Chameleon: Application Level Power Management with
Performance Isolation

Xiaotao Liu
Computer Science Dept.
University of Massachusetts
Ambherst, MA 01003

xiaotaol@cs.umass.edu

ABSTRACT

In this paper, we present Chameleon—an application-level power
management approach for reducing energy consumption in mobile
processors. Our approach exports the entire responsibility of power
management decisions to the application level. \We propose an op-
erating system interface that can be used by applications to achieve
energy savings. We consider three classes of applications—soft
real-time, interactive and batch—and design user-level power man-
agement strategies for representative applications such as a movie
player, a word processor, a web browser, and a batch compiler.
We also design a user-level power manager based on GraceOS us-
ing Chameleon. We implement our approach in the Linux kernel
running on a Sony Transmeta laptop. Our experiments show that,
compared to the traditional system-wide CPU voltage scaling ap-
proaches, Chameleon can achieve up to 32-50% energy savings
while delivering comparable or better performance to applications.
Further, Chameleon imposes small overheads and is very effective
at scheduling concurrent applications with diverse energy needs.

Categories and Subject Descriptors

D.4.1 [Process Management]: Scheduling; D.4.7 [Organization
and Design]: Real-time systems and embedded systems

General Terms
Algorithms, Design, Experimentation

Keywords

Power Management, Mobile Computing, Multimedia

1. INTRODUCTION

Recent technological advances have led to a proliferation of mo-
bile devices such as laptops, personal digital assistants (PDAS), and
cellular telephones with rich audio, video, and imaging capabili-
ties. While the processing, storage, and communication capabil-
ities of these devices have improved significantly, these advances
have outpaced the improvements in battery capabilities. Conse-
quently, energy continues to be a scarce resource in such devices.
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The situation is exacerbated by the resource-hungry nature of many
applications, such as movie players and batch compilations.
Modern mobile devices use energy judiciously by incorporating
a number of power management features. For instance, modern
processors such as Intel’s XScale and Pentium-M and Transmeta’s
Crusoe incorporate dynamic voltage and frequency scaling (DVFS).
DVFS enables dynamically variable CPU speed which can reduce
energy consumption during periods of low utilization [11, 12, 24].
In general, such techniques must be carefully designed to prevent
the processor slowdown from degrading the responsiveness of ap-
plications.

This paper explores a new approach, namely application-level power
management. We argue that applications know best what their re-
source and energy needs are, and consequently, applications can
implement better power management policies than the operating
system. We propose an approach where applications are given
complete control over their CPU power settings—an application
is allowed to specify its CPU power setting independently of other
applications, and the operating system isolates an application from
the settings used by other applications. Our approach resembles
the philosophy of the Exokernel, where the OS grants complete
control of various resources to the applications and only enforces
protection to prevent applications from harming one another [5].
The Exokernel project successfully demonstrated the benefits of
application-level networking, application-level memory manage-
ment, application-level file systems and CPU scheduling [5]. Our
work extends this notion to application-level power management.
Research Contributions: The notion of application-level power
management opens up a realm of possibilities that are infeasible
using existing approaches.

e Performance: Our approach enables each application to make
local power management decisions based on its processor de-
mand and processor availability. We experimentally show
that local decisions by individual applications can globally
optimize system-wide energy usage and are better than choos-
ing a single system-wide power setting for all applications.

e Flexibility: Such an approach enables each application to
implement a power management policy that closely matches
its energy and performance requirements. Different applica-
tions can choose different policies and yet coexist with one
another concurrently. Legacy applications or those applica-
tions that do not wish to implement their own strategy can
delegate this task to a user-level power manager that chooses
appropriate settings based on observed behavior.

e Generality: Our approach is general and unlike some exist-
ing approaches, does not make specific assumptions about



the nature of applications. Any application can use the power
management interface to manage its energy needs, and we
demonstrate such strategies for several different applications.
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e Modest implementation costs. We show that user-level power
management policies can be implemented at a modest cost.
For applications considered in this work, the cost of imple-
menting our policies varied from 40 to 239 lines of code,
a relatively minor modification to applications hundreds of
thousands of lines of code. \ DVFS-enabled _Processor |

Kernel Space ; User Space

At first glance, it may appear that an application-level power man-

agement approach loses the ability to couple the power manage- Figure 1: The Chameleon Architecture.

