
FULL AUTOMATION OF IT infrastructure and the delivery 
of efficient IT operations as billed services have been 
long-standing goals of the computing industry since at 
least the 1960s. A newcomer—serverless computing—
emerged in the late 2010s with characteristics claimed 
to be different from those of established IT services, 
including Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), and Software-as-a-Service (SaaS) 
clouds. Even though serverless computing has gained 
significant attention in industry and academia over 
the past five years, there is still no consensus about 
its unique distinguishing characteristics and precise 
understanding of how these characteristics differ from 
classical cloud computing.

What is serverless computing, and what are its 
implications?

Market analysts are agreed that 
serverless computing has strong mar-
ket potential, with projected com-
pound annual growth rates (CAGRs) 
varying between 21% and 28% through 
20284,25,33,35,49 and a projected market 
value of $36.8 billion49 by that time. 
Early adopters are attracted by ex-
pected cost reductions (47%), reduced 
operation effort (34%), and scalabil-
ity (34%).17 In research, the number of 
peer-reviewed publications connected 
to serverless computing has risen 
steadily since 2017.46 In industry, the 
term is heavily used in cloud provider 
advertisements and even in the nam-
ing of specific products or services.

Yet despite this enthusiasm, there 
exists no common and precise under-
standing of what serverless is (and of 
what it is not). Indeed, existing defi-
nitions of serverless computing are 
largely inconsistent and unspecific, 
which leads to confusion in the use 
of not only this term but also related 
terms such as cloud computing, cloud-
native, Container-as-a-Service (CaaS), 
Platform-as-a-Service (PaaS), Function-
as-a-Service (FaaS), and Backend-as-a-
Service (BaaS).12

As an extended discussion during a 
2021 Dagstuhl Seminar2 and our analy-
sis of existing definitions of serverless 
computing reveal, current definitions 
focus on a variety of aspects, from ab-
stractions to practical concerns, from 
computational to financial, from sepa-
ration of concerns to how concerns 
should be enacted, and so on.

These definitions do not provide 
consensus, and they are omissive in 
essential points or even diverge. For 
example, they do not agree on wheth-
er serverless is solely a set of require-
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a given platform can be considered as 
serverless computing or not. Finally, 
we review serverless computing appli-
cations, discuss open challenges, and 
provide an outlook on the future of the 
serverless paradigm.

Our goal is to help improve com-
munication among researchers and 
practitioners, reducing confusion and 
misunderstandings due to the lack of 
understanding of the underlying con-
cepts and their historical evolution. 
Conceptual understanding of the state 
of the art coupled with clear and con-
sistent terminology provide a basis for 
supporting interoperability between 
emerging platforms as well as for future 
research driving the further advance-
ment of the field.

ments from the user’s perspective 
or it should also mandate specific 
implementation choices on the pro-
vider side, such as implementing an 
autoscaling mechanism to achieve 
elasticity. Similarly, they do not agree 
on whether serverless is just the oper-
ational part, or it should also include 
a specific programming model, inter-
face, or calling protocol. These and 
related aspects make serverless com-
puting an interesting object of study 
for academics, complementing the 
economic and industrial interest, but 
an object whose current definition is 
fraught with confusion.

In this article, we seek to dispel this 
confusion among others by propos-
ing a refined definition capturing the 

essential conceptual characteristics 
of serverless computing as a para-
digm, while putting the various terms 
around it into perspective. We start 
by providing an analogy to intuitively 
illustrate serverless computing and 
how it compares to classical cloud 
computing. We then examine how 
the term serverless computing, and 
related terms, are used today. We ex-
plain the historical evolution leading 
to serverless computing, starting with 
mainframe virtualization in the 1960s 
through to grid and cloud computing 
all the way up to today. We review ex-
isting cloud computing service mod-
els (including IaaS, PaaS, SaaS, CaaS, 
FaaS, and BaaS), and for each of them, 
we discuss which aspects determine if 
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Figure 1. Analogy between IT services and moving homes.
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TECHNICAL BOX

Serverless through an Analogy:  
Services for Moving Homes
We explain serverless computing via an 
analogy. Moving homes is a familiar, if 
not always welcome, task in our lives. 
Household items must be packaged, 
packages delivered to their destination, 
and operational and even legal issues 
resolved. These demanding and often 
complex tasks, like computing, offer 
many opportunities for outsourcing 
and specialization. As illustrated in Fig-
ure 1, we group these opportunities into 
three broad classes.

One approach to moving homes, 
representing self-hosting in our anal-
ogy, is to move everything independent-
ly. Many students take this approach. 
Here, we must disassemble and pack-
age all objects, load them into the car, 
plan the route, and drive the whole way.

There may be borders on the way, in 
which case we must do paperwork. This 
approach gives us maximal flexibility 
and control, but as it costs considerable 
resources in planning and executing, it 
is inefficient for one-time movers. The 
inefficiency arises from not exploit-
ing the many opportunities for process 
learning and economies of scale.

