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Abstract—This paper advocates the concept of micro foun-
dation models (uFMs), recently introduced by the authors to
describe a category of self-supervised pre-training solutions that
we argue are necessary to support robust intelligent inference
tasks in Internet of Things (IoT) applications. The work is
motivated by the fact that collecting sufficient amounts of labeled
data in IoT applications to train AI/ML tasks is challenging
due to the difficulties in labeling such data after the fact.
In the absence of sufficient labeled data, supervised training
solutions become brittle and prone to overfitting. Self-supervised
training obviates the collection of labeled data, allowing pre-
training with the more readily available unlabeled data instead.
Specifically, the 4FMs discussed in this paper use self-supervised
pre-training to develop an encoder that maps input data into a
semantically-organized latent representation in a manner agnostic
to the downstream inference task. Our preliminary work shows
that this (unsupervised) encoder can be moderately sized, yet
produce a latent representation that simultaneously supports the
fine-tuning of multiple downstream inference tasks, each at a
minimal labeling cost. We demonstrate the efficacy of this pre-
training/fine-tuning pipeline using a vibration-based ©FM as a
running case study. The study shows that the fine-tuning of
inference tasks on top of the aforementioned encoder-produced
latent representation needs orders of magnitude fewer labels
than supervised training solutions, and that the resulting tasks
are significantly more robust to environmental changes and
easier to adapt to domain shifts compared to their supervised
counterparts. Furthermore, we show that inference algorithms
based on our example ©FM can be executed in real time on
a Raspberry Pi device, making the approach viable for the
IoT space. We conclude that ;FMs are a preferred (and likely
necessary) route to support robust intelligent sensing on IoT
devices in subareas where labeled data collection is challenging.
The paper is a call for the research community to invest in 4FM
research for IoT applications.

Index Terms—Foundation Models, Self-Supervised Learning,
Internet of Things

I. INTRODUCTION

The notion of micro foundation models (uFMs) was first
introduced by the authors in a recent paper [1], advocating
the advantages of self-supervised learning in IoT contexts.
This paper argues that yFMs are not only desirable but in
fact necessary for deployment of robust edge intelligence.
To support this claim, we explain the pitfalls of supervised
techniques that lead to brittleness and possibly to catastrophic
failures. We then offer evidence that self-supervised solutions
avoid the pitfalls of their supervised counterparts.

Early work on edge AI made significant strides in neural
network compression [2], [3] and attention-based data priori-
tization [4], among other topics [5], allowing the execution of
non-trivial inference tasks at the edge. The work promised sig-
nificant reductions in edge-based inference latency by allowing
the execution of requisite inferences at the point of need (i.e.,
closer to the sensors that produce the underlying data). The
initial solutions relied on supervised learning [6] to enable
specific inference tasks. Unfortunately, in the absence of large
amounts of labeled training data, supervised approaches are
prone to overfitting, and thus brittle to domain shifts [7].
Thus, recently, self-supervised training emerged instead [1],
[8], [9]. Self-supervised learning leverages unlabeled data,
thereby circumventing the scarcity of data labels that causes
overfitting and brittleness.

Self-supervised techniques differ conceptually (from their
supervised counterparts) in the philosophy underlying their
training; rather than training to accomplish a specific down-
stream inference task, self-supervised techniques focus on
finding the most appropriate and concise latent data represen-
tation to enable a wide range of downstream inferences. This
difference has far-reaching run-time implications on inference
efficiency and robustness. First, since the latent representation
is decoupled from the specifics of any downstream task, it
allows for easier task adaptation (or fine-tuning) to changes
in the environment, noise, targets, and adversarial disruptions,
thereby enhancing run-time robustness [1]. Moreover, being
much more concise than the original sensor data, this repre-
sentation enables more efficient operation, when several nodes
must share data to allow downstream inference.

This paper illustrates examples of brittleness of super-
vised solutions, reviews recently proposed self-supervised
techniques, and discusses their robustness and efficiency
advantages. Challenges are presented in extending efficient
and robust inference to multimodal multi-vantage settings on
resource-constrained devices.

The rest of the paper is organized as follows. We describe
a key challenge facing the development of intelligent IoT
applications in Section II. Section III argues the main advan-
tages of uFMs — our proposed solution to the aforementioned
challenge. To offer a proof of concept, we present an evalua-
tion harness developed for testing intelligent IoT applications
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in Section IV. Section V describes our experimental design,
followed by a preliminary evaluation of the uFM concept
Section VI. We discuss remaining issues and challenges in
developing ©FMs for IoT sensing applications in Section VII,
and cover recent related literature in Section VIII. Lastly, we
conclude the paper in Section IX.