ment strategy with the CPU scheduling algorithm. At least one re- query the kernel for resource usage statistics and to convey their
cent approach has advocated such an integrated approach for power desired power settings to the kernel. The details of the interface
management and scheduling [26, 27]. Contrary to intuition, we are presented in Section 5. In general, a user-level power man-
show that it is indeed possible to implement such couplings be- agement strategy combines OS-level resource usage statistics with
tween the scheduler and the power manager using our application- application domain knowledge to determine a desirable CPU power
level framework. We demonstrate the feasibility of doing so by setting. This can be achieved in two ways. An application can use
implementing GraceOS [26, 27] as a user-level power manager in the Chameleon interface to directly modify its own power settings.
our system. By carefully exporting resource usage statistics from Alternatively, an application can delegate the task of power man-
within the kernel and using a flexible power management interface, agement to a user-level power manager. Such a power manager can
we show how the power management policy can be implemented in use resource usage statistics and any application-supplied informa-
user-space while retaining the ability to interact with the scheduler. tion to adjust the application’s power settings on its behalf.
Chameleon, our application-level power management approach con- Second, Chameleon implements a modified CPU scheduler that
sists of three components: (i) a common OS interface that can be supports per-process CPU power settings and application isolation.
used by power-aware applications to measure their CPU usages and The scheduler maintains the current power settings for each pro-
adjust their CPU speed settings, (ii) a modified kernel CPU sched- cess and conveys these settings to the underlying processor when-
uler that supports per-process CPU speed settings and ensures per- ever the process is scheduled for execution (i.e., at context switch
formance isolation among processes, and (iii) a speed adapter that time). The application’s power settings can be modified at any time
maps these CPU speed settings to the nearest speed actually sup- via system calls, either by the application itself or by a user-level
ported by the hardware. power manager acting on its behalf. An application’s power set-
We consider three classes of applications—soft real-time, interac- tings take effect only when it is scheduled, and further, applications
tive, and batch—and show how soft real-time applications such as get the same share of the CPU regardless of their power settings.
movie players, interactive applications such as word processors and Consequently, applications are isolated from one another and from
web browsers, and batch applications such as “make™ can each im- the settings used by malicious or misbehaving applications. Ker-
plement a different power management strategy. We specifically nel support for per-process power settings and application isolation
demonstrate how these applications can coexist concurrently and does not require any direct modifications to the CPU scheduling al-
yet globally optimize system-wide energy consumption. gorithm itself, and as a result, Chameleon is compatible with any
We implement a prototype of Chameleon in the Linux kernel and scheduling algorithm.
evaluate its effectiveness on a Sony laptop equipped with Trans- Third, Chameleon implements a speed adapter that maps application-
meta’s Crusoe TM5600-667 processor [23]. Our experiments com- specified power settings to the nearest CPU speed actually sup-
pare Chameleon with three existing OS-level DVFS approaches, ported by the hardware. In particular, an application specifies the
namely PAST [24], PEAK [12] and AV G, [11] and with Lon- desired CPU speed as a fraction f; of the maximum processor
gRun, a hardware-based DVFS approach. Our experiments with speed. The speed adapter maps this fraction to the nearest sup-
individual power-aware applications show that Chameleon can ex- ported CPU speed; since different processors support different dis-
tract up to a 32% energy savings when compared to LongRun and crete speeds, such an approach ensures portability across hardware.
up to 50% savings when compared to OS-based DVFS approaches, Although this work considers applications that manage their own
without any performance degradation to time-sensitive multime- energy needs, in practice, it may not be feasible to modify every
dia and interactive applications. Our experiments with concur- single application to make it power-aware. Thus, legacy applica-
rent applications show that local power management decisions in tions will coexist with power-aware applications in Chameleon. For
Chameleon yield 20-50% energy savings over LongRun and OS ap- such applications, Chameleon can either delegate them to a user-
proaches that use a single power setting for all applications, thereby level power manager or revert to a hardware DVFS technique. In
demonstrating the benefits of allowing each application to use a the former case, the manager determines power settings based on
custom power setting that is most appropriate to its needs. external observations of application behavior. In the latter case,
The rest of this paper is organized as follows. Section 2 presents an whenever a power-unaware application is scheduled on the CPU,
overview of the Chameleon. Sections 3 and 4 present our user-level Chameleon dynamically switches to a system-controlled DVFS tech-
power management strategies. Section 5 discusses our implementa- nique (our current prototype uses LongRun [7]). This hardware
tion. Section 6 presents our experimental results. Finally, Sections DVFS technique is disabled when a power-aware application is
7 and 8 presents related work and our conclusions. scheduled for execution. Both techniques enable legacy applica-
tions to extract some power savings while permitting power-aware
2. CHAMELEON ARCHITECTURE applications to maximize these savings.

Chameleon consists of three key components (see Figure 1). First,
Chameleon consists of an OSinterface that enables applications to
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Figure2: Threescenariosfor task execution.

3. APPLICATION-LEVEL POWER
MANAGEMENT

Regardless of the actual application, our user-level power manage-
ment policies consist of three key steps. (i) Estimate processor de-
mand: In this step a combination of application domain knowledge
and past CPU usage statistics is used to estimate processor demand
in the near future. (ii) Estimate processor availability: This step
explicitly accounts for the impact of other concurrent applications.
It estimates the amount of CPU time that will be available to the
application in the presence of other applications. (iii) Determine
processor speed setting: The third step chooses a speed setting that
“matches” the processor demand to the processor availability. For
instance, if the actual demand is only half of the available CPU
time, then the application can run the processor at half speed and
spread its CPU demand over the available time. In contrast, if the
processor demand and the processor availability are roughly equal,
the application may choose to run the processor at full speed.

In the rest of this section, we show how these ideas can be instanti-
ated for four specific applications that belong to three different ap-
plication classes—soft real-time, interactive best-effort, and batch.

3.1 MPEG Video Decoder

An MPEG video decoder is an example of a soft real-time applica-
tion. Many multimedia applications such as DVD playback, audio
players, music synthesizers, video capture and editors belong to
this category. A common characteristic of these applications is that
data needs to be processed with timeliness constraints. For instance
in a video decoder frames need to be decoded and rendered at the
playback rate—in a 25 frames/s video, a frame needs to be decoded
once every 40ms. The inability to meet timeliness constraints im-
pacts application correctness; playback glitches will be observed in
a video decoder, for example.

A soft real-time application can use the following general strategy
for user-level power management. Assume that the application ex-
ecutes a sequence of tasks; the decoding of a single frame is an
example of a task. Let ¢ denote the amount of CPU time needed to
execute this task at full processor speed. Let d denote the deadline
of this task and let ¢ denote the task begin time. Further, let e de-
note the amount of CPU time that will actually be allocated to the
application for this task before its deadline. The parameter ¢ cap-
tures processor demand, while e captures processor availability by
accounting for the presence of other concurrent tasks in the system.
In a time sharing scheduler, for instance, the larger the number of
runnable tasks, the smaller the value of e. In a QoS-aware sched-
uler that allows a fixed fraction of the CPU to be reserved for an
application, the value of e will be independent of other tasks in the
system.

Given the processor demand ¢, processor availability e and deadline
d, the processor speed can be chosen as follows.

Casel: If t + ¢ > dthen it is impossible to meet the task deadline
(see Figure 2(a)). Essentially, the task started “too late,” and neither
the CPU scheduler not the power management strategy can rectify

the situation. In such a scenario, the appropriate policy is to choose
the full processor speed for this task.

The next two scenarios assume that case 1 is not true and that it is
possible to meet the task deadline.

Case 2: If e < ¢, then the processor demand exceeds processor
availability for this task (see Figure 2(b)). Although it is feasible
to meet the deadline by allocating sufficient CPU time to the task,
the CPU scheduler is unable to do so due to presence of other con-
current applications. Since application performance will suffer due
to insufficient processor availability, the power management strat-
egy should not further worsen the situation. Thus, the application
should run at full processor speed for this task. Any other strategy
would violate our goal of isolation.

