
FULL AUTOMATION OF IT infrastructure and the delivery
of efficient IT operations as billed services have been
long-standing goals of the computing industry since at
least the 1960s. A newcomer—serverless computing—
emerged in the late 2010s with characteristics claimed
to be different from those of established IT services,
including Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), and Software-as-a-Service (SaaS)
clouds. Even though serverless computing has gained
significant attention in industry and academia over
the past five years, there is still no consensus about
its unique distinguishing characteristics and precise
understanding of how these characteristics differ from
classical cloud computing.

What is serverless computing, and what are its
implications?

Market analysts are agreed that
serverless computing has strong mar-
ket potential, with projected com-
pound annual growth rates (CAGRs)
varying between 21% and 28% through
20284,25,33,35,49 and a projected market
value of $36.8 billion49 by that time.
Early adopters are attracted by ex-
pected cost reductions (47%), reduced
operation effort (34%), and scalabil-
ity (34%).17 In research, the number of
peer-reviewed publications connected
to serverless computing has risen
steadily since 2017.46 In industry, the
term is heavily used in cloud provider
advertisements and even in the nam-
ing of specific products or services.

Yet despite this enthusiasm, there
exists no common and precise under-
standing of what serverless is (and of
what it is not). Indeed, existing defi-
nitions of serverless computing are
largely inconsistent and unspecific,
which leads to confusion in the use
of not only this term but also related
terms such as cloud computing, cloud-
native, Container-as-a-Service (CaaS),
Platform-as-a-Service (PaaS), Function-
as-a-Service (FaaS), and Backend-as-a-
Service (BaaS).12

As an extended discussion during a
2021 Dagstuhl Seminar2 and our analy-
sis of existing definitions of serverless
computing reveal, current definitions
focus on a variety of aspects, from ab-
stractions to practical concerns, from
computational to financial, from sepa-
ration of concerns to how concerns
should be enacted, and so on.

These definitions do not provide
consensus, and they are omissive in
essential points or even diverge. For
example, they do not agree on wheth-
er serverless is solely a set of require-

Serverless
Computing:
What It Is, and
What It Is Not?

 key insights
 ˽ Serverless computing means full

automation and fine-grained utilization-
based billing.

 ˽ Serverless computing has a well-defined
and unique place in computing history.

 ˽ Serverless computing supports diverse
applications, from enterprise automation
to scientific computing.

DOI:10.1145/3587249

Dispelling the confusion around serverless
computing by capturing its essential
and conceptual characteristics.

BY SAMUEL KOUNEV, NIKOLAS HERBST, CRISTINA L. ABAD,
ALEXANDRU IOSUP, IAN FOSTER, PRASHANT SHENOY,
OMER RANA, AND ANDREW A. CHIEN

80 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

I
M

A
G

E
 B

Y
 S

I
R

I
P

O
N

G
 J

I
T

C
H

U
M

https://dx.doi.org/10.1145/3587249
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587249&domain=pdf&date_stamp=2023-08-23

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 81

a given platform can be considered as
serverless computing or not. Finally,
we review serverless computing appli-
cations, discuss open challenges, and
provide an outlook on the future of the
serverless paradigm.

Our goal is to help improve com-
munication among researchers and
practitioners, reducing confusion and
misunderstandings due to the lack of
understanding of the underlying con-
cepts and their historical evolution.
Conceptual understanding of the state
of the art coupled with clear and con-
sistent terminology provide a basis for
supporting interoperability between
emerging platforms as well as for future
research driving the further advance-
ment of the field.

ments from the user’s perspective
or it should also mandate specific
implementation choices on the pro-
vider side, such as implementing an
autoscaling mechanism to achieve
elasticity. Similarly, they do not agree
on whether serverless is just the oper-
ational part, or it should also include
a specific programming model, inter-
face, or calling protocol. These and
related aspects make serverless com-
puting an interesting object of study
for academics, complementing the
economic and industrial interest, but
an object whose current definition is
fraught with confusion.

In this article, we seek to dispel this
confusion among others by propos-
ing a refined definition capturing the

essential conceptual characteristics
of serverless computing as a para-
digm, while putting the various terms
around it into perspective. We start
by providing an analogy to intuitively
illustrate serverless computing and
how it compares to classical cloud
computing. We then examine how
the term serverless computing, and
related terms, are used today. We ex-
plain the historical evolution leading
to serverless computing, starting with
mainframe virtualization in the 1960s
through to grid and cloud computing
all the way up to today. We review ex-
isting cloud computing service mod-
els (including IaaS, PaaS, SaaS, CaaS,
FaaS, and BaaS), and for each of them,
we discuss which aspects determine if

82 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

Figure 1. Analogy between IT services and moving homes.

Message
We need to move!

Modern movers All objects

Packaging Delivery Operations Legal Financial Personnel

Any route All decisions All covered Small team
Fine-grained

Utilization-based

Traditional movers Limited support Major roads Basic Basic Coarse-grained Large team

Moving it yourself
(with family
and friends)

Yourself Yourself Yourself Yourself Yourself Yourself

TECHNICAL BOX

Serverless through an Analogy:
Services for Moving Homes
We explain serverless computing via an
analogy. Moving homes is a familiar, if
not always welcome, task in our lives.
Household items must be packaged,
packages delivered to their destination,
and operational and even legal issues
resolved. These demanding and often
complex tasks, like computing, offer
many opportunities for outsourcing
and specialization. As illustrated in Fig-
ure 1, we group these opportunities into
three broad classes.

One approach to moving homes,
representing self-hosting in our anal-
ogy, is to move everything independent-
ly. Many students take this approach.
Here, we must disassemble and pack-
age all objects, load them into the car,
plan the route, and drive the whole way.

There may be borders on the way, in
which case we must do paperwork. This
approach gives us maximal flexibility
and control, but as it costs considerable
resources in planning and executing, it
is inefficient for one-time movers. The
inefficiency arises from not exploit-
ing the many opportunities for process
learning and economies of scale.

A second approach, which repre-
sents classical cloud computing (IaaS/
PaaS) in our analogy, is to hire a tradi-
tional moving company. They specialize
in loading and driving to the destina-
tion cheaply. They are efficient in what
they do but leave little room for custom-
ization and defer all operational details
other than packing and driving the van
to the client. They have several kinds of
crates, but we must disassemble our fur-
niture, pack it into crates, and unpack
and rebuild it at the destination. We
pay by crate size, regardless of its actual
occupancy. Odd-sized objects are not
allowed, and it is our responsibility to
ensure grandma’s precious mirror stays
intact. Individual operations do not ap-
pear in the final bill. Furthermore, the
processes happen relatively slowly, and
changes or additional requests can take
days to be acknowledged. Bottom line:
We can move cheaply and retain some
control, but we do not receive a detailed
bill, pay for all operations regardless of
their usefulness, and are responsible
for everything but loading, relocating,
and unloading crates.