II. THE CHALLENGE IN EDGE INTELLIGENCE

Applying supervised deep-learning-based solutions to real-
field problems is challenging because it requires significant
amounts of labeled training data. Labeled IoT training data
are hard to collect because IoT signals (e.g., acoustic and
seismic data) are difficult to label after the fact. Unlike
images, for example, that are generally self-describing and
can thus be labeled in retrospect, in IoT applications, unless
the environment in which the time-series data were collected
was documented at the time of collection, the lack of inter-
pretability of the recorded sensor waveforms makes it hard
to label the recorded phenomena simply by inspecting the
data in hindsight. In addition, time-series data often conflate
foreground objects with background influences. For example,
the sound and vibrations emitted by a given target, such
as a passing vehicle, may differ substantially based on the
terrain (e.g., sand, dirt, snow, or tar). Thus, adequately training
supervised Al to detect such targets requires labeled samples
taken in all possible environmental conditions. The need for
diverse training data combined with the difficulties in labeling
is a key problem facing the development of intelligent IoT
applications. Labeled datasets are often insufficient in size or
diversity. Using inadequate amounts of training data results
in overfitting, which occurs when the number of input data
samples available for training is not significantly larger than
the number of parameters being trained. As a result, the trained
model may simply memorize the individual samples without
the ability to generalize well to new ones, causing it to fail in
the field.

In practice, another challenge compounds the inadequacy of
AI/ML training in IoT scenarios. Since running field experi-
ments with desired IoT sensors is often expensive, intelligent
IoT applications often rely on previously collected traces (or
datasets) for AI/ML training and evaluation. It is in this
context that another pitfall manifests [7]. Namely, it is often
possible to achieve deceptively good evaluation outcomes
on test datasets, whereas the underlying algorithms might
remain prone to catastrophic failure in practice. This challenge
was illustrated in recent experiments [7], where we designed
two target detection and classification algorithms. One was
based on a neural network architecture for embedded Al [2]
with over one million parameters. The other was based on a
traditional decision-tree-based machine learning approach with
domain-inspired input feature engineering and under 50,000
parameters. The neural network approach outperformed the
traditional one on the test dataset. Yet, it failed catastrophically
in later deployment.

To explain why this occurred, it is important to understand
how dataset-based evaluation leads to unintentional overfitting.

On the surface, to guard against overfitting, the prevailing
evaluation methodology calls for a separation between training
and testing data; the neural network is trained on one dataset
but tested on another. The problem with this methodology lies
in the way it is implemented in a typical research environment.
Specifically, due to difficulties accessing real physical systems,
researchers often acquire training, validation, and testing data
ahead of time. The tested algorithms are then developed
iteratively. When the first iteration of the algorithm fails to
do well on the test dataset, the researchers take notes and re-
design the algorithm. This continues until a version is reached
that does well on test data. The practice creates an unintended
feedback loop from testing one version of the algorithm to
designing the next. This loop ultimately results in overfitting
the developed algorithm to the testing data, despite using
proper cross-validation when testing any one iteration of the
algorithm [7] (i.e., despite the fact that each version of the
algorithm is trained on one dataset and tested on another). A
solution is needed to fundamentally reduce reliance of Al on
labeled training data. In sensing applications, unlabeled data
are much easier to collect. If one can exploit the available
volumes of unlabeled data for training, overfitting (due to data
scarcity) is significantly ameliorated. Below, we describe how
unlabeled data and self-supervised training can successfully
reduce reliance of intelligent IoT application development on
labeled samples.

III. THE ARGUMENT FOR MICRO FOUNDATION MODELS

In this section, we detail the notion of pFMs then describe the
insights why they improve robustness of edge Al. In a nutshell,
pFMs are trained using a two step process. The first, pre-
training, produces an encoder using only unlabeled data. The
second, fine-tuning, produces lightweight decoders (as small as
a single linear layer each) to support downstream tasks. Fine-
tuning needs a minimal amount of labeled data. By eliminating
the need for labeled data in pre-training, the reliance on labeled
data is vastly reduced, mitigating overfitting-related problems.