A second approach, which repre-
sents classical cloud computing (IaaS/
PaaS) in our analogy, is to hire a tradi-
tional moving company. They specialize 
in loading and driving to the destina-
tion cheaply. They are efficient in what 
they do but leave little room for custom-
ization and defer all operational details 
other than packing and driving the van 
to the client. They have several kinds of 
crates, but we must disassemble our fur-
niture, pack it into crates, and unpack 
and rebuild it at the destination. We 
pay by crate size, regardless of its actual 
occupancy. Odd-sized objects are not 
allowed, and it is our responsibility to 
ensure grandma’s precious mirror stays 
intact. Individual operations do not ap-
pear in the final bill. Furthermore, the 
processes happen relatively slowly, and 
changes or additional requests can take 
days to be acknowledged. Bottom line: 
We can move cheaply and retain some 
control, but we do not receive a detailed 
bill, pay for all operations regardless of 
their usefulness, and are responsible 
for everything but loading, relocating, 
and unloading crates.

The third and simplest approach 
to moving homes, which we suggest 
is akin to serverless computing, is to 
hire professional movers. The movers 
know how to plan and transport loads. 
They handle legal paperwork and take 
responsibility if objects break. They 
have a broad collection of appropri-
ately sized boxes, which they select on 
our behalf, and they pack objects into 
those boxes efficiently and safely. They 
know about various kinds of furniture, 
so there is no risk that they may break 
them apart instead of merely disassem-
bling them, or that they may not be able 
to put them back together. They handle 
fragile objects with care and sign off on 
expensive antiques. They can configure 
Internet and cable in the new location. 
They know plants require air and water. 
All these operations are recorded and 
appear explicitly in the final bill. They 
perform these processes rapidly and 
are responsive to additional requests 
and changes. Moreover, the movers can 
pack several jobs together, leading to 
important economies of scale without 
breaking things. We give up control but 
receive better service with less effort.

The Many Definitions of Serverless
Serverless computing is commonly un-
derstood as an approach to developing 
and running cloud applications with-
out requiring server management.12 
The term became popular after Amazon 
Web Services (AWS) introduced AWS 
Lambda in 2014.1 Since then, a number 
of serverless computing platforms have 
appeared in industry.

Serverless computing, however, still 
lacks a precise definition. To underline 
this observation, we show in Figure 2 
similarities and differences among six 
oft-cited definitions selected as rep-
resentative examples. While there are 
further definitions from different com-
munities,30,32 they share some similar 
elements and characteristics as the 
definitions we show. On the one hand, 
the definitions differ in their scope and 
level of detail; on the other hand, they 
appear to make some inconsistent as-
sumptions, which may leave the im-
pression of contradictory viewpoints. 
We see that while certain characteristics 
recur, only two are to be found in all six 
existing definitions, and even then, with 
different emphasis. Other characteris-

Serverless 
computing 
is commonly 
understood as 
an approach to 
developing and 
running cloud 
applications  
without 
requiring server 
management. 
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er imprecise and potentially confusing 
ways. For example, the phrasing “de-
velopers need not concern themselves 
with provisioning or operating servers” 
(Definition 4) could naturally be inter-
preted as referring to the management 
of datacenter infrastructure (that is, the 
physical servers including hardware, 
operating systems, and storage).

Thus, one may ask: How is this differ-

tics that appear as fundamental to some 
definitions do not occur at all in others 
(for example, autoscaling/elasticity, 
which is not mentioned in Definitions 2 
and 3). In the following, we take a closer 
look at the recurring concepts to extract 
the essential features that distinguish 
serverless computing from classical 
cloud computing.

We start by noting that the term 

“serverless” does not imply that no 
servers are used; it rather refers to a 
key characteristic of serverless comput-
ing—that cloud application developers 
need not concern themselves with man-
aging and operating servers: a feature 
sometimes referred to as NoOps (for 
“no operations”)8,29 or Zero Server Ops.12 
Although this may seem intuitive, many 
definitions describe this feature in rath-
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Figure 2. Popular definitions of serverless computing (color-coding highlights wording related to different characteristics, citation 
counts obtained in January 2023 via Google Scholar).



ent from what classical cloud comput-
ing is about? The answer is that, when 
speaking of not having to provision and 
operate servers, one means virtualized 
servers (not physical servers) and their 
operational aspects, such as fault toler-
ance or autoscaling. More specifically, 
the NoOps property refers to the abstrac-
tion of the complexity of the cloud ex-
ecution environment (virtual machines, 
containers, or operating systems) and 
associated operational concerns, such 
as resource management, container/
instance life cycle, elasticity/autoscal-
ing, fault-tolerance, security, system 
monitoring and accounting, among 
others.2,8,12 This is in contrast to classi-
cal cloud computing, as adopted by the 
market, which has mostly been focused 
on IaaS clouds, where cloud users must 
explicitly allocate (that is, lease, reserve) 
resources, such as virtual machines or 
containers, and are then responsible for 
their management and operation.6 We 
note that under NoOps, the business 
logic part of the application, including 
function and workflow composition, re-
mains a task of the application develop-
er except for very restricted frameworks 
such as MapReduce.47

The second fundamental character-
istic most definitions mention is what 
they refer to as the “pay-as-you-go” 
cost/billing model (for example, see 
Definitions 5 and 6).29 This characteris-
tic is related to, but distinct from, the 
NoOps property: Given that in server-
less computing users do not explicitly 
allocate and release resources (which 
are indeed hidden from them), it only 
makes sense to charge based on the 
time that their applications are execut-
ing and actively consuming resources 
rather than, as in classical cloud plat-
forms (for example, Amazon EC2), 
based on what resources a user has al-
located, even if currently idle.32,41