The third and simplest approach
to moving homes, which we suggest
is akin to serverless computing, is to
hire professional movers. The movers
know how to plan and transport loads.
They handle legal paperwork and take
responsibility if objects break. They
have a broad collection of appropri-
ately sized boxes, which they select on
our behalf, and they pack objects into
those boxes efficiently and safely. They
know about various kinds of furniture,
so there is no risk that they may break
them apart instead of merely disassem-
bling them, or that they may not be able
to put them back together. They handle
fragile objects with care and sign off on
expensive antiques. They can configure
Internet and cable in the new location.
They know plants require air and water.
All these operations are recorded and
appear explicitly in the final bill. They
perform these processes rapidly and
are responsive to additional requests
and changes. Moreover, the movers can
pack several jobs together, leading to
important economies of scale without
breaking things. We give up control but
receive better service with less effort.

The Many Definitions of Serverless
Serverless computing is commonly un-
derstood as an approach to developing
and running cloud applications with-
out requiring server management.12
The term became popular after Amazon
Web Services (AWS) introduced AWS
Lambda in 2014.1 Since then, a number
of serverless computing platforms have
appeared in industry.

Serverless computing, however, still
lacks a precise definition. To underline
this observation, we show in Figure 2
similarities and differences among six
oft-cited definitions selected as rep-
resentative examples. While there are
further definitions from different com-
munities,30,32 they share some similar
elements and characteristics as the
definitions we show. On the one hand,
the definitions differ in their scope and
level of detail; on the other hand, they
appear to make some inconsistent as-
sumptions, which may leave the im-
pression of contradictory viewpoints.
We see that while certain characteristics
recur, only two are to be found in all six
existing definitions, and even then, with
different emphasis. Other characteris-

Serverless
computing
is commonly
understood as
an approach to
developing and
running cloud
applications
without
requiring server
management.

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 83

research

er imprecise and potentially confusing
ways. For example, the phrasing “de-
velopers need not concern themselves
with provisioning or operating servers”
(Definition 4) could naturally be inter-
preted as referring to the management
of datacenter infrastructure (that is, the
physical servers including hardware,
operating systems, and storage).

Thus, one may ask: How is this differ-

tics that appear as fundamental to some
definitions do not occur at all in others
(for example, autoscaling/elasticity,
which is not mentioned in Definitions 2
and 3). In the following, we take a closer
look at the recurring concepts to extract
the essential features that distinguish
serverless computing from classical
cloud computing.

We start by noting that the term

“serverless” does not imply that no
servers are used; it rather refers to a
key characteristic of serverless comput-
ing—that cloud application developers
need not concern themselves with man-
aging and operating servers: a feature
sometimes referred to as NoOps (for
“no operations”)8,29 or Zero Server Ops.12
Although this may seem intuitive, many
definitions describe this feature in rath-

84 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

Figure 2. Popular definitions of serverless computing (color-coding highlights wording related to different characteristics, citation
counts obtained in January 2023 via Google Scholar).

ent from what classical cloud comput-
ing is about? The answer is that, when
speaking of not having to provision and
operate servers, one means virtualized
servers (not physical servers) and their
operational aspects, such as fault toler-
ance or autoscaling. More specifically,
the NoOps property refers to the abstrac-
tion of the complexity of the cloud ex-
ecution environment (virtual machines,
containers, or operating systems) and
associated operational concerns, such
as resource management, container/
instance life cycle, elasticity/autoscal-
ing, fault-tolerance, security, system
monitoring and accounting, among
others.2,8,12 This is in contrast to classi-
cal cloud computing, as adopted by the
market, which has mostly been focused
on IaaS clouds, where cloud users must
explicitly allocate (that is, lease, reserve)
resources, such as virtual machines or
containers, and are then responsible for
their management and operation.6 We
note that under NoOps, the business
logic part of the application, including
function and workflow composition, re-
mains a task of the application develop-
er except for very restricted frameworks
such as MapReduce.47

The second fundamental character-
istic most definitions mention is what
they refer to as the “pay-as-you-go”
cost/billing model (for example, see
Definitions 5 and 6).29 This characteris-
tic is related to, but distinct from, the
NoOps property: Given that in server-
less computing users do not explicitly
allocate and release resources (which
are indeed hidden from them), it only
makes sense to charge based on the
time that their applications are execut-
ing and actively consuming resources
rather than, as in classical cloud plat-
forms (for example, Amazon EC2),
based on what resources a user has al-
located, even if currently idle.32,41

Again, the wording used in most defi-
nitions is confusing. For one, the terms
“pay-as-you-go” (Definitions 5 and 6) or
“pay-per-use” have long been used to de-
scribe classical reservation-based cost
models.6,9,32 When speaking of being
“billed only for what is running (pay-as-
you-go)” (Definition 5) or “pay only for
the compute resources used when their
code is invoked” (Definition 4), one may
again not see the difference here from
classical cloud computing where simi-
lar wording is used; for example, the

particular, Definitions 2 and 3 but also
the one provided in Li et al.30 and Mam-
page et al.32) assume an event-driven ap-
plication architecture. While this fits
classical FaaS platforms, an event-driv-
en architecture appears to not be funda-
mental to serverless computing.10,26,41
Overall, the purpose, scope, and pro-
gramming model seem to be areas of
uncertainty when it comes to serverless
computing definitions.

Finally, four of the definitions men-
tion elasticity (or automatic scaling, also
referred to as autoscaling) as a defining
characteristic of serverless computing.
This, again, is potentially confusing
since the term elasticity has been listed
as an essential characteristic of cloud
computing from the beginning6,9,24,34
with, for example, the NIST Definition
of Cloud Computing34 speaking of rapid
elasticity defined as “capabilities [that]
can be elastically provisioned and re-
leased, in some cases automatically, to
scale rapidly outward and inward com-
mensurate with demand.” Google App
Engine, one of the earliest PaaS cloud of-
ferings, offered automatic scaling from
the early days of cloud computing.6 A
highly cited paper from 2013 defined
elasticity as “the degree to which a sys-
tem is able to adapt to workload changes
by provisioning and deprovisioning re-
sources in an autonomic manner, such
that at each point in time the available
resources match the current demand as
closely as possible.”24 Even back in 2009,
Armbrust et al.6 spoke of elasticity as
the “ability to add or remove resources
at a fine grain ... and with a lead time of
minutes rather than weeks allowing one
to match resources to workload much
more closely.” Thus, when speaking (in
the context of serverless computing) of
“elasticity—scaling from zero to infinity”
(Definition 5) or of “automatic, rapid,
and unlimited scaling resources up and
down to match demand closely, from

authors of the 2009 highly cited Berke-
ley definition of cloud computing6 also
use the term “pay-as-you-go” and de-
fine it as “the ability to pay for use of
computing resources on a short-term
basis as needed” while also stating that
“it involves metering usage and charg-
ing based on actual use” and explicitly
mentioning AWS as “a true pay-as-you-
go service.” While some definitions (for
example, Definition 6) explicitly differ-
entiate from classical reservation-based
cost models, the formulations used in
most definitions are rather imprecise,
which may lead to confusion as further
described in the following.