The final scenario assumes that neither cases 1 or 2 are true.
Case 3: If t + ¢ < d then task can finish before its deadline
at full processor speed (see Figure 2(c)). In this case, the policy
should slow down the CPU such that the demand c is spread over
the amount of time the task will execute on the CPU, while still
meeting the deadline. The CPU frequency f should be chosen as

(&

f= m  frmaz (1)
where finq. 1S the maximum processor speed (frequency).
This strategy is applicable to a variety of soft real-time applications,
so long as the notion of a task is defined appropriately. In a video
decoder, (i) decoding of each frame represents a task, (ii) ¢ denotes
the time to decode the next frame at full speed, (ii) e denotes the es-
timated duration for which the decoder will scheduled on the CPU
until the frame deadline, and (iii) d denotes the playback instant of
the frame (as determined by the playback rate of the video). While
d is known, parameters c and e need to be estimated for each frame.
Estimating processor demand: Processor demand is determined
by estimating frame decode times. We consider MPlayer an open-
source video decoder that supports both MPEG-2 and MPEG-4
playback. Note that MPEG-2 is widely used for DVD playback,
while MPEG-4 is used by commercial streaming systems such as
QuickTime and Windows Media; mplayer is representative of these
applications. A number of MPEG-2 and MPEG-4 video clips with
different bit rates and spatial resolutions were decoded by an in-
strumented mplayer that measured and logged the decode time of
each frame at full processor speed. We analyzed the resulting traces
by studying the first and second order statistics of the decode times
and frame sizes for each frame type (i.e., I, P, B). Our analy-
sis, the details of which may be found in [13], shows a piece-wise
linear relationship between the decode times and the frame sizes
for each frame type. These results corroborate the findings of a
prior study on MPEG-2 where an approximate linear relationship
between frame size and decode times was observed [1]. Using these
insights, we constructed a predictor that uses the type and size of
each frame to compute its decode time. A key feature of our pre-
dictor is that the prediction model is parameterized at run-time to
determine the slope and intercept of the piece-wise linear function.
To do so, the video decoder stores the observed decode times of the
previous n frames, scales these values to the full-speed decode time
(since the observed decode times may be at slower CPU speeds),
and uses these values to periodically recompute the slopes and the
intercepts of the piece-wise linear predictor. This not only enables
the predictor to account for differences across video clips (e.g., dif-
ferent bit rates require different linear predictors), it also accounts
for variations within a video (e.g., slow moving scenes versus fast
moving scenes in a video). The parameterized predictor is then
used to estimate the decode time of each frame at full processor
speed. Additional details of our predictor including its experimen-
tal validation may be found in [13].
Estimating processor availability: Using the Chameleon inter-



face, the application can obtain the start and end times of the previ-
ous k instances where the application was scheduled on the CPU.
This history of quantum durations and the start times of the quanta
provide an estimate of how much CPU time was allocated to the
application in the recent past. An exponential moving average of
these values can be used to determine the amount of CPU time that
is likely to be allocated to the application per unit time, and this
yields the processor availability over the next d — ¢ time units.
Determining processor speed: Given an estimate ¢ of the frame
decode time and é of the processor availability, the actual CPU fre-
quency f is chosen in mplayer as follows:

fmaz ift+¢>d
f= fmaz . ife<eé %))
min (Bt fmae)  otherwise

where 3 is a correction factor that is used to account for past errors
in frame decode times. It the actual decode times are consistently
overestimated or underestimated by the predictor, the factor 3 can
be used to correct this error. The Chameleon speed adapter then
maps the computed f to the closest supported CPU speed that is no
less than the requested speed.

Implementation: We modified mplayer to implement the frame
decoding time predictor and the speed setting strategy. Our modifi-
cations were primarily restricted to the beginning and end of frame
decoding method in mplayer. We used get t i meof day to mea-
sure the frame decoding time and the Chameleon interface to es-
timate the processor availability. Other modifications involved us-
ing the Chameleon interface to set the CPU speed using Equation
2. In all, the implementation of frame decoding time predictor in-
volved 221 lines of C code, and the implementation of speed setting
strategy involved 18 lines of C code. This indicates that user-level
power management strategy can be implemented at modest effort.

3.2 Word Processor

A word processor from an Office suite is an example of an inter-
active best-effort application. Many applications such as editors,
shell terminals, web browsers and games fall into this category. \We
consider Abibrd, a popular open-source word processor from the
Gnome Office suite. AbiWord is an event-driven application that
works as follows. After an event such as a mouse click or key
stroke, the word processor must handle the event. For example,
when the user clicks on a menu item, the application must display
a drop-down menu of choices. When the user types a sentence,
each character representing a keystroke needs to be displayed on
the screen. The window needs to be redrawn when the draw event
arrives. The speed at which these events are processed by the word
processor greatly impacts the user’s experience.

Studies have shown that there exists a human perception threshold
under which events appear to happen instantaneously [2]. Thus,
completing these events any faster would not have any percepti-
ble impact on the user. While the exact value of the perception
threshold is dependent on the user and the type of task being ac-
complished, a value of 50ms is commonly used [2, 6, 14, 15]. We
also use this perception threshold in our work.

An event-driven interactive application should choose CPU speed
settings such that each event is processed no later than the human
perception threshold. One possible strategy to do so is to (i) esti-
mate the processor demand of an event, (ii) estimate the processor
availability in the next 50 ms, and (iii) choose a speed such that the
demand is spread over the available CPU time while still meeting
the 50 ms perception threshold. Since an event-based application
may process many different types of events, estimating processor
demand for each event will require the approach to be explicitly
aware of different event types and their computational needs. Such
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Figure 3: Event processing in aword processor

a strategy can be quite complex for applications such as browsers
or a word processors that support a large number of event types.
Instead we propose a different technique that can meet the human
perception threshold without requiring explicit knowledge of vari-
ous events types. Our technique referred to as gradual processor
acceleration (GPA) accounts for the processor demand and the pro-
cessor availability implicitly.

Upon the arrival of any event, the word processor is configured to
run under at a low CPU speed, and a timer is set (the timer value
is less that the perception threshold). If the processing of the event
finishes before the timer expires, then the application simply waits
for the next event. Otherwise, it increases the CPU speed by some
amount and sets another timer. If the event processing continues
beyond the timer expiration, the CPU speed is increased yet again
and a new timer is set. Thus, the processor is gradually acceler-
ated until either the event processing is complete or the maximum
CPU speed is reached. In order to ensure adequate interactive per-
formance, the maximum CPU speed is always used when the event
processing time exceeds the perception threshold.