A. Preliminaries of uFMs

Micro Foundation Models (borrowing the concept of founda-
tion models from the vision and NLP domains [10]) are meant
to extract domain knowledge in an unspervised manner that
homogenizes inferencing across multiple downstream tasks.
In prior work [1], we defined uFMs to have the following
essential properties:

e Domain-specific: Unlike models such as ChatGPT that
attempt to offer general intellligence, the uFMs we ad-
vocate are not designed to be “everything for everyone”.
Since different application domains call for encapsulating
different types of expertise within the foundation model,
we encourage specialization. Limiting the construction
of the model from scratch to an application domain can
significantly reduce its needed size. An example would
be a foundation model for medical image analysis, urban
traffic monitoring, target tracking, or network security.
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o Modality-specific: The number of different types of sen-
sors of interest to IoT scenarios can be very large. To
limit the size of the model further, we constrain it to the
handling of a limited number of sensing modalities.

o Self-supervised: This is a core property of all foundation
models and is inherited by pFMs.

o Task-agnostic: As alluded to in the introduction, self-
supervised pre-training is fundamentally different from
its supervised counterpart. Rather than training a neural
network to perform a particular inference task, as done
in supervised training, the purpose of the self-supervised
approaches we advocate for training pFMs is simply
to train an encoder to offer a better and more concise
representation of input data. This is done in a manner
agnostic to the particular downstream inference tasks that
we ultimately need to implement. As a result, the com-
puted representation may facilitate multiple very different
downstream tasks. Such training is called task-agnostic.

o Moderately-sized: As the name “uFM” suggests, the
intent is to find models that use only a moderate number
of parameters (e.g., in the millions, not billions) and cor-
respondingly moderate amounts of data for pre-training.

It remains to argue why pFMs stand to significantly improve
robustness of edge Al applications. The relevant background
and insights are described next.

B. Reducing Reliance on Labeled Data

This section offers an important piece of preliminary back-
ground needed to appreciate FMs. Namely, how does one
train a model in an unsupervised manner to be task agnostic,
and why would such training improve downstream inference
robustness? Two common training techniques for foundation
models are (i) contrastive learning, and (ii) masking:

o Contrastive learning teaches the foundation model a
notion of semantic similarity by applying label-invariant
transformations (such as image rotation) to individual
data samples and contrasting the transformed samples
with random other ones. Specifically, an encoder is
trained to project input data into a latent space. The
loss function rewards the encoder for placing similar
samples closer together (in the latent space) and different
samples further apart. Note that, no labels are needed for
encoder training. For example, an image and its rotation
can be presented as examples of similar samples without
understanding (or labeling) the content of the image.

e Masking, in contrast to contrastive learning, encourages
the encoder to extract latent structures that allow it to
guess the masked elements in the input. Specifically,
some parts of the input are masked. The remaining parts
are given to the encoder that maps them to a latent space
from which a decoder is designed to restore the missing
pieces. The loss function rewards the encoder/decoder
pair for reconstruction accuracy of those missing pieces.
Note that, no data labels are needed either. The hypothesis
is that if the decoder has learned to reconstruct the
missing pieces of input correctly, it must be that the latent

representation produced by the encoder has extracted

higher-level semantics from the input that allow the auto-

filling.
The above process describes pre-training. The outcome of pre-
training (using either of the above approaches) is an encoder
that maps inputs into a sematically well-organized latent space.
In the case of contrastive learning, this property arises because
similar inputs are mapped closer together in the latent space.
In the case of masking, this property arises because the
training forces the latent representation to efficiently encode
the higher-level semantics needed for the reconstruction of
masked regions. The decoder used in pre-training can be
discarded.

Once an encoder has been designed (using either of the
above approaches) to map input data to the latent space, it
becomes possible to support multiple inference tasks. Given
the semantically well-organized latent space, it becomes easy
to map from that space to a variety of inferences (e.g.,
inferences on observed target classes, activities, environmental
conditions, etc), which is called fine-tuning. Intuitively, fine-
tuning becomes easy because the mapping from a semantically
well-organized space to a semantic output is generally simpler
than the mapping from the original data space to the same
output. Given a set of labeled concepts that we need to
recognize in input data, we train a decoder to recognize the
regions of the latent space to which such concepts map. A
simple one-layer linear decoder network is often sufficient
to delineate such regions given a small number of labeled
samples.

To summarize, the key observation that simplifies decoder
design is that the latent space is semantically well-organized.
Thus, the desired concepts of interest to a given downstream
task tend to map to points in the latent space that are well-
clustered together and thus easy to delineate with a few linear
constraints. The simplicity of the decoder structure implies a
significant reduction in the number of labeled data samples
needed for fine-tuning. In other words, it explains the signif-
icant reduction attained in the reliance on labeled data when
using the aforementioned pre-training/fine-tuning approach.
Moreover, simplifyimg the decoder (and thus needing less
labeled data to train it) is the key to avoiding overfitting. A
small number of labeled samples is usually sufficient to train
the task-specific decoder given the low number of decoder
parameters. Note that changes in the environment and other
domain shifts can now be easily accommodated by retraining
or updating the simple decoder, as opposed to retraining the
whole neural network model. Consequently, the architecture
described above is also much more adaptive to environmental
changes and domain shifts, a conjecture we later demonstrate
empirically in our evaluation.