Indeed, another source of ambigu-
ity is that phrases like “pay only for the
compute resources used when their
code is invoked” (Definition 4), “billed
only for the time the code is running”
(Definition 5), and “event-driven and
granularly billed applications” (Defini-
tion 3) leave much room for interpreta-
tion; for example, does the bill include
the launching of the environment (con-
tainer, runtime) where the application
code is to execute? Is an event-driven
application model generally assumed
(as suggested by Definitions 2 and 3 but
not by others)? What about the storage
space used by applications? Data stored
in a database or in a message queue
consumes space even when no applica-
tion code is running.

Related to these observations is the
fact that definitions differ somewhat in
how they describe the purpose and
scope of serverless platforms. All defini-
tions speak explicitly of FaaS as the
most common form of serverless com-
puting since the introduction of AWS
Lambda in 2014.1 Definition 2 is partic-
ularly rigid in its assumption that server-
less = FaaS, while Definition 4 states ex-
plicitly that serverless is not only FaaS
but rather “FaaS supported by a stan-
dard library.” BaaS is only mentioned
explicitly in Definitions 5 and 6; howev-
er, while the former considers BaaS as a
separate category bearing close resem-
blance to serverless computing,10 the
latter explicitly includes BaaS as part of
the serverless paradigm in addition to
FaaS.26,41 While not mentioned explicitly
in Definitions 1 and 5, their authors
consider the boundaries defining
serverless computing to also overlap
with classical terms such as SaaS and
PaaS.8,10 Further, some definitions (in

BaaS = Backend-as-a-Service

CaaS = Container-as-a-Service

FaaS = Function-as-a-Service

IaaS = Infrastructure-as-a-Service

PaaS = Platform-as-a-Service

SaaS = Software-as-a-Service

…as-a-Service

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 85

research

form of computing, memory, storage, or
networking resources for both quantity
and quality (for example, speed).32 For in-
stance, Google Cloud Functions charges
for cloud speed in GHz-seconds, where
the clock speed and the number of vC-
PUs allocated to a function are scaled
relative to a function’s memory.

Finally, based on the previous dis-
cussion, no specific requirements
about elasticity/autoscaling are in-
cluded in the definition; elastic scaling
is only mentioned as an example of a
major operational aspect that in server-
less computing is delegated to the cloud
provider. Indeed, under the assumption
of NoOps and utilization-based billing,
the user should not care about how the
cloud provider manages the infrastruc-
ture internally, including details about
the level and granularity of autoscaling
used to achieve elasticity.32 Theoreti-
cally speaking, even if the cloud provid-
er would apply a brute force approach
heavily overprovisioning resources to
avoid ever needing to scale, under uti-
lization-based billing, the user would
not be concerned given that no costs are
incurred for overprovisioned resources
when they are not actively used.

The many faces of serverless: Cloud
service models and their relation to
serverless. FaaS can be seen as the most
prominent example of serverless com-
puting nowadays; one way to define it
is as “a serverless computing platform
where the unit of computation is a func-
tion that is executed in response to trig-
gers such as events or HTTP requests.”10
Current FaaS platforms have a relatively
narrow scope, focusing on small, state-
less, and event-driven functions. Those
assumptions make it easy for FaaS cloud
providers to implement autoscaling in a
generic manner and to provide a fine-

zero to practically infinite” (Definition
6), one may again be confused, as similar
wording has been used in the cloud lit-
erature for more than a decade. Indeed,
Jonas et al.26 admit that “without a quan-
titative and broadly accepted technical
definition or metric—something that
could aid in comparing or composing
systems—elastic will remain an ambigu-
ous descriptor.” The idea of automatic
scaling is not new, although classical
cloud platforms (IaaS, PaaS) provided
limited support for it and implement-
ing autoscaling has been a complex task
commonly left for the cloud user to con-
figure and manage.9,10,41

In our view, the essential point about
elasticity in serverless computing is
that the responsibility for it is entirely
offloaded to the cloud provider, leaving
the developer free from having to define
autoscaling rules or configure orches-
tration frameworks to implement au-
toscaling.26,32,47 However, this feature is
already captured as part of the NoOps
property, as elasticity is a classical oper-
ations task. Therefore, we argue that de-
tails about autoscaling/elasticity should
not be part of the definition because it
is just one technical aspect, which is
not even used by some providers, either
due to their technological choices or be-
cause their users do not need it.

The preceding analysis leads us to
conclude that existing definitions of
serverless computing fail to capture the
central aspects of this new technology
in a clear, unambiguous, and consistent
manner.

Understanding the Essence
of Serverless Computing
The question of just what is serverless
computing and how it differs from clas-
sical cloud computing was discussed ex-
tensively at a Dagstuhl Seminar we orga-
nized in 2021,2 bringing together around
50 experts from academia and industry,
representing three communities of ex-
perts in computer systems, software
engineering, and performance engi-
neering. The discussions at the seminar
sparked an effort to provide a new re-
fined definition of serverless computing
coupled with a long-term perspective on
how the serverless paradigm fits in the
space of existing and emerging cloud
computing service models. The initial
results of this effort based on discus-
sions at the seminar were included in

the seminar report29 but have not been
published in a peer-reviewed publica-
tion so far. The effort was continued af-
ter the seminar and eventually led to our
refined definition and perspective that
we present in this article.

Our refined definition of serverless is
shown in the sidebar here. In develop-
ing this definition, we sought to strike a
balance between generality, to cover the
serverless technologies of today—and,
hopefully, also the future—and con-
creteness, to make clear how the server-
less paradigm differs from classical
cloud computing. The resulting defini-
tion, we believe, is formulated at a level
of abstraction that can remain valid as
novel serverless platforms continue to
emerge in the next decade and beyond.

Note that our definition avoids
terms such as “pay-per-use,” “pay-as-
you-go,” or “infinite/rapid elasticity.”
As was noted earlier, such terms have
been used from the beginning of cloud
computing and thus have little differ-
entiating power for the new serverless
paradigm. Furthermore, the meaning
assigned to those terms has varied sig-
nificantly in the past years, often caus-
ing confusion.24

To address this issue and the other
concerns about the ambiguity of the
wording used in existing definitions
(expressed previously), we propose the
alternative term “utilization-based bill-
ing.” We believe the specific wording
used in the definition to describe this
term better captures the full range of cur-
rent serverless billing models while also
providing flexibility to accommodate
other models that may emerge in the
future.48 Computing time, memory, and
storage space are mentioned as exam-
ples of possible resources; however, nov-
el billing models could be based on any

86 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

Serverless computing is a cloud computing paradigm encompassing a class of
cloud computing platforms that allow one to develop, deploy, and run applications
(or components thereof) in the cloud without allocating and managing virtualized
servers and resources or being concerned about other operational aspects. The
responsibility for operational aspects, such as fault tolerance or the elastic scaling
of computing, storage, and communication resources to match varying application
demands, is offloaded to the cloud provider. Providers apply utilization-based billing:
they charge cloud users with fine granularity, in proportion to the resources that
applications actually consume from the cloud infrastructure, such as computing
time, memory, and storage space.