To understand how to instantiate this policy, suppose that the event
arrives at time ¢ and the application is actually scheduled on the
CPU attime ¢’ (although the application becomes runnable as soon
as the event arrives, other concurrent applications can delay the
scheduling of this application). From the perspective of the user,
a response is desirable from the application no later than ¢ + 50
ms. Since the application actually starts executing at time ¢/, it
needs to process the event within the remaining 50 — 5 ms, where
3 = t' —t (see Figure 3). To do so, we choose n timers, which have
values ¢4, ta, ..., tn, and Z?’:l t; = 50 — . After the expiration
of the ith timer, the processor speed is increased to f;, where f;
denotes a fraction of the maximum speed. The values of f; are
chosen such that the processor speed increases progressively and
fn = fmaz = 1. Thus, the application runs at full processor speed
if the event processing continues beyond 50 — 3 ms. Observe that,
rather than explicitly estimating the processor demand of the event,
the GPA technique monitors the progress of the event processing
and adjusts the processor speed accordingly. Further, 5 implicitly
captures the impact of other concurrent applications in the system.
Analysis: It is possible to bound the maximum slowdown incurred
by an application in the GPA technique by carefully choosing timer
values and CPU speeds. To see how, observe that if the processor
were running at full speed, the amount of work done in the interval
[, + >0, t:) will take only =7 | fit; at full processor speed.
If the actual full-speed processing time of the event is smaller than
this value the event finishes before the 50 — 3 ms perception thresh-
old in the GPA technique, and thus the user does not perceive any
performance degradation. For any event requiring more than this
amount of full speed execution time, the maximum possible per-
formance degradation under our strategy is given by:

degrade =50 — 8 — > fi - t; ®3)
=1
since the processor will run at full speed once the execution time
exceeds the perception threshold.
To illustrate, suppose that the maximum degradation is set to 20ms



over full processor speed. Let 3 = 0 for simplicity. If we choose
five timers with values 30ms, 5ms, 5ms, 5ms, and 5ms, and the
processor speeds during these timer intervals as 45%, 60%, 80%,
90%, and 100%, respectively, then, from Equation 3, the maximum
possible user-perceived degradation for any event is 20ms. This is
the maximum slowdown for any event requiring more than 50ms
of processing time.

Implementation: We implemented GPA into AbiWord, a sophis-
ticated word processor with a code base of hundreds of thousands
lines of C code. Our implementation was straight-forward. We
added code at the beginning of the AbiWord event handler to im-
plement the GPA technique. The X11-server assigns a time-stamp
to each new user event such as mouse click or key-stroke. We ex-
tracted this time-stamp ¢ and used get t i neof day to determine
the execution start time ¢’. The parameter 3 is computed as the dif-
ference between ¢’ and ¢. This took only 17 lines of C code while
setting timers and invoking the Chameleon interface took 23 lines
of C code. In all, the implementation of GPA took only 40 lines of
C code—a fairly modest change.

3.3 Web Browser

A web browser is another example of an event-driven interactive
application that needs to process various events such as a mouse
click or a keystroke. When the user types a URL or data into a web
form, the keystrokes need to be displayed on the screen. When the
mouse is positioned over a hyperlink, visual feedback needs to be
provided by changing the shape of the mouse cursor. When the
user clicks on a link, the browser needs to construct and send out a
HTTP request; when data arrives from the remote server, it needs to
parse and display the incoming data. Although the network delay
is beyond the control of the browser, all other “local” events should
be processed within the human perception threshold for good in-
teractive performance. The GPA technique can be directly used for
power management in such a browser.

We chose Dillo, a compact, portable open-source browser that runs
on desktops, laptops and PDAs and implemented the GPA tech-
nique into this browser. Like in the case of the word processor, our
modifications were restricted to the event handler in Dillo. First, we
extracted the event arrival time and the execution start time in the
event handler to compute 3. We then added code to set timers and
increase the processor speed upon timer expiration. In all, the im-
plementation of GPA into Dillo involved 46 lines of C code, again
demonstrating the modest nature of our modifications.

3.4 Batch Compilations

Compilations using make is an example of a batch application. Un-
like interactive applications where the response time is important,
the throughput is important for batch applications. Typically, make
spawns a sequence of compilation tasks, one for each source code
file. One possible user-level power management strategy is to esti-
mate the processor demand for each compilation task and to choose
an appropriate speed setting. However, since each compilation task
is relatively short-lived, gathering CPU statistics for each process is
difficult. Instead, a better strategy is to allow the end-user to spec-
ify the desired speed setting. System defaults can be used when the
user does not specify a setting.

Most Unix-like operating systems support the nice utility, which
allows the end-user to specify a CPU scheduling priority prior for a
new process. For instance, the user can invoke the command ni ce
-n N make to specify that make should run at priority N. A
low priority enables the batch application to run in the background
without interfering with foreground interactive applications. A high
priority can also be chosen if the new application is more important
than current applications.

A similar strategy can be used for choosing CPU speed settings.
We implemented a utility called pnice that enables the end-user
to specify a particular CPU speed setting for a new process. For
instance, the user can invoke the command pni ce -n N nake
to specify that make and all compilations spawned by its should
run at a fixed CPU speed setting V. A lower speed setting enables
energy savings at the expense of increasing the completion time,
whereas a higher setting lowers the completion time at the expense
of higher energy consumption.

Implementation of pnice was straightforward. The pnice process
first changes its own speed setting to the specified value N using
the Chameleon interface. Next, it invokes exec to run the speci-
fied command. This ensures that the application inherits the speed
setting of the pnice process. The Chameleon kernel implementa-
tion ensures that any process forked by a parent process inherits the
CPU speed setting of the parent. The pnice utility was implemented
in 125 lines of C code, again demonstrating that implementation of
user-level power management policies take modest effort.

4. USER-LEVEL POWER MANAGER

The previous section demonstrated how many commonly used ap-

plications can implement their own power management strategy.

However, implementing a user-level power management strategy

requires modification to the source code, which may not be feasi-

ble for legacy applications. Such applications can delegate the task

of power management to a user-level power manager. The power

manager can use CPU usage statistics and any application-supplied

knowledge to modify CPU speed settings on behalf of the appli-

cations. A simple user-level power manager may choose a single

speed setting for all applications based on current utilization; the

speed setting is varied with observed changes in system utilization.