Again, the wording used in most defi-
nitions is confusing. For one, the terms 
“pay-as-you-go” (Definitions 5 and 6) or 
“pay-per-use” have long been used to de-
scribe classical reservation-based cost 
models.6,9,32 When speaking of being 
“billed only for what is running (pay-as-
you-go)” (Definition 5) or “pay only for 
the compute resources used when their 
code is invoked” (Definition 4), one may 
again not see the difference here from 
classical cloud computing where simi-
lar wording is used; for example, the 

particular, Definitions 2 and 3 but also 
the one provided in Li et al.30 and Mam-
page et al.32) assume an event-driven ap-
plication architecture. While this fits 
classical FaaS platforms, an event-driv-
en architecture appears to not be funda-
mental to serverless computing.10,26,41 
Overall, the purpose, scope, and pro-
gramming model seem to be areas of 
uncertainty when it comes to serverless 
computing definitions.

Finally, four of the definitions men-
tion elasticity (or automatic scaling, also 
referred to as autoscaling) as a defining 
characteristic of serverless computing. 
This, again, is potentially confusing 
since the term elasticity has been listed 
as an essential characteristic of cloud 
computing from the beginning6,9,24,34 
with, for example, the NIST Definition 
of Cloud Computing34 speaking of rapid 
elasticity defined as “capabilities [that] 
can be elastically provisioned and re-
leased, in some cases automatically, to 
scale rapidly outward and inward com-
mensurate with demand.” Google App 
Engine, one of the earliest PaaS cloud of-
ferings, offered automatic scaling from 
the early days of cloud computing.6 A 
highly cited paper from 2013 defined 
elasticity as “the degree to which a sys-
tem is able to adapt to workload changes 
by provisioning and deprovisioning re-
sources in an autonomic manner, such 
that at each point in time the available 
resources match the current demand as 
closely as possible.”24 Even back in 2009, 
Armbrust et al.6 spoke of elasticity as 
the “ability to add or remove resources 
at a fine grain ... and with a lead time of 
minutes rather than weeks allowing one 
to match resources to workload much 
more closely.” Thus, when speaking (in 
the context of serverless computing) of 
“elasticity—scaling from zero to infinity” 
(Definition 5) or of “automatic, rapid, 
and unlimited scaling resources up and 
down to match demand closely, from 

authors of the 2009 highly cited Berke-
ley definition of cloud computing6 also 
use the term “pay-as-you-go” and de-
fine it as “the ability to pay for use of 
computing resources on a short-term 
basis as needed” while also stating that 
“it involves metering usage and charg-
ing based on actual use” and explicitly 
mentioning AWS as “a true pay-as-you-
go service.” While some definitions (for 
example, Definition 6) explicitly differ-
entiate from classical reservation-based 
cost models, the formulations used in 
most definitions are rather imprecise, 
which may lead to confusion as further 
described in the following.

Indeed, another source of ambigu-
ity is that phrases like “pay only for the 
compute resources used when their 
code is invoked” (Definition 4), “billed 
only for the time the code is running” 
(Definition 5), and “event-driven and 
granularly billed applications” (Defini-
tion 3) leave much room for interpreta-
tion; for example, does the bill include 
the launching of the environment (con-
tainer, runtime) where the application 
code is to execute? Is an event-driven 
application model generally assumed 
(as suggested by Definitions 2 and 3 but 
not by others)? What about the storage 
space used by applications? Data stored 
in a database or in a message queue 
consumes space even when no applica-
tion code is running.

Related to these observations is the 
fact that definitions differ somewhat in 
how they describe the purpose and 
scope of serverless platforms. All defini-
tions speak explicitly of FaaS as the 
most common form of serverless com-
puting since the introduction of AWS 
Lambda in 2014.1 Definition 2 is partic-
ularly rigid in its assumption that server-
less = FaaS, while Definition 4 states ex-
plicitly that serverless is not only FaaS 
but rather “FaaS supported by a stan-
dard library.” BaaS is only mentioned 
explicitly in Definitions 5 and 6; howev-
er, while the former considers BaaS as a 
separate category bearing close resem-
blance to serverless computing,10 the 
latter explicitly includes BaaS as part of 
the serverless paradigm in addition to 
FaaS.26,41 While not mentioned explicitly 
in Definitions 1 and 5, their authors 
consider the boundaries defining 
serverless computing to also overlap 
with classical terms such as SaaS and 
PaaS.8,10 Further, some definitions (in 

BaaS = Backend-as-a-Service

CaaS = Container-as-a-Service

FaaS = Function-as-a-Service

IaaS = Infrastructure-as-a-Service

PaaS = Platform-as-a-Service

SaaS = Software-as-a-Service

…as-a-Service

SEPTEMBER 2023  |   VOL.  66  |   NO.  9  |   COMMUNICATIONS OF THE ACM     85

research



form of computing, memory, storage, or 
networking resources for both quantity 
and quality (for example, speed).32 For in-
stance, Google Cloud Functions charges 
for cloud speed in GHz-seconds, where 
the clock speed and the number of vC-
PUs allocated to a function are scaled 
relative to a function’s memory.

