drops to
3.5% and stays almost constant beyond four days.

5.2 Anomaly Classification Accuracy
We next evaluate the accuracy of our model-driven approach and
classifier in detecting and classifying anomalies, respectively. The
common anomalies we consider include snow fault, open circuit,
and partial occlusions due to leaves.

Our home dataset already includes real snow faults that are la-
belled and we evaluate the accuracy of our classifier on identifying
these snow faults. We then use the synthetic faults from our solar
anomaly datatset and inject them into the home data set by intro-
ducing synthetic single panel faults as well as concurrent fault and
evaluate the accuracy of our classifier. Figure 5 presents per-panel
data for a typical day when an electric fault or object covering
anomaly has been injected into one or many panels.

5.2.1 Snow Fault Detection. We first evaluate the ability of our
classifier in detecting snow faults in the home dataset. We extract
the features from daily power output, which include Pearson’s
correlation coefficient, ratio of maximum observed power and the
nominal panel capacity, and weather data such as snow and cloud
cover and use them as inputs to our random forest classifier. Table

Classification Accuracy Specificity Sensitivity
System level 98.13% 95.12% 100%

Single, panel-level 98.78% 97% 100%
Multiple panel-level 97.2% 97.06% 97.26%

Table 1: Classification Metrics

1 shows that our approach is able identify system-level snow faults
with 99.13% accuracy, sensitivity of 100%, and specificity of 95.12%.

5.2.2 Single and Concurrent Fault Classification. We next show
that our approach is capable of fine-grain anomaly detection and
classification of a single fault and it is also capable of detecting
concurrent faults in a subset of the panels. To do so, we use our
solar anomaly dataset and choose the partial occlusion and open
circuit anomaly from the dataset and inject these faults into a single,
randomly chosen, panel of the array; different panels have faults
injected into them on different days. We use our model to detect
the presence of the fault and our random forest classifier to identify
the type of fault. We next inject multiple concurrent faults of all
types (snow, occlusion, open circuit) into the array using a similar
methodology and attempt to detect and classify each fault using
our model and classifier. Note that, in this case, we need to use our
concurrent fault detection approach. Table 1 shows our model can
classify single faults with an accuracy of 98.78%, specificity of 97%,
and sensitivity of 100%. For concurrent faults, the model obtains
accuracy of 97.2%, specificity of 97.06%, and sensitivity of 97.26%.

6 RELATED WORK
There has been significant work on predicting power output for
solar sites [4, 6, 10, 23, 24, 27, 29]. All of these studies predict only
system level output and generally report 20-30% error. These high
errors and inability to predict panel level output would cause their
prediction for all panels to be the same, and limit their ability to
detect and classify anomalies. There is also significant prior work on
anomaly detection and classification in solar photovoltaic systems,
which can be broadly classified into model-based approaches [9, 13,
16, 19, 20] and machine learning based [7, 8, 12, 14, 21, 22, 25, 26, 31,
32] approaches. Some of these studies use power data from nearby
solar sites [17, 30] to detect and classify anomalies. In [30], authors
compare the performance of different solar arrays at the same site,
but do not do anomaly classification. Our work uses the output of
other nearby panels to predict a panel’s output for detecting faults
and can classify various types of faults, i.e. snow, object covering,
and electrical faults, on a single or multiple panels.

7 CONCLUSIONS
In this paper, we proposed SunDown, a sensorless approach to
detecting per-panel anomalies in residential solar arrays. We take
a model-driven approach that leverages correlations between the
power produced by adjacent panels to detect deviations from ex-
pected behavior. We constructed and released an open dataset of
solar anomaly faults for experimental use. Finally, we showed that
our approach can predict panel level output with a MAPE of 2.98%
and can correctly classify anomalies with >97% accuracy.
Acknowledgements This research was supported by NSF grant
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