A more complex strategy is to choose a different speed setting for

each individual application based on its observed behavior; doing

SO requires usage statistics to be maintained for each application.

Multiple user-level power managers can coexist in the system, so

long as each manages a mutually exclusive subset of the applica-

tions. Thus, it is feasible to implement a different power manager

for each class of application.

The Chameleon interface enables the entire range of these possi-

bilities. To demonstrate the flexibility of our approach, we take a

recently proposed DVFS approach—GraceOS [26, 27] —and show

how it can be implemented as a user-level power manager using

Chameleon. Our objective is two-fold. First, we show that many

recently proposed approaches such as GraceOS that employ an in-

kernel implementation can be implemented as user-level power man-
agers in our approach. Second, GraceOS advocates a cooperative

application-OS approach, where applications periodically supply

information to the OS and the OS chooses the processor speed set-

ting based on this information and usage statistics. We show that

such interactions between the application and the CPU scheduler

are feasible using Chameleon.

Implementation: We begin with a brief overview of the GraceOS [26,
27]. GraceOS is designed for periodic multimedia applications that
belong to the soft real-time class. GraceOS treats such applica-
tions differently from traditional best-effort applications. Whereas
best-effort applications are scheduled using the Linux time-sharing
scheduler and do not benefit from DVFS, soft real-time applica-
tions are scheduled using a QoS-aware soft real-time scheduler and
benefit from DVFS.

To handle soft real-time applications, GraceOS employs two key
components: (i) a real-time scheduler and (ii) a DVFS algorithm.
The CPU scheduler is vanilla earliest deadline first (EDF); stan-
dard EDF theory is used to perform admission control of soft real-



time tasks based on their worst case CPU demands. Admitted soft
real-time tasks have strict priority over best-effort tasks. Deadlines
derived from the application-specified periods are used for EDF
scheduling of these tasks. Three system calls—Enter SRT, Exit-
SRT, and FinishJob—are used to convey start and finish time of
tasks (e.g., frame decode) to the scheduler.

The DVFS algorithm maintains a histogram of CPU usage and de-
rives a probability distribution of processor demand. The processor
demand and the application-specified periods are used in a dynamic
programming algorithm to derive a list of speed scaling points.
Each point (z,y) specifies that a job should runs at the speed y
when it has used x cycles. The DVFS algorithm monitors the cycle
usage of the task. If the usage increases beyond z, the next speed
setting v is chosen. Observe that this technique has similarities
with our GPA technique where the progress of a task is monitored
and the speed is increased gradually. The key difference is that the
durations = and speeds y are computed at run-time using dynamic
programming, whereas in GPA, they are statically chosen.

To implement GraceOS as a user-level power manager, we must
distinguish between the DVFS component and the CPU scheduler.
The DVFS algorithm is fully implemented in user space and uses

the Chameleon interface to query usage statistics and monitor progress.

The CPU scheduler and any interactions between the application
and the scheduler must be implemented separately from Chameleon.
Since Chameleon does not make any specific assumptions about the
underlying scheduler, it is compatible with any CPU scheduling al-
gorithm, including EDF.

Consequently, our implementation of the GraceOS includes three
components: (i) a user-level daemon to calculate the soft real-time
task’s demand distribution, cycle budget, and speed schedule using
dynamic programming (300 lines of C code); (ii) use of Chameleon’s
/dev/syscpu interface driver to query the actual usage of each soft
real-time task (109 lines of C code); and (iii) three system calls
Enter SRT, ExitSRT, and FinishJob that allow an application to con-
vey the beginning and end of each soft real-time task (23 lines of
C code). Observe that the first two components relate to the DVFS
algorithm, while the third component is used by the CPU sched-
uler in GraceOS. The GraceOS user-level power manager runs at
the highest CPU priority in our system. All soft real-time applica-
tions run at the next highest CPU priority, and best effort jobs run
at lower priorities. EDF scheduling is emulated by manipulating
priorities of tasks; the task with the earliest deadline is elevated in
priority (analogous to the implementation of EDF in GraceOS).

5. IMPLEMENTATION

Our prototype of Chameleon is implemented as a set of modules
and patches in the Linux kernel 2.4.20-9.

New system calls: We added four new system calls to implement
the Chameleon OS interface: (i) get-speed, which returns the cur-
rent CPU speed of the specified process or process group; (ii) set-
speed, which sets the CPU speed of the specified process or pro-
cess group; (iii) get-speed-schedule, which returns processor bud-
get and speed schedule of the specified process, and (iv) set-speed-
schedule, which sets the processor budget and speed schedule of
the specified task. The latter two system calls enable sophisticated
speed setting strategies, where an application can specify an a pri-
ori schedule for changing the speed as it executes.
Chameleon-enhanced /proc interface: We enhanced the /proc in-
terface by adding a /proc/Chameleon sub-tree. This directory holds
one file for each Chameleon-driven process and allows applications
to query their CPU quantum allocations in the recent past.
Chameleon /dev interfaces. To support user-level power man-

agers, we added two new /dev interfaces: /dev/sysdvfsand /dev/syscpu.
The system-wide utilization is reported via /dev/sysdvfs, whereas

the CPU cycles consumed by individual tasks are reported via /dev/syscpu.

Process control block enhancements: In order to allow Chameleon
to implement techniques such as PACE [14, 15] and GraceOS [26,
27] as user-level power managers, we borrowed several process
control block attributes from the GraceOS implementation: (i) cy-
cle counter, which measures the CPU cycles used by a task, (ii)
cycle budget, which stores the number of allocated cycles, and
(iii) speed schedule, which stores a list and schedule of speed scal-
ing points. Whereas these three attributes are meaningful only for
Chameleon processes managed by user-level power managers, we
also added three more attributes that are applicable to all processes
in the system: (i) Chameleon-driven-flag, which indicates if the
process is directly modifying its speed settings; (ii) current-speed,
which specifies the current CPU speed setting of the process; (iii)
inheritable-flag, which indicates if the speed setting is inheritable
by its children.

DVS kernel module: The DVS kernel module is actually respon-
sible for interfacing with the hardware in order to modify the pro-
cessor speed. This is done by writing the frequency and voltage to
two machine special registers (MSR) [26, 27]. Chameleon can be
applied to any DVFS-enabled processor by implementing a DVS
kernel module specific to that processor.