We refer by uFM to the actual pre-trained neural network
encoder model and any used task-specific decoders. This
section summarized our argument for why yFMs offer more
robust edge Al. To complete the discussion of yFM advan-
tages, below, we point out another useful property attained as
a side-effect of reduced decoder complexity.
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C. Improving Structural Edge Resilience

In addition to reducing the need for labeled data, uFMs can
improve the structural resilience of edge systems. Specifically,
we conjecture that these machine learning techniques can
both (i) help reduce unnecessary dependencies in intelligent
data fusion workflows, thus decreasing the propagation of
local failure effects, and (ii) help create pools of more easily
interchangeable, retargetable components that can take over
each other’s functions, thus increasing resilience in the face
of component failures. We explain these conjectures below.

o Increasing resilience by breaking unnecessary dependen-
cies: The separation of our pFM architecture into an
encoder that maps inputs into a latent space followed
by task-specific decoders that map the latent representa-
tion to task-specific inferences breaks down end-to-end
stovepipes of supervised models that directly connect
sensing to inference. Data from multiple sensor modal-
ities (e.g. both acoustic and seismic data as we show
later in this paper) can be mapped to the same joint
latent space. Different downstream analytics can then be
implemented based on the shared joint latent representa-
tion. The model architecture thus decouples the sensors
that encode their respective modality measurements (into
the common latent space) from the analytics that utilize
the shared representation for various tasks. The decou-
pling, in turn, increases workflow resilience; failures of
individual sensors can be mitigated by other sensors
that generate the same unified semantic representation
without impacting downstream analytics, thus reducing
disruption to the rest of the data fusion pipeline. Similarly,
downstream analytics can be changed without impacting
the front of the sensor data processing pipeline.

o Increasing resilience by promoting retargetable com-
ponents: The ability of self-supervised pre-training to
produce latent representations that support a multiplic-
ity of downstream tasks (thanks to lightweight task-
specific fine-tuned decoders) creates further opportunities
for improved resilience. As we show in the evaluation,
different decoders can be fine-tuned to support different
task-specific inferences such as target classification, dis-
tance estimation, and others. Since the decoders are very
lightweight, nodes pre-loaded with a pre-trained, self-
supervised encoder model can now be easily re-targeted
to offer new functionality as needed, simply by adding the
relevant decoders, possibly covering for the loss of other
nodes with specific functions elsewhere in the system.

The separation of end-to-end inference stovepipes into eas-
ily combinable mix-and-match components together with the
ability of components to take on each other’s roles is akin
to the concept of degeneracy in biological networks [11]. In
biology, degeneracy refers to a condition where (i) agents
can perform one of multiple functions depending on context,
and (ii) the same function can be performed by one of
several agents. For example, individuals in an organization
might allocate their time to any of a set of possible roles.

Similarly, the same role can possibly be performed by any
of multiple individuals. It is shown that degeneracy improves
system resilience by facilitating reconfiguration to adapt to
perturbations [11]-[13]. The architecture of ©FMs improves
degeneracy of edge networks in that certain sensors can take
on roles of other sensors (by mapping to the same latent
space) and nodes can take on the analytics of other nodes
simply by adding a lightweight decoder (which is far easier
in terms of incremental overhead than adding an entire new
supervised model). While we do not explicitly explore this
angle in the evaluation for space limitations, the prospect of
improving resilience to structural perturbations is one of the
most intruiging advantages of yuFMs.

IV. ACIES-OS: AN EVALUATION HARNESS

To demonstrate that the above insights hold true in the
field, we designed an evaluation harness of edge Al solutions,
called Acies-OS [14]. Acies-OS is developed on the concept of
digital twins [15], which provides virtual representations of the
deployed physical systems and optimizes its run-time behavior
(orchestration). However, dynamic IoT deployment conditions,
such as heterogeneous sensors (different types of sensors and
the number of deployed sensors), poor inter-communication
medium, and diverse running application workloads, often
increase the difficulty of monitoring entire edge systems with
a static twinned system. Acies-OS addresses these challenges
by providing a content-centric platform for edge Al with a
dynamic interface for prototyping diverse edge Al systems
with digital twins. At the core of Acies-OS is a control plane
that manages the services deployed across the edge nodes
in real time. The deployed services can include Al models
(e.g., uFMs), sensors (e.g., seismic and acoustic), and system
status (e.g., heartbeat). The control plane and these services
are developed on top of a structured namespace to support
flexible and extensible components for deployment. It enables
efficient orchestration between the physical systems and the
digital twins, which provides several advantages for deploying
intelligent IoT applications:

e Development and Deployment: Acies-OS simplifies the
prototyping of intelligent IoT applications. Its structured
namespace allows the developers to easily integrate dif-
ferent components (e.g., different AI models, additional
sensors, etc.) into the system. Besides, Acies-OS supports
adding or replacing modules independently to enhance
deployment flexibility in dynamic IoT environments.