Our Refined
Definition of Serverless

granular utilization-based cost model
that bills customers based on the ac-
tual time functions are running.8,26 We
expect the current assumptions of the
FaaS model (small, stateless, and event-
driven units of computation) to even-
tually be relaxed as platforms evolve to
support a wider set of applications.29,50

BaaS. Our broad definition of server-
less computing includes modern BaaS
offerings, which are focused on special-
ized cloud application components,
such as object storage, databases, and
messaging.26 Examples of BaaS offer-
ings include AWS’ Simple Storage Ser-
vice (object storage) and DynamoDB
(key-value database) or Google’ Cloud
Firestore (NoSQL document database)
and Cloud Pub/Sub (publish/subscribe
messaging middleware).

CaaS is a cloud service model that
allows users to deploy and manage
containers in the cloud.48 A container
can be seen as a light-weight execution
environment, typically run inside a VM
on a server in the cloud infrastructure.9
Whether a CaaS platform can be con-
sidered as serverless or not depends on
the level of abstraction and automation
it provides. Examples of CaaS platforms
include Amazon Elastic Container Ser-
vice (AWS ECS), Google Kubernetes
Engine (GKE), and Azure Container
Instances (ACI). While these platforms
can be configured to use container or-
chestration services taking care of con-
tainer management and operational
tasks, they often do not completely ab-
stract the underlying server layers such
as VMs and operating systems.12 Thus,
they cannot be considered as being fully
serverless. In recent years, some server-
less CaaS platforms have emerged in-
cluding Google Cloud Run, AWS Far-
gate, and Azure Container Apps.

PaaS, a concept realized in plat-
forms such as Cloud Foundry, Heroku,
and Google App Engine, was originally
defined by NIST as “the capability pro-
vided to the consumer is to deploy onto
the cloud infrastructure consumer-cre-
ated or acquired applications created
using programming languages and
tools supported by the provider. The
consumer does not manage or control
the underlying cloud infrastructure
including network, servers, operating
systems, or storage, but has control over
the deployed applications and possibly
application hosting environment con-

figurations.”34 Thus, the classical PaaS
definition neither requires not forbids
application developers having control
over the deployment and configuration
of the hosting environment. Conse-
quently, whether a PaaS can be consid-
ered as serverless depends on the spe-
cific abstractions and automation that
it provides to application developers.
Classical PaaS offerings like early ver-
sions of Microsoft Azure had serverless
elements but did not completely ab-
stract servers and operational aspects,
and they therefore cannot be consid-
ered as being fully serverless. Others
like Google App Engine, specialized
for Web applications, were close to the
serverless paradigm from the early days
of cloud computing, and they quickly
evolved into serverless PaaS offerings.6

SaaS refers to the end-user appli-
cations deployed in a cloud platform
and delivered as services over the In-
ternet.6,34 Therefore, although SaaS ab-
stract the cloud execution environment,
strictly speaking, the term serverless is
not applicable here since it describes
characteristics of the cloud platform as
opposed to the deployed applications
running on it. On the other hand, some
SaaS offerings support the execution of
user-provided functions tightly coupled
to a specific application domain. Such
offerings can be seen as specialized
forms of serverless computing plat-
forms, such as the Google Workspace
Marketplace in Google Workspace.10

In IaaS—the classic and most wide-
spread cloud service model—the cloud
user typically manages virtualized serv-
ers and resources provisioned by the
cloud provider; the user is assumed to
have control over operating systems,
storage, and possibly network compo-
nents.34 Thus, by definition, IaaS plat-
forms are not serverless.

Boundaries of serverless comput-
ing. In our preliminary definition,29 we
introduced serverless computing as “...
a cloud computing paradigm offering
a high-level application-programming
model ...” In our refined definition pre-
sented here, we slightly changed the for-
mulation, introducing serverless as “...
a cloud computing paradigm encom-
passing a class of cloud computing plat-
forms ...” We believe this formulation
better captures the evolution and diver-
sity of serverless offerings that emerged
in the past decade since 2014.

We argue that
details about
autoscaling/
elasticity should
not be part of
the definition
of serverless
computing because
it is just one
technical aspect,
which is not even
used by some
providers.

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 87

research

But it also refers to a specific technolog-
ical evolution, which is the transition of
cloud computing, as used and adopted
by the market, to its second phase char-
acterized by a shift of focus from the use
of low-level VM-based interfaces, where
VMs are managed by the cloud user, to
high-level application-oriented inter-
faces, where servers are abstracted and
managed by the provider.41

TECHNICAL BOX

Historical Perspective, Concept
Evolution, Key Aspects,
and Their Incarnations
Serverless computing is the latest step
in a progression of computing utilities.
Figure 3 depicts important steps in this
technological evolution.

Computing platforms in the 1950s
introduced computing technology with
the IBM 701 leased for use. Others in-
clude the USA NSA ROGUE and ROB

Indeed, modern serverless platforms
do not necessarily lock developers into
a specific application programming
model. On the one hand, the program-
ming model itself often comes from
the entire cloud platform (for example,
AWS, Google Cloud Platform, or Micro-
soft Azure), as in practice, there are typi-
cally many bindings between serverless
components (for example, FaaS func-
tions) and a diverse set of vendor specific
cloud services, some of which may not
be serverless. On the other hand, FaaS
platforms, the most popular form of
serverless computing, are nowadays be-
coming increasingly diverse and open;
instead of prescribing a specific applica-
tion programming model, they offer an
agile infrastructure that can be managed
and scaled dynamically for any task. For
example, platforms like AWS Lambda
support the deployment of “custom run-
time” functions that can be written in any
language as well as read-only container

images allowing developers to deploy
libraries and code in any Linux compat-
ible language or tool. Similarly, Google
Cloud Run supports deploying and au-
toscaling containerized applications
developed using any programming lan-
guage or operating system libraries with
the possibility to even deploy the user’s
own binaries. As serverless computing
is further adopted by cloud providers, we
expect that serverless offerings will con-
tinue to become increasingly diverse and
open with the boundaries between dif-
ferent cloud service models increasingly
diminishing.8,50

In summary, the serverless ecosys-
tem includes a growing set of technolo-
gies and evolving service models (for
example, FaaS, BaaS, some CaaS/PaaS/
SaaS). Serverless computing is a high-
level, broadly applicable term, which
can be applied at many levels, including
functions, containers, middleware, and
backend services, as we discuss later.