Finally, based on the previous dis-
cussion, no specific requirements 
about elasticity/autoscaling are in-
cluded in the definition; elastic scaling 
is only mentioned as an example of a 
major operational aspect that in server-
less computing is delegated to the cloud 
provider. Indeed, under the assumption 
of NoOps and utilization-based billing, 
the user should not care about how the 
cloud provider manages the infrastruc-
ture internally, including details about 
the level and granularity of autoscaling 
used to achieve elasticity.32 Theoreti-
cally speaking, even if the cloud provid-
er would apply a brute force approach 
heavily overprovisioning resources to 
avoid ever needing to scale, under uti-
lization-based billing, the user would 
not be concerned given that no costs are 
incurred for overprovisioned resources 
when they are not actively used.

The many faces of serverless: Cloud 
service models and their relation to 
serverless. FaaS can be seen as the most 
prominent example of serverless com-
puting nowadays; one way to define it 
is as “a serverless computing platform 
where the unit of computation is a func-
tion that is executed in response to trig-
gers such as events or HTTP requests.”10 
Current FaaS platforms have a relatively 
narrow scope, focusing on small, state-
less, and event-driven functions. Those 
assumptions make it easy for FaaS cloud 
providers to implement autoscaling in a 
generic manner and to provide a fine-

zero to practically infinite” (Definition 
6), one may again be confused, as similar 
wording has been used in the cloud lit-
erature for more than a decade. Indeed, 
Jonas et al.26 admit that “without a quan-
titative and broadly accepted technical 
definition or metric—something that 
could aid in comparing or composing 
systems—elastic will remain an ambigu-
ous descriptor.” The idea of automatic 
scaling is not new, although classical 
cloud platforms (IaaS, PaaS) provided 
limited support for it and implement-
ing autoscaling has been a complex task 
commonly left for the cloud user to con-
figure and manage.9,10,41

In our view, the essential point about 
elasticity in serverless computing is 
that the responsibility for it is entirely 
offloaded to the cloud provider, leaving 
the developer free from having to define 
autoscaling rules or configure orches-
tration frameworks to implement au-
toscaling.26,32,47 However, this feature is 
already captured as part of the NoOps 
property, as elasticity is a classical oper-
ations task. Therefore, we argue that de-
tails about autoscaling/elasticity should 
not be part of the definition because it 
is just one technical aspect, which is 
not even used by some providers, either 
due to their technological choices or be-
cause their users do not need it.

The preceding analysis leads us to 
conclude that existing definitions of 
serverless computing fail to capture the 
central aspects of this new technology 
in a clear, unambiguous, and consistent 
manner.

Understanding the Essence 
of Serverless Computing
The question of just what is serverless 
computing and how it differs from clas-
sical cloud computing was discussed ex-
tensively at a Dagstuhl Seminar we orga-
nized in 2021,2 bringing together around 
50 experts from academia and industry, 
representing three communities of ex-
perts in computer systems, software 
engineering, and performance engi-
neering. The discussions at the seminar 
sparked an effort to provide a new re-
fined definition of serverless computing 
coupled with a long-term perspective on 
how the serverless paradigm fits in the 
space of existing and emerging cloud 
computing service models. The initial 
results of this effort based on discus-
sions at the seminar were included in 

the seminar report29 but have not been 
published in a peer-reviewed publica-
tion so far. The effort was continued af-
ter the seminar and eventually led to our 
refined definition and perspective that 
we present in this article.

Our refined definition of serverless is 
shown in the sidebar here. In develop-
ing this definition, we sought to strike a 
balance between generality, to cover the 
serverless technologies of today—and, 
hopefully, also the future—and con-
creteness, to make clear how the server-
less paradigm differs from classical 
cloud computing. The resulting defini-
tion, we believe, is formulated at a level 
of abstraction that can remain valid as 
novel serverless platforms continue to 
emerge in the next decade and beyond.

Note that our definition avoids 
terms such as “pay-per-use,” “pay-as-
you-go,” or “infinite/rapid elasticity.” 
As was noted earlier, such terms have 
been used from the beginning of cloud 
computing and thus have little differ-
entiating power for the new serverless 
paradigm. Furthermore, the meaning 
assigned to those terms has varied sig-
nificantly in the past years, often caus-
ing confusion.24

To address this issue and the other 
concerns about the ambiguity of the 
wording used in existing definitions 
(expressed previously), we propose the 
alternative term “utilization-based bill-
ing.” We believe the specific wording 
used in the definition to describe this 
term better captures the full range of cur-
rent serverless billing models while also 
providing flexibility to accommodate 
other models that may emerge in the 
future.48 Computing time, memory, and 
storage space are mentioned as exam-
ples of possible resources; however, nov-
el billing models could be based on any 
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Serverless computing is a cloud computing paradigm encompassing a class of 
cloud computing platforms that allow one to develop, deploy, and run applications 
(or components thereof) in the cloud without allocating and managing virtualized 
servers and resources or being concerned about other operational aspects. The 
responsibility for operational aspects, such as fault tolerance or the elastic scaling 
of computing, storage, and communication resources to match varying application 
demands, is offloaded to the cloud provider. Providers apply utilization-based billing: 
they charge cloud users with fine granularity, in proportion to the resources that 
applications actually consume from the cloud infrastructure, such as computing 
time, memory, and storage space.