o System monitoring:: Acies-OS continuously tracks the
status of edge devices and services. The control plane
receives periodic updates from each node on the system
status and service outputs (e.g., sensor readings or model
predictions). These outputs can then be used to detect
anomalies in the system or evaluate the running intelligent
IoT applications.

o Dynamic reconfiguration:: Acies-OS supports rapid and
flexible dynamic reconfiguration of services. The control
plane allows services to be redeployed or reconfigured in
real time without disrupting the rest of the system. This
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TABLE I
RASPBERRY SHAKE DEVICE CONFIGURATIONS.

Sensor

200 Hz Seismic
16000Hz Acoustic

Device Type

Raspberry Shake 4B Rev 1.4
4D (Node 1&4); 1D (Node 2&3)

Memory  Storage

8GB 64GB

Fig. 1. Experimental site view. The nodes are colored in green. An example
route in white is drawn in white for illustration purposes.

adaptability ensures that application performance remains
optimal and the system remains resilient. For instance,
in an edge application running multimodal models on
seismic and acoustic signals, if a failure occurs in the
seismic sensor due to malfunction, Acies-OS can detect
the issue and quickly reconfigure the system. It can switch
from a multi-modal model, which relies on both seismic
and acoustic data, to a uni-modal model that uses only
the acoustic service.

V. THE EXPERIMENTAL SETUP

To evaluate the robustness and generalizability of pFMs
to new tasks and domains, we experimented at an outdoor
research facility similar to the experimental site described in
prior research [1]. We present an overview of the experimental
site in Figure 1. The site is a repurposed neighborhood on
gravel roads with four deploy nodes. Each node is a Raspberry
Pi class device' containing a geophone and a microphone
array to collect 200Hz seismic and 16,000Hz acoustic signals.
Table I lists the detailed configurations for the deployed nodes.
Three targets with distinct vibrational signals are selected: (i) a
Polaris ATV, (ii) a Warthog all-terrain unmanned ground robot,
and (iii) a standard pickup truck. During each run, a subset of
these targets navigates around the neighborhood following a
pre-specified route and passes by each node. A GPS receiver
is attached to each vehicle to track their locations from the
nodes. In Figure 2, we provide sample illustrations of these
vehicles to show their differences.

A. Model Pre-training

We evaluate VibroFM, a type of uFMs for vibration appli-
cation [1], with the SWIN-Transformer [16] as the primary
backbone encoder. SWIN-Transformer is a variant of the
Vision Transformer [17] that uses a hierarchical structure

Uhttps://raspberryshake.org/

27

(a) Polaris

(b) Warthog (c) Truck

Fig. 2. Vehicles used in the experiment. For illustration purposes only.
TABLE 11

DATASETS FOR MODEL TRAINING/FINE-TUNING (WITH
CROSS-VALIDATION) AND EVALUATION

Task ‘ Train/Fine-tune set Test Set (Reported)

Evaluation Set - All
Evaluation Set - Test
Evaluation Set - Test

Vehicle Classification
Distance Classification
Distance Rergession

Development Set - Train
Evaluation Set - Train
Evaluation Set - Train

with shifted windows for efficient extraction of the spatio-
temporal features. VibroFM is pre-trained with FOCAL [8], a
contrastive learning framework, on the large-scale unlabeled
vibration dataset [1].

B. Downstream fine-tuning

We focus on two labeled datasets for downstream fine-
tuning and evaluations.

(1) Development Set: We utilize the labeled dataset collected
in prior work [1] for supervised training. This dataset contains
single-target scenarios exclusively to fine-tune the pre-trained
model and train their supervised counterparts. During fine-
tuning, the pre-trained encoder parameters remain frozen, and
only the downstream task-specific layer is optimized. We ex-
plore two types of downstream decoders: a single-layer linear
classifier and a four-layered multi-layer perception (MLP).
Instead of enforcing a single target classification with the
softmax activation function, we apply the sigmoid activation
function and binary cross entropy (BCE) objective for multi-
target classification. We use the same confidence threshold of
0.8 for all evaluated models.