88 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

Figure 3. Sixty years of technological evolution toward serverless computing.

Key Aspects Incarnations Concept evolution/focus

2
0

2
0

s
2

0
10

s
2

0
0

0
s

19
6

0
s

//

NoOps
Function-as-a-Service FaaS

Backend-as-a-Service BaaS

Container-as-a-Service CaaS

Software-as-a-Service SaaS

Platform-as-a-Service PaaS

Infrastructure-as-a-Service IaaS

Web Services/Hosting

Geo-Distributed Platforms

Enterprise Platforms

Electronic Data Systems

Mainframe Rooms

Federated Production Facilities
CERN WLCG, TeraGrid, Globus Toolkit

Elasticity

On-Demand Resource Provisioning

Scalability

Workload Management

Resource Federation

Resource Sharing

Facility Management

Multi-Tenancy

Time-shared
Business Services

* Positions indicate start

Utilization-based billing
fine-granular

Pay-as-you-go
reservation-based, coarse-grained

S
erverless

C
om

puting

C
loud C

om
puting

G
rid C

om
puting

S
erver and D

esktop V
irtualization

M
ainfram

e V
irtualization

ROY, and the U.S. Department of De-
fense’s Whirlwind/SAGE. By the 1960s,
computers were used for business, sci-
ence, and other societal applications.

JCR Licklider at ARPA/IPTO proposed
interconnecting computing centers for
public collaboration (in 196331), Martin
Greenberger at MIT made the case for
computing as utility (in 196422,a), and
Douglas Parkhill proposed computing
as home-utility (in 196636). These ideas
converged, realized in centralized main-
frames providing time-shared business
services, multi-tenancy, and mainframe
virtualization (for example, CTSS, DTSS,
and PLATO in academia, and the IBM
STRETCH). At the end of the 1960s, the
ARPANET laid the foundation for net-
worked communication, and pioneer
Leonard Kleinrock predicted “as [com-
puter networks] grow up and become
more sophisticated, we will probably see
the spread of ‘computer utilities’ which,
like present electric and telephone utili-
ties, will service individual homes and
offices across the country.”27

In the 1970s and 1980s computers be-
came dramatically cheaper, smaller and
as a result exploded in number (mini-
computers, PCs). The obvious need was
networking. TCP/IP emerged in 1983,
enabling applications such as FTP and
email (an independently developed ex-
tension of earlier ideas, for example,
of 1960s messaging and 1970s PLATO
mailing14) and forming the basis for to-
day’s Internet and Web applications.

The 1980s saw a new dynamic of
resource integration and sharing in
large-scale computing, which would
become fruitful through the 1990s,
2000s, and beyond. Digital data repre-
sentation unified information process-
ing and communications technolo-
gies. Local networks enabled systems
such as Condor and Utopia—automat-
ed approaches for workload manage-
ment and resource sharing.

With the wide deployment of high-
speed networks in the 1990s, academia
started to play again a seminal role.
U.S. gigabit testbeds that integrated
resources at multiple sites spurred pio-

a “Computing services and establishments will
begin to spread throughout every life-sector …
medical-information systems, … centralized
traffic control, … catalogue shopping from
… home, … integrated management-control
systems for companies and factories.” Green-
berg.22

neering meta-computing approaches45
in which resources were federated to
enable new applications. Large-scale
experiments such as the IWAY, which
in 1994 built a geo-distributed software
platform across USA to showcase sup-
port for over 50 research groups and
application types,19 enabled testing vari-
ous designs for workload management
and resource federation at scale. The
Globus Toolkit provided a much-used
reference architecture and implemen-
tation. These ideas resulted in feder-
ated, production-grade grid computing
facilities for science, such as the mas-
sive, global-scale WLCG used primarily
by CERN physicists and the cross-dis-
ciplinary USA TeraGrid. Concurrently,
commercial services rapidly improved
in availability, performance, and diver-
sity (for example, AOL and CompuServe
in the U.S., Minitel in France, building
on Gopher and BBS technologies for in-
formation search and sharing).

In the late 2000s, cloud computing
emerged as on-demand, elastic resource
provisioning coupled with a convenient
payment model. These offerings quick-
ly diversified to provide several levels of
computing abstraction—machine level
(IaaS), middleware level (PaaS), and ap-
plication level (SaaS), which enabled
cloud applications of extraordinary
complexity and scale.6

The success of these technologies set
the stage for even more flexible and ca-
pable use of computing services—lower
complexity, incremental cost (pay-as-
you-go), and the latter coupled with
elastic scaling. CaaS emerged to offer a
finer-grained, more lightweight alterna-
tive to IaaS’ VM-based virtualization.48
Similarly, BaaS and FaaS emerged as
back-end and front-end services in be-
tween PaaS and SaaS.41 These opportu-
nities and technological incarnations,
and a shift in software development
processes (toward DevOps), are es-
sential progress vectors that led to the
emergence of serverless computing.

Outlook and Future Challenges
Serverless computing has emerged as
an active area of research with ongoing
projects tackling a range of topics to ad-
dress open challenges in the field.

Performance challenges in serverless
computing include cold-start latencies
and autoscaling, next to emerging as-

Serverless
computing is a
high-level, broadly
applicable term,
which can be
applied at many
levels, including
functions,
containers,
middleware, and
backend services.

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 89

research

which often requires refactoring exist-
ing code into smaller modules or func-
tions that can be deployed using the
serverless paradigm. Tools to support
such decomposition can significantly
reduce the effort needed to port current
applications. Approaches in this area
include adopting familiar parallel pro-
gramming models51 and proposing new
domain-specific languages.37

For cloud hardware architectures, just
as IaaS spawned a variety of hardware
virtualization features, serverless pres-
ents new challenges and opportunities
for cloud hardware architectures. Short-
running serverless invocations present
challenges for CPU and especially accel-
erator architectures tuned for long runs
by single applications. Fine-grained re-
source accounting presents challenges
for performance variability—a difficult
problem if it shows through into billed
costs. Large working sets and cold start
pose new performance optimization
challenges for memory and storage hi-
erarchies, and they introduce new ave-
nues for cross-application performance
interference. While there has been
some prior work in trying to understand
how serverless (and other novel) work-
loads are affected by existing hardware
designs,21 more work is needed to bet-
ter identify potential low-level improve-
ments and optimizations.

While the FaaS model is a popular
method for implementing serverless ap-
plications, many new workloads are be-
ing adapted to the serverless paradigm,
which often come with new require-
ments and will require that serverless
frameworks evolve to meet them. For
example, AI workloads such as machine
learning training and model serving via
machine learning inference have been
adapted to the serverless model, as have
long-lived computations such as scien-
tific and high-performance computing,17
and games with modifiable virtual envi-
ronments.15 Prominent examples of new
workload classes adopting the serverless
model are shown in the Technical Box on
Serverless Applications. Looking further
afield, we see opportunities for serverless
actor frameworks and for a serverless,
low latency, tuple spaces layer that could
power new applications by enabling fast,
cheap, and reliable communications
among cloud functions.