Our Refined  
Definition of Serverless



granular utilization-based cost model 
that bills customers based on the ac-
tual time functions are running.8,26 We 
expect the current assumptions of the 
FaaS model (small, stateless, and event-
driven units of computation) to even-
tually be relaxed as platforms evolve to 
support a wider set of applications.29,50

BaaS. Our broad definition of server-
less computing includes modern BaaS 
offerings, which are focused on special-
ized cloud application components, 
such as object storage, databases, and 
messaging.26 Examples of BaaS offer-
ings include AWS’ Simple Storage Ser-
vice (object storage) and DynamoDB 
(key-value database) or Google’ Cloud 
Firestore (NoSQL document database) 
and Cloud Pub/Sub (publish/subscribe 
messaging middleware).

CaaS is a cloud service model that 
allows users to deploy and manage 
containers in the cloud.48 A container 
can be seen as a light-weight execution 
environment, typically run inside a VM 
on a server in the cloud infrastructure.9 
Whether a CaaS platform can be con-
sidered as serverless or not depends on 
the level of abstraction and automation 
it provides. Examples of CaaS platforms 
include Amazon Elastic Container Ser-
vice (AWS ECS), Google Kubernetes 
Engine (GKE), and Azure Container 
Instances (ACI). While these platforms 
can be configured to use container or-
chestration services taking care of con-
tainer management and operational 
tasks, they often do not completely ab-
stract the underlying server layers such 
as VMs and operating systems.12 Thus, 
they cannot be considered as being fully 
serverless. In recent years, some server-
less CaaS platforms have emerged in-
cluding Google Cloud Run, AWS Far-
gate, and Azure Container Apps.

PaaS, a concept realized in plat-
forms such as Cloud Foundry, Heroku, 
and Google App Engine, was originally 
defined by NIST as “the capability pro-
vided to the consumer is to deploy onto 
the cloud infrastructure consumer-cre-
ated or acquired applications created 
using programming languages and 
tools supported by the provider. The 
consumer does not manage or control 
the underlying cloud infrastructure 
including network, servers, operating 
systems, or storage, but has control over 
the deployed applications and possibly 
application hosting environment con-

figurations.”34 Thus, the classical PaaS 
definition neither requires not forbids 
application developers having control 
over the deployment and configuration 
of the hosting environment. Conse-
quently, whether a PaaS can be consid-
ered as serverless depends on the spe-
cific abstractions and automation that 
it provides to application developers. 
Classical PaaS offerings like early ver-
sions of Microsoft Azure had serverless 
elements but did not completely ab-
stract servers and operational aspects, 
and they therefore cannot be consid-
ered as being fully serverless. Others 
like Google App Engine, specialized 
for Web applications, were close to the 
serverless paradigm from the early days 
of cloud computing, and they quickly 
evolved into serverless PaaS offerings.6

SaaS refers to the end-user appli-
cations deployed in a cloud platform 
and delivered as services over the In-
ternet.6,34 Therefore, although SaaS ab-
stract the cloud execution environment, 
strictly speaking, the term serverless is 
not applicable here since it describes 
characteristics of the cloud platform as 
opposed to the deployed applications 
running on it. On the other hand, some 
SaaS offerings support the execution of 
user-provided functions tightly coupled 
to a specific application domain. Such 
offerings can be seen as specialized 
forms of serverless computing plat-
forms, such as the Google Workspace 
Marketplace in Google Workspace.10

In IaaS—the classic and most wide-
spread cloud service model—the cloud 
user typically manages virtualized serv-
ers and resources provisioned by the 
cloud provider; the user is assumed to 
have control over operating systems, 
storage, and possibly network compo-
nents.34 Thus, by definition, IaaS plat-
forms are not serverless.

Boundaries of serverless comput-
ing. In our preliminary definition,29 we 
introduced serverless computing as “... 
a cloud computing paradigm offering 
a high-level application-programming 
model ...” In our refined definition pre-
sented here, we slightly changed the for-
mulation, introducing serverless as “... 
a cloud computing paradigm encom-
passing a class of cloud computing plat-
forms ...” We believe this formulation 
better captures the evolution and diver-
sity of serverless offerings that emerged 
in the past decade since 2014.

We argue that 
details about 
autoscaling/
elasticity should 
not be part of 
the definition 
of serverless 
computing because 
it is just one 
technical aspect, 
which is not even 
used by some 
providers. 
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But it also refers to a specific technolog-
ical evolution, which is the transition of 
cloud computing, as used and adopted 
by the market, to its second phase char-
acterized by a shift of focus from the use 
of low-level VM-based interfaces, where 
VMs are managed by the cloud user, to 
high-level application-oriented inter-
faces, where servers are abstracted and 
managed by the provider.41

TECHNICAL BOX

Historical Perspective, Concept 
Evolution, Key Aspects, 
and Their Incarnations
Serverless computing is the latest step 
in a progression of computing utilities. 
Figure 3 depicts important steps in this 
technological evolution.