(2) Evaluation Set: We evaluate the fine-tuned VibroFM
with the newly collected dataset. This Evaluation Set presents
several key distinctions from the Development Set, making it
of particular interest:

e Domain Shift: Although this dataset is collected from
similar vehicles to the Fine-tune set, it was collected
at a different time and introduces varied environmental
conditions.

o Multi-Target Scenarios: In contrast to the single-target
fine-tune data, the Evaluation Set contains both single-
target and multi-target samples. The multi-target scenar-
ios present a more challenging task compared to the
single-target classification. Signals generated by each
target interfere with each other. This interference can lead
to complex, overlapping vibration signals distinct from
those a single target generates.

o Target Distance: Each target has a GPS receiver to track
its real-time distance from the nodes. This additional
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Il Supervised 1 VibroFM-Linear I VibroFM-MLP
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Accuracy F1 Score Accuracy F1 Score
Vehicle Classification

Distance Classification

Fig. 3. Vehicle Classification (Left) and Distance Classification (Right)
Performance.

information allows us to evaluate VibroFM’s generaliz-
ability to additional downstream tasks, such as distance
classification and distance regression.

For vehicle classification, we train the supervised model
and fine-tune the VibroFM variants on the Development Set
with 80%, 10%, 10% ratio for cross-validation. We then test
the performance on the entire Evaluation Set and report the
accuracy and F1-score. For distance classification and distance
regression, we train and fine-tune the models on the Evaluation
Set by using the unique distance information. The Evaluation
Set is split randomly by runs with the same 80%, 10%,
10% ratio for training, validation, and testing. The testing
performance is reported. We clarify the specific set used to
train and evaluate each task in Table II.

VI. EVALUATION RESULTS

In this section, we present a comprehensive evaluation of
VibroFM. We begin by assessing its performance on the
Evaluation Set to validate its robustness to new domains.
We then evaluate its generalizability by applying VibroFM
to additional distance-related downstream tasks. Lastly, we
profile the model to demonstrate its efficiency and practicality
in multi-task scenarios, focusing on latency and memory
consumption.

A. Performance on Vehicle Classification

Figure 3 (Left) compares the VibroFM variants with the
supervised model on vehicle classification. VibroFM variants
significantly outperform the supervised model. Although the
testing data from the Evaluation Set is collected from the same
domain as the Development Set, the supervised model fails
to generalize with substantial degradation in performance. In
contrast, despite having fewer parameters to train on, both
VibroFM-Linear and VibroFM-MLP demonstrate exceptional
performance with 90% accuracy. The poor performance of the
supervised model underscores the pitfall of traditional super-
vised learning when evaluated against real physical systems,
where significant domain shifts are present due to the dynamic
deployment conditions. VibroFM variants, leveraging self-
supervised learning with more available unlabeled data, exhibit
strong resilience to deployment. The semantically organized
representations learned by the ¢ FMs during pre-training can be
well adapted to the physical systems without excessive reliance
on domain-specific labels. This highlights FMs significant
robustness well suited for the diverse edge Al applications.
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Fig. 4. Distance Regression Scatter Plot - Predicted distance vs. True distance.

B. Performance on Distance Classification

Next, we evaluate the models’ performance on the dis-
tance classification task. Due to the lack of distance in-
formation in the Development Set, we train and evaluate
the Supervised model and VibroFM variants with the newly
collected Evaluation Set. We consider three classes: close
range (<15m), medium range (15m-30m), and long range
(>40m). As illustrated in Figure 3 (Right), the Supervised
model shows marginal improvement over VibroFM-Linear but
has lower performance when compared to VibroFM-MLP.
The performance gap between the Supervised model and the
VibroFM variants is notably reduced compared to the vehicle
classification task. Since the training and testing data for
distance classification are drawn from domains more similar
to those in the vehicle classification task, the supervised
model performs relatively well. However, this validates the
challenge of supervised learning we described, which causes
supervised models to often generalize poorly when deployed in
real physical systems. On the other hand, VibroFM-MLP still
achieves superior performance. The task-agnostic pre-trained
representations with a lightweight decoder can outperform the
task-specific Supervised model. This demonstrates the strength
of uFMs in learning task-agnostic representations that can be
adapted to various downstream IoT applications.