Linux scheduler enhancements: We modified the standard sched-
uler to add per-process speed settings and cycle charging. Similar
to our process control block enhancements, cycle charging is only
necessary to implement other techniques as user-level power man-
agers, and is directly inspired by the GraceOS implementation [26,
27]. Whenever the schedule() function is invoked, the modified
scheduler will do the following: (i) in the case of no context switch,
it may change the speed of the current task according to its speed
schedule; (ii) in the case of a context switch, the scheduler performs
some book-keeping only for the previous task with a speed sched-
ule (e.g., update its cycle counter, decrement cycle budget, advance
speed schedule, etc.); (iii) then the scheduler sets the CPU speed
for the new task based on its current-speed attribute.

Our implementation of Chameleon runs on a Sony Vaio PCG-V1CPK
laptop with Transmeta Crusoe TM5600-667 processor [23]. The
Transmeta TM5600 processor supports five discrete frequency and
voltage levels (see Table 1) and implements the LongRun [7] tech-
nology in hardware to dynamically vary the CPU frequency based
on the observed system-wide CPU utilization. LongRun varies the
CPU frequency between a user-specified maximum and minimum
values—these values can be set by users by writing to two ma-
chine special registers (MSR). By default, these values are set to
300 MHZ and 677 MHz, enabling the full range of voltage scaling.
LongRun can be disabled by setting the minimum and maximum
register values to the same frequency (e.g., setting both to 533 MHz
does not allow any leeway in changing the CPU frequency, effec-
tively disabling LongRun). This feature can be used to implement
voltage scaling in software—the power-aware application can de-
termine the desired frequency and set the two registers to this value.

Freg. (MHz) || Voltage (V) | Power (W)
300 1.2 1.30
400 1.225 1.90
533 1.35 3.00
600 15 4.20
667 1.6 5.30

Table 1: Characteristics of the TM 5600-667 processor



6. EXPERIMENTAL EVALUATION

We evaluated Chameleon on a Sony PCG-V1CPK laptop equipped
with a Transmeta Crusoe processor and 128MB RAM. The operat-
ing system was Red Hat Linux 9.0 with a modified version of kernel
2.4.20-9. To compare Chameleon with other DVFS approaches, we
implemented three OS-based DVFS techniques proposed in the lit-
erature: (i) PAST [24], (ii) PEAK [12], and (iii) AV G,, [11], all of
which are interval-based system-wide DVFS techniques. Our ex-
periments involve running applications under six different configu-
rations: (i) with DVFS disabled—the CPU always runs at the max-
imum speed (denoted as FULL), (ii) using the hardwired LongRun
technology, (iii) using PAST, (iv) using PEAK, (v) using AV G,
and (vi) using Chameleon (where LongRun is disabled for power-

aware applications but enabled for legacy applications).
The energy consumption of the processor during an interval 7' is
computed as

n
energy = 3 pits @
i=1

where n is the number of available frequency/voltage combina-

tions on the processor, p; denotes the power consumption of the
processor when running at the sth frequency/voltage combination,
and t; represents the time spent at the ith frequency/voltage com-
bination during the interval 7. We modified the Linux kernel to
record the energy consumption of the TM5600 processor using
Equation 4 and Table 1. Given the energy consumption of the pro-
cessor during an interval T, the average power consumption of the
processor during this interval is computed as powera.,g = <94,
Our experiments showed that PEAK always consumed the Ieast
processor energy among all DVFS techniques. However, it trades
its energy savings with an unacceptably high performance degrada-
tion for time-sensitive multimedia and interactive applications. For
example, video decoding of a 30 minutes clip took an extra 16.6
minutes, resulting in poor performance. Therefore, we omit the re-
sults of PEAK in the rest of this paper and refer the readers to [13]
for these results.

6.1 Chameleon-aware Applications

We first evaluate our four Chameleon-aware applications. Our ex-
periments assume a lightly-loaded system that runs a single appli-
cation with the typical background system processes.

6.1.1 Video Decoder

We encoded several DVD movies at different bit-rates and reso-
lutions using Divx MPEG2/MPEG4 video codec and MP3 audio
codec The characteristics of six such movies are listed in Table 2.
The bit-rates are depicted in the form (a + b)Kbps, where a is the
video and b is the audio bit-rate. We recorded the energy consumed
by the processor during playback of these movies at full speed, with
LongRun, with Chameleon, with PAST, and with AV G,,.

Res. Length | Frames | Bit-Rate(Kbps)
Movie 1 || 640x272 | 3360s 80387 | 1290.9 + 179.2
Movie 2 || 640x272 | 612s 14577 757.2+128.0
Movie 3 || 640x352 | 7168s | 179168 679.7+128.0
Movie 4 || 640x352 | 602s 15003 861.9 + 128.0
Movie 5 || 640x352 | 1755s 42040 | 2456.9 + 192.0
Movie 6 || 640x480 | 2394s 57355 | 1674.6 +384.0

Table 2: Characteristics of MPEG 4 Videos
Our experiments show that all five configurations handle movie
playback very well. The same playback quality is observed un-
der: identical execution times which equal the length of the movies,
identical frame rates, no dropped frames, and no user-noticeable
delays. However, the average CPU power consumption differs sig-

nificantly across the various configurations (see Figure 4(a)). Fig-
ure 4(a) shows that: (i) neither PAST nor AV G, can outperform
LongRun; (ii) LongRun can achieve significant energy savings (from
27.36% 10 57.26%) when compared to FULL; (iii) the Chameleon-
aware mplayer can achieve an additional 20.52% to 31.99% energy
savings when compared to LongRun.

Although there are no user-perceived playback problems (in terms
of dropped frames or playback freezes) under the five configura-
tions, we do observe jitter in the playback quality at the frame-
level. Such small inter-frame jitter is inevitable in a time-sharing
CPU scheduler, although its effects are not perceptible at the user-
level. mplayer provides statistical measurements of late frames—
the number of frames that are behind their deadline by more than
20% of the frame interval. As shown in Figure 4(b), the number
of late frames in Chameleon is mostly comparable to PAST and
AV G, and typically better than LongRun (while consuming the
least energy). FULL has the least—although not zero—Ilate frames
at the expense of the highest energy consumption. The number of
late frames is small (0.2 — 2.3%) in all configurations.