Other challenges of growing con-
cern relate to distribution, federation,

pects such as workflow and dataflow
management, and rethinking resource
management techniques for fine-grained
utilization-based billing. Cold-start costs
are incurred whenever resources are first
allocated for some purpose; autoscaling
is required if workloads vary in size over
time. If demand drops to zero, a server-
less computing platform must choose
between maintaining idle application re-
sources (with associated memory costs)
or scaling them to zero (incurring cold-
start costs). For serverless applications
with time-varying workloads, proactive
autoscaling approaches are needed to
eliminate scale-up latency in the face of
load spikes. Right-sizing capacity allo-
cations to the incoming workloads con-
tinues to be a challenge.16 The cold-start
problem is being tackled by approaches
like letting users pay for reserved func-
tions, reusing and snapshotting tech-
niques42 that can be combined with
sticky routing approaches to encourage
container reuse,3,7 and enhanced cach-
ing approaches.20 The autoscaling prob-
lem is being worked at multiple layers
like increasing the worker pool size for
the full platform or for a specific applica-
tion,43 and also scaling data-storage and
providing serverless support for differ-
ent storage technologies,28 caches,39 and
databases.38

Security is another important issue
in serverless computing. Since server-
less applications from multiple third-
party users execute on a shared plat-
form, it is essential to provide isolation
across computations from independent
users. In scenarios where the applica-
tion comprises a chain of functions
that can invoke one another, it is im-
portant to ensure security by preventing
unauthorized invocations of functions
from third-party code. Because server-
less ecosystems use services that break
traditional security enclaves, solutions
could consider dynamic levels of trust
and some solutions could adopt zero-
trust computing. Approaches to im-
prove serverless security include global
policies enforced by providers,5 infor-
mation flow tracking and control,13 and
novel access control models.40

From a programming standpoint,
new paradigms and tools are being de-
veloped to simplify the implementation
of serverless applications. So too are
tools to support the migration of exist-
ing applications to the serverless model,

The question
of whether a
concrete platform
is serverless or not
may not always
have a binary—yes
or no—answer.

90 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

and heterogeneity, with solutions like-
ly starting with rethinking traditional
resource management approaches for
serverless needs and later spurring
more creative solutions. At the envi-
sioned scale of serverless, these could
have important economic and climate
implications. New low-latency appli-
cations, data sovereignty concerns,
and specialized hardware are among
the factors driving interest in feder-
ated serverless computing platforms
that link geographically distributed
resources.11 Fine-grained telemetry
and other meta-data streams raise im-
portant opportunities related to opera-
tions, life cycle, and governance with
many stakeholders.

TECHNICAL BOX

Serverless Applications
Many fields of inquiry emerge conten-
tiously from existing fields, distinguish-
ing themselves at first by the ability to
solve new problems with their proposed
techniques, rather than through precise
terminology. Examples include systems
biology emerging from molecular biol-
ogy, modern optoelectronics emerg-
ing from microwave technology, and
computer ecosystems emerging from
traditional systems. We argue that
serverless computing already supports
diverse and specific applications. A
2021 survey of serverless use cases17,18
identified a wide variety of applications
that use cloud functions (FaaS) as criti-
cal building blocks in domains ranging
from mobile (for implementing core
backend functionality) to scientific (for
example, metadata extraction44). The
associated scalability and performance
requirements range from ultra-low-
latency, as when automating the opera-
tional tasks of complex distributed ap-
plications to deliver some DevOps and
NoOps processes like autoscaling, to
high-throughput, as when processing
IoT streaming data. These constitute
applications that have a fully serverless
or partially serverless architecture.

For a concrete example, consider
anomaly detection in industrial sensor
data, an essential task for maintaining
large-scale industrial infrastructure at
companies like AirFrance-KLM, Shell,
and Tata. Such applications can ingest
high-velocity data via a scalable mes-
saging system like Apache Kafka, with

will continue to expand to other soft-
ware pipeline elements and systems.
For example, Big Data ETL and CI/
CD processes are also being moved to
serverless solutions. As these are not
long-running services, they can benefit
greatly from the flexibility of serverless
pricing. Even serverless caching services
(for example, see goMomento.com) and
serverless streaming services (for exam-
ple, AWS MSK Serverless) have started
to appear, continuing with the trend
toward simplifying the management of
software infrastructure.

Conclusion
Serverless computing does not impose
an exhaustive list of specific require-
ments for cloud platforms but rather
reflects an evolutionary and gradual
process in the advancement of the lat-
ter. The question of whether a concrete
platform is serverless or not, may not al-
ways have a binary—yes or no—answer.
Indeed, it may well be that some aspects
of a platform exhibit a higher degree of
serverless characteristics, while others
can be better classified as traditional
cloud computing. We expect that server-
less offerings will continue to become
increasingly diverse and open with the
boundaries between different cloud ser-
vice models increasingly diminishing.

As serverless computing continues
to unfold, we expect to see an acceler-
ated shift of focus of cloud platforms
and services:

 ˲ from low-level VM-based interfaces
to high-level interfaces that hide the
cloud execution environment with its
hardware and software stack (physical
machines, VMs, and containers);

 ˲ from explicit allocation of resources
(for example, VMs, containers) by cloud
users to automatic resource allocation,
based for example on fine-grained auto-
scaling mechanisms;

 ˲ from cloud users being responsible
for configuring and managing opera-
tional aspects (like instance deploy-
ment/life cycle, elastic scaling, fault
tolerance, monitoring, and logging) to
offloading such responsibilities to the
cloud provider;

 ˲ from coarse-grained to fine-grained
multi-tenant multiplexing and resource
sharing;

 ˲ from reservation-based pay-as-you-
go billing models to real pay-per-use

one or more serverless cloud functions
consuming the data in micro batch-
es. These functions can apply simple
threshold-based rules or more complex
machine learning models to identify
anomalous behavior which can then be
communicated in real time to an opera-
tor via email or SMS using a serverless
notification service (like AWS SNS).

Not all serverless applications in-
volve a radical departure from past cloud
computing approaches, because some
of the first and most important cloud
services have been serverless from the
start. For example, pay-per-byte-stored
serverless object storage systems like
AWS S3 do not expose to the user any
notion of the number, characteristics,
and locations of the physical servers
on which data is stored. Consequently,
they are in practice seen as infinite stor-
age that can be easily integrated into
other solutions, from web applications
to Big Data pipelines.