C. Performance on Distance Regression

We evaluate VibroFM on the distance regression task to
demonstrate its potential to support a range of intelligent
inference tasks beyond mere classification. In addition to the
supervised baseline and VibroFM, we also implement a non-
linear curve-fitting model using inverse polynomial regression
to capture the inverse relation between the energy of audio
(a;) and seismic (s;) signal with the target distance (d) on the
Development Set. We formulate this relationship as

Aq As
i~ (v o) (o +0).
where pg/s, Aqsss Bays,and C, /. are learnable parameters.
Figure 5 provides a quantitative comparison of the distance
regression performance using Mean Absolute Error (MAE)
and R-squared (R2) score metrics. Both VibroFM variants
(Linear and MLP) outperform the supervised baseline and the
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TABLE III
INFERENCE COMPUTATION OVERHEAD COMPARISON BETWEEN DIFFERENT TASKS.

Metric | Task | Vehicle Classification | Distance Classification | Distance Regression
| Encoder | Linear MLP | Linear MLP | Linear MLP
Average Latency (ms) | 188.2342 | 0.1915 1.4341 0.2041 1.4304 0.2130 1.3950
P99 Latency (ms) 255.0525 | 0.3550 4.9966 0.3965 2.5303 0.3779 2.1056
Size (MiB) 449016 | 0.0069 0.5157 0.0029 0.5078 0.0010 0.5039
[ Supervised I Curve Fitting [ Linear I MLP === Supervised o= \ibroFM Linear  ==@==VibroFM MLP
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Fig. 5. Mean Absolute Error and R2 Score of Distance Regression.

simple curve fitting approach with lower MAE and higher R2
scores, demonstrating 4FM’s ability to accurately estimate dis-
tances based on the latent representations learned during self-
supervised pre-training. We present scatter plots in Figure 4
to show the correlation between true distances and predicted
distances from the supervised baseline and VibroFM with the
MLP decoder. Overall, there is a strong correlation between
predicted and actual distances for both models, with more
dense and accurate predictions observed in the 0-40 meter
range. However, the VibroFM MLP decoder shows tighter
clustering around the ideal prediction line (red) in the 20-40
meter range, which is the main range of interest. The relatively
lower accuracy for distances beyond 40 meters can be due to
the increased signal interference and attenuation over longer
distances. As the target moves farther from the sensor, the
received signals experience more environmental interference
and longer travel times, making the distance estimation task
more challenging. Both the supervised model and VibroFM
experience deviation, but VibroFM maintains slightly better
performance at longer distances. These results highlight the
robustness of the representation learned by ©FMs during task-
agnostic pre-training in handling tasks beyond classification,
even when trained without any distance-specific labels.

D. System Performance

Lastly, we conduct system evaluations to show that yFMs
(1) are moderately sized and executable in real-time on
resource-constrained edge devices despite having exceptional
performance, and (2) can significantly benefit the run-time
inference and memory consumption as the number of tasks
scale for an intelligent IoT application.

1) Inference overhead: We deploy VibroFM on the Rasp-
berry Shake device described in Section V to evaluate its la-
tency and memory consumption, demonstrating the feasibility
of using pFMs in real-time IoT applications. For each task,
we set the batch size to one and measure the inference time
of both the encoder and decoder across 300 samples. Table III

2 2
Number of tasks Number of tasks

Fig. 6. Latency and model sizes against the number of tasks.

presents the mean and P99 latency for each task. VibroFM is
highly efficient and can complete an inference in under 260
milliseconds for each two-second sample, meeting the latency
requirements for IoT applications. The MLP decoders take
slightly longer than their linear counterparts due to the dense
computations. However, we observe that most of the latency
overhead originates from the encoder, while the decoders have
minimal impact on overall performance. In addition to its low
end-to-end latency, VibroFM'’s entire parameter size is under
50 MB, making it highly compact and efficient for deployment
on resource-constrained edge devices. This ensures VibroFM
is well-suited for various IoT applications where both speed
and memory efficiency are required.

2) Multi-task inference: Despite outperforming traditional
supervised models in different tasks, a significant advantage of
VibroFM is its superior multi-task efficiency. We compare the
inference efficiency of VibroFM with task-specific supervised
encoders as the number of tasks increases. Figure 6 illustrates
the latency and memory overhead of both approaches as tasks
scale. For the supervised models, both latency and memory
overhead rise significantly with the addition of more tasks.
In contrast, VibroFM’s Linear and MLP decoders only show
marginal increases. This is because VibroFM encodes the
input data only once, and the resulting representations are
generalizable to all downstream tasks. Therefore, adding new
tasks merely requires loading lightweight decoders, leaving the
primary computational overhead from the encoder unaffected.
On the other hand, task-specific supervised approaches require
an entirely new model for each additional task, leading to sub-
stantial memory usage and higher latency. Each task requires a
full end-to-end inference, which directly contributes to the in-
creased computational overhead and resource consumption as
the number of tasks grows. uFMs’ task-agnostic nature allows
for superior scalability in multi-task scenarios. This efficiency,
combined with its competitive performance across various
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tasks, makes p©FMs a more practical solution for resource-
constrained IoT applications, especially for an intelligent IoT
application running multiple tasks simultaneously.