6.1.2 Web Browser and Wbrd Processor

We ran the web browser and the word processor and measured their
average power consumption, the average response time, and the
percentage of late events (where event processing time exceeds the
50ms threshold).

To eliminate the impact of variable network delays, our experi-
ments with the web browser consisted of a client requesting a se-
quence of web pages from a web server on a local area network;
the requested web pages consist of actual web content that was
saved from a variety of popular web sites. Each experiment con-
sists of a sequence of requests to these web pages with a uniformly
distributed “think-time” between successive requests. The experi-
ments differ in the requested web pages and the chosen think times;
each experiment is repeated under the five configurations, and we
measure the mean for each experiment.

The workload for the word processor emulates a user editing a se-
quence of documents. Each experiment contains a script that makes
a sequence of editing requests to these documents with a uniformly
distributed “think-time” between successive requests. The experi-
ments differ in the edited documents and the chosen think times;
each experiment is repeated under the five configurations, and we
measure the mean for each experiment.

Figure 5(a) shows that LongRun consumes a factor of three less
power than FULL. Chameleon is able to extract an additional 10.27%
energy savings when compared to LongRun, while PAST is worse
than LongRun. We also note that the average power consumption
under Chameleon is only 0.03W and 0.06W higher than the power
consumption at the slowest CPU speed (300MHz) for the browser
and the word processor, respectively. Further, most events finish in
Chameleon without any performance degradation. The percentage
of late events is only 0.24% and 0.22% in the word processor and
the browser, respectively, and is comparable to other approaches.
Finally, the increase in processing times of late events is no more
than 20ms (obtained by substituting the chosen timer values and
CPU speeds in Equation 3).

6.1.3 Batch Compilations

We compiled a portion of the ns-2 network simulator using make
and our pnice utility. We chose different values of the CPU speed in
pnice and measured the power consumption and completion times
of make. As expected, our results, depicted in Table 3, show that
the power consumption can be traded for completion time by appro-
priately choosing a speed setting. Faster speeds lower completion
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times at the expense of higher energy.

Freq. Completion | Mean Power
(MHz) Time Consumed
300 13765 1.38W
400 10665 1.96W
533 910s 3.00W
600 812s 4.14W
667 776s 5.15W

Table 3: Completion timesand mean CPU power consumption
for batch compilations.

6.2 Isolation in Chameleon

We claim that Chameleon isolates an application from the power
settings of other applications. To demonstrate this isolation, we ran
mplayer with a mishehaving background application. The back-
ground application rapidly switches its CPU speeds from one set-
ting to another every few milliseconds. We ran mplayer with this
application when it was well-behaved (it used a fixed CPU speed
throughout) and then with the misbehaving version of the applica-
tion. We measured its impact on the progress of the mplayer. Our
results show that the progress made by mplayer is unaffected by the
rapid changes of CPU speed by the misbehaving application—any
change to the CPU speed by an application only impacts its own
progress and has no impact on the CPU shares of other applica-
tions.

6.3 Impact of Concurrent Workloads

To demonstrate that applications can make locally- and globally-
optimal power management decisions in the presence of concur-
rent applications, we considered four application mixes: (i) video
decoder and web browser (mix M1), (ii) video decoder and word
processor (mix M2), (iii) video decoder and batch compilations
(mix M3), and (iv) batch compilations and word processor (mix
M4). Note that, from the perspective of the video decoder, the
background load increases progressively from mix M1 to M3.
Table 4 and Figure 6 show the average power consumption and the
performance of these applications under various power manage-
ment strategies. Table 4 shows that Chameleon always consumes
the least energy among the five configurations. The energy savings
range from 19.81% to 31.19% when compared to LongRun, which
itself extracts up to 41.89% reduction when compared to FULL.
The performance degradation, depicted in Figure 6(a), shows that
interactive application performance in Chameleon is comparable to
the other techniques. For instance, the average event processing
time of the word processor under mix M2 increases from 4.4ms
in LongRun to 5.96ms in Chameleon and is well under the human
perception threshold of 50ms. A similar result is seen for the web
browser under mix M1. The percentage of late events remains well
under 1% under all mixes (see Figure 6(b)).

Figure 6(c) plots the percentage of late frames in the video de-
coder for different mixes. The figure shows that the percentage
of late frames in Chameleon is comparable to other approaches.
As the background load increases from mix 1 to mix 3, we see
that the percentage of late frames increases from around 0.4% to
more than 22%. For mix M3, all techniques, including FULL, in-
cur 22% deadline misses. Decoding of the 10 minute clip takes
an extra 20 seconds under all techniques, resulting in poor perfor-
mance. This is primarily due to insufficient processor availability
at higher loads, as opposed to deficiencies in the power manage-
ment technique. Due to the background load imposed by the batch
compilations in mix M3, the time sharing scheduler is unable to
allocate sufficient CPU time to the video decoder.

Figure 7 shows the fraction of time spent by the video decoder at
different CPU speed settings. In the absence of any background
load, the decoder is able to lower its speed setting to the lowest
speed for more than 90% of the time. As the load increases, the
fraction of time spent at higher speeds increases. For mix M3, more
than 80% of the time is spent at the highest speed (recall that insuf-
ficient processor availability causes the video decoder to run at full
speed—Case 2 in Section 3.1).

Under mix M3, the only possible solution is to use a QoS-aware
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scheduler that guarantees a fixed fraction of the CPU to the video
decoder regardless of the background load. We ran mix M3 with
Chameleon on a proportional-share scheduler, namely Hierarchical
Start Time Fair Queue (HSFQ) CPU scheduler [10]. In this exper-
iment, we assigned 1/14 fraction of CPU time to the batch compi-
lations, 12/14 fraction of CPU time to the video decoder and the
X server, and the remaining 1/14 to the other tasks. As expected,
the percentage of late frames in the video decoder fell to a very
small value. Further, since processor availability is guaranteed in
HSFQ, as shown in Figure 7, the video decoder was able to spend
73.73% of its execution time at the lowest frequency (300MHz)
(compared to 7.74% under time-sharing CPU scheduler). This
causes the mean power consumption to fall to 2.1W, a 44.8% re-
duction when compared to the time-sharing scheduler.