Going beyond cloud functions and
storage, the concept of “serverless” can
be applied to other systems and sce-
narios:

 ˲ Serverless databases (relational,
noSQL, or object stores) are offered by
many cloud providers. These systems al-
leviate the user from capacity planning
and autoscale as needed, including go-
ing into hibernation to scale down to
zero after a period of inactivity.

 ˲ Serverless SQL-as-a-Service products
like AWS Athena and Databricks Server-
less SQL can be used to query data from
a data lake. Results can then be visual-
ized via interactive dashboards by us-
ing a serverless visualization solution
like AWS Quicksight. This combination
enables business intelligence analytics
without the need for an always-on data
warehouse or for managing visualiza-
tion software.

 ˲ For processing Big Data in the
cloud, consumers are turning to server-
less Big Data processing like AWS Server-
less EMR. These services autoscale to
meet demand, relieving users from the
potential problems of over- or under-
provisioning their compute clusters.

 ˲ Serverless edge computing products
like Cloudflare workers and AWS Lamb-
da Edge can be used to provide low la-
tency computing, suitable for many IoT
use cases like applying real-time com-
puter vision algorithms.

We expect the concept of serverless

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 91

research

ACM, New York, NY, USA, 800–816; https://doi.
org/10.1145/3470496.3527407

38. Poppe, O. et al. Moneyball: Proactive auto-scaling
in Microsoft Azure SQL database serverless. In
Proceedings of VLDB Endow. 15, 6 (Feb. 2022),
1279–1287.

39. Romero, F. et al. Faa$T: A transparent auto-scaling
cache for serverless applications. In Proceedings of
the ACM Symp. Cloud Computing (Seattle, WA, USA,
2021). ACM, New York, NY, USA, 122–137; https://doi.
org/10.1145/3472883.3486974

40. Sankaran, A., Datta, P., and Bates, A. Workflow
integration alleviates identity and access management
in serverless computing. In Proceedings of the 2020
Computer Security Applications Conf. (Austin, TX,
USA). ACM, New York, NY, USA, 496–509; https://doi.
org/10.1145/3427228.3427665

41. Schleier-Smith, J. et al. What serverless computing
is and should become: The next phase of cloud
computing. Commun. ACM 64, 5 (May 2021), 76–84;
https://doi.org/10.1145/3406011

42. Silva, P., Fireman, D., and Pereira, T.E. Prebaking
functions to warm the serverless cold start. In
Proceedings of the 21st Intern. Middleware Conf.
(Delft, Netherlands, 2020). ACM, New York, NY, USA,
1–13; https://doi.org/10.1145/3423211.3425682

43. Singhvi, A., Balasubramanian, A., Houck, K., Shaikh,
M.D., Venkataraman, S., and Akella, A. Atoll: A scalable
low latency serverless platform. In Proceedings of
the 2021 ACM Symp. Cloud Computing (Seattle, WA,
USA). ACM, New York, NY, USA, 138–152; https://doi.
org/10.1145/3472883.3486981

44. Skluzacek, T.J., Wong, R., Li, Z., Chard, R., Chard, K.,
and Foster, I. A serverless framework for distributed
bulk metadata extraction. In Proceedings of the
30th Intern. Symp. High-Performance Parallel and
Distributed Computing, 2021, 7–18.

45. Smarr, L. and Catlett, C.E. Metacomputing.
Commun. ACM 35, 6 (1992), 44–52; https://doi.
org/10.1145/129888.129890

46. Spillner, J. and Al-Ameen, M. Serverless literature
dataset. Zenodo dataset (3rd revision), 2019;
https://doi.org/10.5281/zenodo.1175423.

47. van Eyk, E., Toader, L., Talluri, S., Versluis, L., Ută,
A., and Iosup, A. Serverless is more: From PaaS to
present cloud computing. IEEE Internet Computing
22, 5 (2018), 8–17; https://doi.org/10.1109/
MIC.2018.053681358

48. Varghese, B. and Buyya, R. Next generation cloud
computing: New trends and research directions.
Future Generation Computer Systems 79 (2018),
849–861; https://doi.org/10.1016/j.future.2017.09.020

49. Verified Market Research. Serverless architecture
market size, 2022; http://bit.ly/3rLRprh.

50. Wen, J., Chen, Z., Jin, X., and Liu, X. Rise of the planet
of serverless computing: A systematic review. ACM
Trans. Softw. Eng. Methodol. (Jan. 2023); https://doi.
org/10.1145/3579643

51. Zhang, W., Fang, V., Panda, A., and Shenker, S. Kappa:
A programming framework for serverless computing.
In Proceedings of the 11th ACM Symp. on Cloud
Computing, 2020. ACM, New York, NY, USA, 328–343.

Samuel Kounev, University of Würzburg, Germany.

Nikolas Herbst, University of Würzburg, Germany.

Cristina L. Abad, ESPOL, Ecuador.

Alexandru Iosup, VU Amsterdam. The Netherlands.

Ian Foster, Argonne National Lab and University of
Chicago, IL, USA.

Prashant Shenoy, University of Massachusetts, Amherst,
MA, USA.

Omer Rana, Cardiff University, U.K.

Andrew A. Chien, The University of Chicago and Argonne
National Lab, USA.

Copyright held by authors/owners.
Publication rights licensed to ACM.

models based on actual resource utili-
zation with no costs being charged for
idle resources;

 ˲ from coarse-grained (for example,
VM-hours) to fine-grained resource us-
age accounting and pricing (for exam-
ple, execution time in 0.1s units); and,

 ˲ from cloud users having more con-
trol of the execution environment to
cloud users having less control.

For some serverless platforms like
FaaS, one could consider the shift of
focus as having already occurred (al-
though being restricted to the relatively
narrow scope of today’s FaaS platforms).
For others like BaaS, the shift of focus is
ongoing with many parts still being in
the early stages of adoption or barely
starting, such as for complex data pro-
cessing pipelines (for example, graph
processing at scale).

References
1. AWS. re:Invent: Getting started with AWS Lambda,

2014; https://bit.ly/44mcw2r
2. Abad, C., Foster, I.T., Herbst, N., and Iosup, A.

Serverless computing (Dagstuhl Seminar 21201).
Dagstuhl Reports 11, 4 (2021), 34–93; https://doi.
org/10.4230/DagRep.11.4.34

3. Agache, A. et al. Firecracker: Lightweight virtualization
for serverless applications. In Proceedings of the
17th USENIX Symp. Networked Systems Design and
Implementation, 2020, 419–434.

4. Allied Market Research. Serverless Market Global,
2022; https://www.alliedmarketresearch.com/
serverless-architecture-market.

5. Alpernas, K. et al. Secure serverless computing using
dynamic information flow control. In Proceedings of
2018 OOPSLA; https://doi.org/10.1145/3276488

6. Armbrust, M. et al. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report. 2009.
University of California, Berkeley.