Computing platforms in the 1950s 
introduced computing technology with 
the IBM 701 leased for use. Others in-
clude the USA NSA ROGUE and ROB 

Indeed, modern serverless platforms 
do not necessarily lock developers into 
a specific application programming 
model. On the one hand, the program-
ming model itself often comes from 
the entire cloud platform (for example, 
AWS, Google Cloud Platform, or Micro-
soft Azure), as in practice, there are typi-
cally many bindings between serverless 
components (for example, FaaS func-
tions) and a diverse set of vendor specific 
cloud services, some of which may not 
be serverless. On the other hand, FaaS 
platforms, the most popular form of 
serverless computing, are nowadays be-
coming increasingly diverse and open; 
instead of prescribing a specific applica-
tion programming model, they offer an 
agile infrastructure that can be managed 
and scaled dynamically for any task. For 
example, platforms like AWS Lambda 
support the deployment of “custom run-
time” functions that can be written in any 
language as well as read-only container 

images allowing developers to deploy 
libraries and code in any Linux compat-
ible language or tool. Similarly, Google 
Cloud Run supports deploying and au-
toscaling containerized applications 
developed using any programming lan-
guage or operating system libraries with 
the possibility to even deploy the user’s 
own binaries. As serverless computing 
is further adopted by cloud providers, we 
expect that serverless offerings will con-
tinue to become increasingly diverse and 
open with the boundaries between dif-
ferent cloud service models increasingly 
diminishing.8,50

In summary, the serverless ecosys-
tem includes a growing set of technolo-
gies and evolving service models (for 
example, FaaS, BaaS, some CaaS/PaaS/
SaaS). Serverless computing is a high-
level, broadly applicable term, which 
can be applied at many levels, including 
functions, containers, middleware, and 
backend services, as we discuss later. 
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Figure 3. Sixty years of technological evolution toward serverless computing.
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ROY, and the U.S. Department of De-
fense’s Whirlwind/SAGE. By the 1960s, 
computers were used for business, sci-
ence, and other societal applications.

JCR Licklider at ARPA/IPTO proposed 
interconnecting computing centers for 
public collaboration (in 196331), Martin 
Greenberger at MIT made the case for 
computing as utility (in 196422,a), and 
Douglas Parkhill proposed computing 
as home-utility (in 196636). These ideas 
converged, realized in centralized main-
frames providing time-shared business 
services, multi-tenancy, and mainframe 
virtualization (for example, CTSS, DTSS, 
and PLATO in academia, and the IBM 
STRETCH). At the end of the 1960s, the 
ARPANET laid the foundation for net-
worked communication, and pioneer 
Leonard Kleinrock predicted “as [com-
puter networks] grow up and become 
more sophisticated, we will probably see 
the spread of ‘computer utilities’ which, 
like present electric and telephone utili-
ties, will service individual homes and 
offices across the country.”27

In the 1970s and 1980s computers be-
came dramatically cheaper, smaller and 
as a result exploded in number (mini-
computers, PCs). The obvious need was 
networking. TCP/IP emerged in 1983, 
enabling applications such as FTP and 
email (an independently developed ex-
tension of earlier ideas, for example, 
of 1960s messaging and 1970s PLATO 
mailing14) and forming the basis for to-
day’s Internet and Web applications.

The 1980s saw a new dynamic of 
resource integration and sharing in 
large-scale computing, which would 
become fruitful through the 1990s, 
2000s, and beyond. Digital data repre-
sentation unified information process-
ing and communications technolo-
gies. Local networks enabled systems 
such as Condor and Utopia—automat-
ed approaches for workload manage-
ment and resource sharing.

With the wide deployment of high-
speed networks in the 1990s, academia 
started to play again a seminal role. 
U.S. gigabit testbeds that integrated 
resources at multiple sites spurred pio-

a “Computing services and establishments will 
begin to spread throughout every life-sector … 
medical-information systems, … centralized 
traffic control, … catalogue shopping from 
… home, … integrated management-control 
systems for companies and factories.” Green-
berg.22

neering meta-computing approaches45 
in which resources were federated to 
enable new applications. Large-scale 
experiments such as the IWAY, which 
in 1994 built a geo-distributed software 
platform across USA to showcase sup-
port for over 50 research groups and 
application types,19 enabled testing vari-
ous designs for workload management 
and resource federation at scale. The 
Globus Toolkit provided a much-used 
reference architecture and implemen-
tation. These ideas resulted in feder-
ated, production-grade grid computing 
facilities for science, such as the mas-
sive, global-scale WLCG used primarily 
by CERN physicists and the cross-dis-
ciplinary USA TeraGrid. Concurrently, 
commercial services rapidly improved 
in availability, performance, and diver-
sity (for example, AOL and CompuServe 
in the U.S., Minitel in France, building 
on Gopher and BBS technologies for in-
formation search and sharing).

In the late 2000s, cloud computing 
emerged as on-demand, elastic resource 
provisioning coupled with a convenient 
payment model. These offerings quick-
ly diversified to provide several levels of 
computing abstraction—machine level 
(IaaS), middleware level (PaaS), and ap-
plication level (SaaS), which enabled 
cloud applications of extraordinary 
complexity and scale.6

The success of these technologies set 
the stage for even more flexible and ca-
pable use of computing services—lower 
complexity, incremental cost (pay-as-
you-go), and the latter coupled with 
elastic scaling. CaaS emerged to offer a 
finer-grained, more lightweight alterna-
tive to IaaS’ VM-based virtualization.48 
Similarly, BaaS and FaaS emerged as 
back-end and front-end services in be-
tween PaaS and SaaS.41 These opportu-
nities and technological incarnations, 
and a shift in software development 
processes (toward DevOps), are es-
sential progress vectors that led to the 
emergence of serverless computing.

Outlook and Future Challenges
Serverless computing has emerged as 
an active area of research with ongoing 
projects tackling a range of topics to ad-
dress open challenges in the field.