VII. LIMITATIONS AND CHALLENGES

This paper argues FM’s exceptional robustness and adapt-
ability compared to traditional supervised methods when
deployed in physical systems. The task-agnostic nature of
p#FM makes it a practical solution for edge AI applica-
tions. In this section, we discuss some of the remaining
challenges in developing ©FMs and potential directions for
future works. Our evaluation highlights that yFMs exhibit
superior robustness by leveraging widely available unlabeled
data for pre-training. Unlike traditional supervised methods
that are label hungry, pFMs reduces the reliance on large-
scale labeled data to perform well in deployment scenarios
with simple decoder designs. uFM'’s pre-trained embedding
shows robustness to domain shifts during deployment, extract-
ing consistent representations of the same target even across
different deployment environments. However, the performance
of the downstream tasks can still heavily depend on the
quality of the labeled data used to fine-tune the decoders.
This challenge is particularly pronounced in IoT applications,
where label quality is extremely difficult to determine due
to the diverse conditions (e.g., environment, location of the
nodes, the target of interest, etc.) present in the physical
system. Due to the simplicity of the decoder designs and fine-
tuning objectives, incorrect or noisy labels can mislead the
decoders, producing inaccurate mapping even if the pre-trained
embedding is well-structured. A promising direction for future
work lies in designing new fine-tuning techniques and decoder
architectures that are robust to low-quality labels. Additionally,
developing effective task-specific fusion strategies for pre-
trained embeddings from multiple sensor modalities, such as
adaptive weighting schemes that can dynamically adjust each
modality based on task-specific requirements and physics-
guided signal quality, could further enhance the fine-tuned
adaptability of yFMs in dynamic IoT applications.

VIII. RELATED WORK

Self-Supervised Learning: Self-supervised learning has
emerged as a promising paradigm to tackle the limitations of
supervised learning, particularly in scenarios where labeled
data is scarce [1]. It leverages large amounts of unlabeled
data to learn meaningful task-agnostic representations that can
be fine-tuned for downstream tasks. Two main approaches
have gained increasing popularity: contrastive learning and
masked reconstruction. Contrastive learning [18]-[23] focuses
on learning robust representations by maximizing the agree-
ment between positive pairs of data while pushing negative
pairs apart. Prior works [24]-[26] have also studied leveraging
the temporal properties for learning time-series data. Con-
trastive learning for multimodal inputs [27], [28] has gained
increasing interest and has been well explored for different
IoT sensing applications [8], [29], [30]. On the other hand,
masked reconstruction [31]-[35] techniques mask significant

portions of the input data and learn to encode meaningful
representations that can be used to reconstruct the missing
parts. For time-frequency signals, previous works leverage
time-frequency spectrogram [36], [37] and adopt physical
priors to make meaningful masking [9].

Robust IoT Sensing: Recent advancements in deep learning
have significantly contributed to robust signal classification
across various domains, especially in dynamic IoT deployment
environments where signal integrity is often compromised.
In the field of automatic modulation classification, prior
work has introduced a threshold autoencoder denoiser CNN
(TADCNN) [38] that markedly improved classification accu-
racy, especially in low signal-to-noise ratio (SNR) conditions.
Others have proposed to convert time-domain signals into
symmetrized dot patterns and achieve remarkable efficiency
in differentiating various vehicle noise types with CNN-based
encoders [39]. Siamese CNNs have shown robust performance
in classifying wireless signals under low SNR conditions,
excelling in scenarios with limited samples and noisy inputs
[40]. Additionally, ensemble and wavelet-based approaches
have been proposed to maintain high classification accuracy
for noisy signals, addressing the limitations of traditional
classifiers in noise-interfered environments [41]. However,
unlike self-supervised learning, these works heavily rely on
supervised learning and require substantial amounts of labeled
data to perform well in new deployment scenarios.

IX. CONCLUSION

In this paper, we have argued the importance of micro
foundation models (uFMs) for the IoT community. yFMs
serve as a practical solution to address the challenges in
edge intelligence. Our evaluation has demonstrated that yFMs
are significantly more robust than the supervised model dur-
ing deployment and support efficient adaptation to different
downstream tasks. These properties of uFMs are essential
in improving the resiliency and efficiency of intelligent IoT
applications.
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