7. Aumala, G., Boza, E., Ortiz-Avilés, L., Totoy, G., and
Abad, C. Beyond load balancing: Package-aware
scheduling for serverless platforms. In Proceedings
of the 19th IEEE/ACM Intern. Symp. Cluster, Cloud
and Grid Computing, 2019, 282–291; https://doi.
org/10.1109/CCGRID.2019.00042

8. Baldini, I. et al. Serverless Computing: Current Trends
and Open Problems. Springer, Singapore, 2017, 1–20;
https://doi.org/10.1007/978-981-10-5026-8_1

9. Buyya, R. et al. A manifesto for future generation
cloud computing: Research directions for the next
decade. ACM Comput. Surv. 51, 5, (Nov 2018), Article
105; https://doi.org/10.1145/3241737

10. Castro, P., Ishakian, V., Muthusamy, V., and Slominski,
A. The Rise of Serverless Computing. Commun.
ACM 62, 12 (Dec. 2019), 44–54; https://doi.
org/10.1145/3368454

11. Chard, R. et al. FuncX: A federated function serving
fabric for science. In Proceedings of the 29th Intern.
Symp. High-Performance Parallel and Distributed
Computing, 2020, 65–76.

12. CNCF. CNCF WG-Serverless Whitepaper v1.0, 2018;
https://bit.ly/40JYnsA

13. Datta, P., Kumar, P., Morris, T., Grace, M., Rahmati, A.,
and Bates, A. Valve: Securing function workflows
on serverless computing platforms. In Proceedings
of the Web Conference (Taipei, Taiwan, 2020).
ACM, New York, NY, USA, 939–950; https://doi.
org/10.1145/3366423.3380173

14. Dear, B., Ed. The Friendly Orange Glow: The Untold
Story of the PLATO System and the Dawn of
Cyberculture. Pantheon Books, 2017.

15. Donkervliet, J., Trivedi, A., and Iosup, A. Towards
supporting millions of users in modifiable virtual
environments by redesigning minecraft-like games
as serverless systems. In Proceedings of the 12th
USENIX Workshop on Hot Topics in Cloud Computing.
USENIX Assoc. 2020; https://www.usenix.org/

conference/hotcloud20/presentation/donkervliet
16. Eismann, S., Bui, L., Grohmann, J., Abad, C., Herbst,

N., and Kounev, S. Sizeless: Predicting the optimal
size of serverless functions. In Proceedings of the
22nd Intern. Middleware Conf. (Québec City, Canada,
2021) ACM, New York, NY, USA, 248–259; https://doi.
org/10.1145/3464298.3493398

17. Eismann, S. et al. The state of serverless applications:
Collection, characterization, and community consensus.
IEEE Trans. Software Engineering (2021), 1–1.
https://doi. org/10.1109/TSE.2021.3113940

18. Eismann, S. et al. Serverless applications: Why, when,
and how? IEEE Software 38, 1 (2021), 32–39;
https://doi.org/10.1109/MS.2020.3023302

19. Foster, I.T., Geisler, J., Nickless, B., Smith, W., and
Tuecke, S. Software infrastructure for the I-WAY
metacomputing experiment. Concurr. Pract. Exp. 10, 7
(1998), 567–581.

20. Fuerst, A. and Sharma, P. FaasCache: Keeping
serverless computing alive with greedy-dual
caching. In Proceedings of the 26th ACM Intern.
Conf. Architectural Support for Programming
Languages and Operating Systems. ACM,
2021, New York, NY, USA, 386–400; https://doi.
org/10.1145/3445814.3446757

21. Gan, Y. et al. An open-source benchmark suite
for microservices and their hardware-software
implications for cloud and edge systems. In
Proceedings of the 24th Intern. Conf. Architectural
Support for Programming Languages and
Operating Systems (Providence, RI, USA, 2019).
ACM, New York, NY, USA, 3–18; https://doi.
org/10.1145/3297858.3304013

22. Greenberger, M. The computers of tomorrow. Atlantic
Monthly (1964).

23. Hellerstein, J.M. et al. Serverless computing: One step
forward, two steps back. In Proceedings of the 9th
Biennial Conf. on Innovative Data Systems Research,
2019; http://cidrdb.org/cidr2019/papers/p119-
hellerstein-cidr19.pdf

24. Herbst, N., Kounev, S., and Reussner, R. Elasticity
in cloud computing: What it is, and what it is not.
In Proceedings of the 10th Intern. Conf. Autonomic
Computing. USENIX Assoc. (San Jose, CA, USA,
2013), 23–27; https://bit.ly/3AKntwT

25. Industry ARC. Serverless architecture market, 2022;
https://bit.ly/3oZdwt5.

26. Jonas, E. et al. Cloud programming simplified: A
Berkeley view on serverless computing. CoRR, 2019;
http://arxiv.org/abs/1902.03383

27. Kleinrock, L. The first message transmission.
Technical Report, 2019; https://go.icann.org/3Hycxq6

28. Klimovic, S., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle,
J., and Kozyrakis, C. Pocket: Elastic ephemeral
storage for serverless analytics. In Proceedings of the
13th USENIX Symp. Operating Systems Design and
Implementation (Carlsbad, CA, USA, Oct. 8–10, 2018).
A.C. Arpaci-Dusseau and G. Voelker, Eds. USENIX
Assoc., 427–444; https://www.usenix.org/conference/
osdi18/presentation/klimovic

29. Kounev, S. et al. Toward a definition for serverless
computing. Serverless Computing (Dagstuhl Seminar
21201), C. Abad, I.T. Foster, N. Herbst, and A. Iosup,
Eds. Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 34–93; https://doi.org/10.4230/
DagRep.11.4.34

30. Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., and Guo, M.
The serverless computing survey: A technical primer
for design architecture. ACM Comput. Surv. 54, 10s,
Article 220 (Sept. 2022).

31. Licklider, JCR. Intergalactic Computer Network.
Technical Report, 1963.

32. Mampage, A., Karunasekera, S., and Buyya, R. A
holistic view on resource management in serverless
computing environments: Serverless computing:
What it is, and what it is not? Taxonomy and future
directions. ACM Comput. Surv. 54, 11s, (Sept. 2022),
Article 222; https://doi.org/10.1145/3510412

33. Markets and Markets. Serverless architecture market,
2022; https://bit.ly/3HrW0E7.

34. Mell, P.M. and Grance, T. SP 800-145. The NIST
Definition of Cloud Computing. Technical Report, 2011.
Gaithersburg, MD, USA.

35. Mordor Intelligence. Serverless computing market,
2022; https://bit.ly/3oVGKc5.

36. Parkhill, D.F. Challenge of the Computer Utility.
Addison-Wesley, 1966.

37. Patterson, L. et al. HiveMind: A hardware-software
system stack for serverless edge swarms. In
Proceedings of the 49th Annual Intern. Symp.
Computer Architecture (New York, NY, USA, 2022).

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
serverless-computing-what-it-is

92 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

research