Chameleon | LongRun | PAST | AVG, | FULL
Mix M1 2.25W 3.27TW 3.98W | 4.42W | 5.3W
Mix M2 2.47TW 3.08W | 3.79W | 3.83W | 5.3W
Mix M3 3.81W 5.27TW 5.26W | 5.27TW | 5.3W
Mix M4 3.71W 5.22W 5.23W | 5.23W | 5.3W

Table 4: Average CPU Power Consumption for various mixes.

6.4 User-level Power Manager Experiments

We modified mplayer to use the GraceOS system calls and used it
to decode the movies in Table 2. The GraceOS user-level power
manager was used to make power management decisions on behalf
of mplayer. We measure the energy consumed by mplayer and plot
it in Table 5. Our results show that GraceOS can achieve 3.50%
to 18.44% energy savings when compared to LongRun. However,
Chameleon outperforms GraceOS by 9-41%. This is because the
Chameleon-enhanced mplayer is able to estimate decode times of
individual frames based on domain-knowledge, while GraceOS re-
lies on external observations of the CPU usage of mplayer. This

domain knowledge yields an extra 9-41% in Chameleon.

Movies || AVG. Power | Eng. Sav. to LongRun | to Chameleon
Movie 1 2.11W 7.05% —27.88%
Movie 2 1.64W 13.68% —9.33%
Movie 3 2.11W 15.94% —24.12%
Movie 4 2.76W 3.50% —41.54%
Movie 5 3.09W 8.58% —33.77%
Movie 6 3.14W 18.44% —13.69%

Table5: GraceOS CPU power consumption for movie playback

6.5 Implementation Overhead

An important consideration is the overhead caused by frequent changes

in the CPU speed setting. Using the CPU cycle counter register, we
measure the cost as 1125 cycles (about 3.75 us under 300 MHz
and 1.69 us under 667 MHz). Due to better DVFS support in
the Transmeta processor, this is considerably lower than the 8,000-
16,000 cycles reported for an HP laptop used in the GraceOS ex-
periments [26, 27]; however, both incur minimal overhead. Finally,
the overhead values of the video decoder, GPA and pnice strategies
are 2738 per frame, 1149 per timer, and 127 CPU cycles, respec-
tively, which is in the order of a few micro-seconds.

7. RELATED WORK

Recently, power management techniques for mobile devices have
received increasing research attention. The proposed techniques ei-
ther use dynamic voltage and frequency scaling (DVFS) [3, 16, 17,
19, 26, 27] or application/middleware-based adaptation [8, 9, 21,
22] for energy savings. DVFS approaches extract energy savings
by varying the processor speed; the techniques do not affect the
amount of processing performed by the application—the process-
ing is merely spread over longer time periods by lowering CPU
speeds. In contrast, middleware-based adaptation approaches vary
quality or data fidelity and thus, the amount of processing per-
formed by the application to extract energy savings. \We review
related work in both categories.

Application or middleware-based adaptation techniques trade the
computational overhead for application quality; energy savings are
extracted by reducing video quality [21, 22], document quality [8]
or data fidelity [9], and thus, the processing overheads. Proxy-
based adaptation for reducing video quality has been explored in
[21, 22]. Puppeteer adapts document quality (i.e. picture resolu-
tion, color depth) for energy savings of office applications [4, 8].
The impact of adapting the data fidelity on energy savings of sev-
eral applications has also been demonstrated in Odyssey [9].

In contrast, DVFS techniques do not reduce the amount of pro-
cessing overhead imposed by an application; instead they vary the
CPU speed to match the CPU load and extract energy savings [3,



16, 17, 19, 26, 27]. DVFS techniques fall into four categories:
hardware-based, OS-based, cooperative application-OS-based, and
application-directed methods. Hardware-based approaches such as
LongRun [7] measure system utilization in hardware and choose a
system-wide speed setting based on the current utilization. An on-
line hardware approach for voltage and frequency control in multi-
ple clock domain microprocessors has been proposed in [25]. OS-
based approaches determine a system-wide CPU setting based on
the processor demands of the currently active tasks [6, 14, 15, 20].
In this approach, individual applications do not have any direct
control over the CPU power settings. A single system-wide CPU
setting is determined, typically based on the needs of the most
resource-hungry application, even when a mix of applications is
executing on the processor. Furthermore, the OS needs to infer the
processing needs of applications and can incur measurement errors.
In cooperative application-OS approaches, the application provides
some domain-specific information to the kernel. The OS kernel
and the CPU scheduler use this information for CPU speed setting
and/or scheduling. GRACE-OS [26, 27] proposes such a coopera-
tive application/OS approach for periodic multimedia applications.
It uses probability distributions of CPU usage of periodic applica-
tions and knowledge of application periods (which is supplied by
the application) for choosing CPU speeds. Aperiodic or non-real-
time applications are currently not handled by the approach.

An cooperative power management approach was proposed in [18]
to unify low level architectural optimizations (CPU, memory, reg-
ister), OS power-saving mechanisms (DVFS) and adaptive middle
techniques (admission control, optimal transcoding, network traffic
regulation). In this technique, interaction parameters between the
different levels are identified and optimized to significantly reduce
power consumption.

Rather than an OS-application partnership, Chameleon exports the
entire burden of power management to the user level.

Finally, several different application-controlled DVFS techniques
for video decoding have been proposed [3, 16, 17, 19]. While some
require offline estimation of CPU demands for decoding [17], oth-
ers can estimate the CPU demands online [3, 16, 19]. However,
all of these techniques implicitly assume only a single application
is executing on the CPU and grant complete control of the proces-
sor settings to the video decoder. Unlike in Chameleon, other ap-
plications are not considered—the issue of concurrent applications
that might use a different speed setting is not considered in these
efforts, nor is the issue of providing isolation across applications
considered explicitly.

8. CONCLUSIONS

This paper argued that applications know best what their energy
needs are and proposed Chameleon, an approach that puts the en-
tire burden of power management on individual applications. Our
implementation and experiments showed that (i) user-level poli-
cies can be implemented at a modest cost of tens of lines of code,
(ii) Chameleon can extract up to 32% energy savings when com-
pared to LongRun and up to 50% when compared to recent OS-
based DVFS techniques, (iii) concurrent applications benefit from

Chameleon’s flexibility, and (iv) Chameleon imposes negligible over-

heads.
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