Performance challenges in serverless 
computing include cold-start latencies 
and autoscaling, next to emerging as-

Serverless 
computing is a 
high-level, broadly 
applicable term, 
which can be 
applied at many 
levels, including 
functions, 
containers, 
middleware, and 
backend services. 
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which often requires refactoring exist-
ing code into smaller modules or func-
tions that can be deployed using the 
serverless paradigm. Tools to support 
such decomposition can significantly 
reduce the effort needed to port current 
applications. Approaches in this area 
include adopting familiar parallel pro-
gramming models51 and proposing new 
domain-specific languages.37

For cloud hardware architectures, just 
as IaaS spawned a variety of hardware 
virtualization features, serverless pres-
ents new challenges and opportunities 
for cloud hardware architectures. Short-
running serverless invocations present 
challenges for CPU and especially accel-
erator architectures tuned for long runs 
by single applications. Fine-grained re-
source accounting presents challenges 
for performance variability—a difficult 
problem if it shows through into billed 
costs. Large working sets and cold start 
pose new performance optimization 
challenges for memory and storage hi-
erarchies, and they introduce new ave-
nues for cross-application performance 
interference. While there has been 
some prior work in trying to understand 
how serverless (and other novel) work-
loads are affected by existing hardware 
designs,21 more work is needed to bet-
ter identify potential low-level improve-
ments and optimizations.

While the FaaS model is a popular 
method for implementing serverless ap-
plications, many new workloads are be-
ing adapted to the serverless paradigm, 
which often come with new require-
ments and will require that serverless 
frameworks evolve to meet them. For 
example, AI workloads such as machine 
learning training and model serving via 
machine learning inference have been 
adapted to the serverless model, as have 
long-lived computations such as scien-
tific and high-performance computing,17 
and games with modifiable virtual envi-
ronments.15 Prominent examples of new 
workload classes adopting the serverless 
model are shown in the Technical Box on 
Serverless Applications. Looking further 
afield, we see opportunities for serverless 
actor frameworks and for a serverless, 
low latency, tuple spaces layer that could 
power new applications by enabling fast, 
cheap, and reliable communications 
among cloud functions.

Other challenges of growing con-
cern relate to distribution, federation, 

pects such as workflow and dataflow 
management, and rethinking resource 
management techniques for fine-grained 
utilization-based billing. Cold-start costs 
are incurred whenever resources are first 
allocated for some purpose; autoscaling 
is required if workloads vary in size over 
time. If demand drops to zero, a server-
less computing platform must choose 
between maintaining idle application re-
sources (with associated memory costs) 
or scaling them to zero (incurring cold-
start costs). For serverless applications 
with time-varying workloads, proactive 
autoscaling approaches are needed to 
eliminate scale-up latency in the face of 
load spikes. Right-sizing capacity allo-
cations to the incoming workloads con-
tinues to be a challenge.16 The cold-start 
problem is being tackled by approaches 
like letting users pay for reserved func-
tions, reusing and snapshotting tech-
niques42 that can be combined with 
sticky routing approaches to encourage 
container reuse,3,7 and enhanced cach-
ing approaches.20 The autoscaling prob-
lem is being worked at multiple layers 
like increasing the worker pool size for 
the full platform or for a specific applica-
tion,43 and also scaling data-storage and 
providing serverless support for differ-
ent storage technologies,28 caches,39 and 
databases.38

Security is another important issue 
in serverless computing. Since server-
less applications from multiple third-
party users execute on a shared plat-
form, it is essential to provide isolation 
across computations from independent 
users. In scenarios where the applica-
tion comprises a chain of functions 
that can invoke one another, it is im-
portant to ensure security by preventing 
unauthorized invocations of functions 
from third-party code. Because server-
less ecosystems use services that break 
traditional security enclaves, solutions 
could consider dynamic levels of trust 
and some solutions could adopt zero-
trust computing. Approaches to im-
prove serverless security include global 
policies enforced by providers,5 infor-
mation flow tracking and control,13 and 
novel access control models.40

From a programming standpoint, 
new paradigms and tools are being de-
veloped to simplify the implementation 
of serverless applications. So too are 
tools to support the migration of exist-
ing applications to the serverless model, 

The question 
of whether a 
concrete platform 
is serverless or not 
may not always 
have a binary—yes 
or no—answer. 
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and heterogeneity, with solutions like-
ly starting with rethinking traditional 
resource management approaches for 
serverless needs and later spurring 
more creative solutions. At the envi-
sioned scale of serverless, these could 
have important economic and climate 
implications. New low-latency appli-
cations, data sovereignty concerns, 
and specialized hardware are among 
the factors driving interest in feder-
ated serverless computing platforms 
that link geographically distributed 
resources.11 Fine-grained telemetry 
and other meta-data streams raise im-
portant opportunities related to opera-
tions, life cycle, and governance with 
many stakeholders.

TECHNICAL BOX

Serverless Applications
Many fields of inquiry emerge conten-
tiously from existing fields, distinguish-
ing themselves at first by the ability to 
solve new problems with their proposed 
techniques, rather than through precise 
terminology. Examples include systems 
biology emerging from molecular biol-
ogy, modern optoelectronics emerg-
ing from microwave technology, and 
computer ecosystems emerging from 
traditional systems. We argue that 
serverless computing already supports 
diverse and specific applications. A 
2021 survey of serverless use cases17,18 
identified a wide variety of applications 
that use cloud functions (FaaS) as criti-
cal building blocks in domains ranging 
from mobile (for implementing core 
backend functionality) to scientific (for 
example, metadata extraction44). The 
associated scalability and performance 
requirements range from ultra-low-
latency, as when automating the opera-
tional tasks of complex distributed ap-
plications to deliver some DevOps and 
NoOps processes like autoscaling, to 
high-throughput, as when processing 
IoT streaming data. These constitute 
applications that have a fully serverless 
or partially serverless architecture.

For a concrete example, consider 
anomaly detection in industrial sensor 
data, an essential task for maintaining 
large-scale industrial infrastructure at 
companies like AirFrance-KLM, Shell, 
and Tata. Such applications can ingest 
high-velocity data via a scalable mes-
saging system like Apache Kafka, with 

will continue to expand to other soft-
ware pipeline elements and systems. 
For example, Big Data ETL and CI/
CD processes are also being moved to 
serverless solutions. As these are not 
long-running services, they can benefit 
greatly from the flexibility of serverless 
pricing. Even serverless caching services 
(for example, see goMomento.com) and 
serverless streaming services (for exam-
ple, AWS MSK Serverless) have started 
to appear, continuing with the trend 
toward simplifying the management of 
software infrastructure.

Conclusion
Serverless computing does not impose 
an exhaustive list of specific require-
ments for cloud platforms but rather 
reflects an evolutionary and gradual 
process in the advancement of the lat-
ter. The question of whether a concrete 
platform is serverless or not, may not al-
ways have a binary—yes or no—answer. 
Indeed, it may well be that some aspects 
of a platform exhibit a higher degree of 
serverless characteristics, while others 
can be better classified as traditional 
cloud computing. We expect that server-
less offerings will continue to become 
increasingly diverse and open with the 
boundaries between different cloud ser-
vice models increasingly diminishing.

As serverless computing continues 
to unfold, we expect to see an acceler-
ated shift of focus of cloud platforms 
and services:

 ˲ from low-level VM-based interfaces 
to high-level interfaces that hide the 
cloud execution environment with its 
hardware and software stack (physical 
machines, VMs, and containers);

 ˲ from explicit allocation of resources 
(for example, VMs, containers) by cloud 
users to automatic resource allocation, 
based for example on fine-grained auto-
scaling mechanisms;

 ˲ from cloud users being responsible 
for configuring and managing opera-
tional aspects (like instance deploy-
ment/life cycle, elastic scaling, fault 
tolerance, monitoring, and logging) to 
offloading such responsibilities to the 
cloud provider;

 ˲ from coarse-grained to fine-grained 
multi-tenant multiplexing and resource 
sharing;

 ˲ from reservation-based pay-as-you-
go billing models to real pay-per-use 

one or more serverless cloud functions 
consuming the data in micro batch-
es. These functions can apply simple 
threshold-based rules or more complex 
machine learning models to identify 
anomalous behavior which can then be 
communicated in real time to an opera-
tor via email or SMS using a serverless 
notification service (like AWS SNS).

Not all serverless applications in-
volve a radical departure from past cloud 
computing approaches, because some 
of the first and most important cloud 
services have been serverless from the 
start. For example, pay-per-byte-stored 
serverless object storage systems like 
AWS S3 do not expose to the user any 
notion of the number, characteristics, 
and locations of the physical servers 
on which data is stored. Consequently, 
they are in practice seen as infinite stor-
age that can be easily integrated into 
other solutions, from web applications 
to Big Data pipelines.

Going beyond cloud functions and 
storage, the concept of “serverless” can 
be applied to other systems and sce-
narios:

 ˲ Serverless databases (relational, 
noSQL, or object stores) are offered by 
many cloud providers. These systems al-
leviate the user from capacity planning 
and autoscale as needed, including go-
ing into hibernation to scale down to 
zero after a period of inactivity.

 ˲ Serverless SQL-as-a-Service products 
like AWS Athena and Databricks Server-
less SQL can be used to query data from 
a data lake. Results can then be visual-
ized via interactive dashboards by us-
ing a serverless visualization solution 
like AWS Quicksight. This combination 
enables business intelligence analytics 
without the need for an always-on data 
warehouse or for managing visualiza-
tion software.

 ˲ For processing Big Data in the 
cloud, consumers are turning to server-
less Big Data processing like AWS Server-
less EMR. These services autoscale to 
meet demand, relieving users from the 
potential problems of over- or under- 
provisioning their compute clusters.

 ˲ Serverless edge computing products 
like Cloudflare workers and AWS Lamb-
da Edge can be used to provide low la-
tency computing, suitable for many IoT 
use cases like applying real-time com-
puter vision algorithms.

We expect the concept of serverless 
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models based on actual resource utili-
zation with no costs being charged for 
idle resources;

 ˲ from coarse-grained (for example, 
VM-hours) to fine-grained resource us-
age accounting and pricing (for exam-
ple, execution time in 0.1s units); and,

 ˲ from cloud users having more con-
trol of the execution environment to 
cloud users having less control.

For some serverless platforms like 
FaaS, one could consider the shift of 
focus as having already occurred (al-
though being restricted to the relatively 
narrow scope of today’s FaaS platforms). 
For others like BaaS, the shift of focus is 
ongoing with many parts still being in 
the early stages of adoption or barely 
starting, such as for complex data pro-
cessing pipelines (for example, graph 
processing at scale). 
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