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ABSTRACT
�e rapid expansion of intermi�ent grid-tied solar capacity is mak-
ing the job of balancing electricity’s real-time supply and demand
increasingly challenging. To address the problem, recent work
proposes mechanisms for actively controlling solar power output
to the grid by enabling so�ware to cap it as a fraction of its time-
varying maximum output. Utilities can use these mechanisms to
dynamically share the grid’s solar capacity by controlling the solar
output at each site. However, while enforcing an equal fraction
of each solar site’s time-varying maximum output results in “fair”
short-term contributions of solar power across all sites, it does not
necessarily result in “fair” long-term contributions of solar energy,
such that each site contributes the same fraction of their maximum
energy generation potential over a long time period, e.g., a month.

Enforcing fair long-term energy access is important when ex-
ercising control of distributed solar capacity, since limits on solar
contributions impact both the compensation users receive for net
metering and the ba�ery capacity required to store excess solar
energy. �is discrepancy arises from fundamental di�erences in
enforcing “fair” access to the grid to contribute solar energy, com-
pared to analogous fair-sharing in networks and processors. To
address the problem, we present both a centralized and distributed
algorithm to enable control of distributed solar capacity that en-
forces fair grid energy access. We implement our algorithm and
evaluate it on both synthetic data and real data across 18 solar sites.
We show that traditional rate allocation, which enforces equal rates,
results in solar sites contributing up to 18.9% less energy than an
algorithm that enforces fair grid energy access over a single month.
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1 INTRODUCTION
�e amount of grid-tied solar power continues to grow at an expo-
nential rate with capacity increasing by an average of 33% each year
over the past six years [6]. �is growth is driven by consistent drops
in solar module prices, which have fallen 10% per-year on average
over the past three decades. In many locations, the average cost of
solar energy is now less than the cost of energy from fossil fuels.
As a result, some estimates project that solar could contribute as
much as 20% of global electricity consumption as early as 2030 [5].

Unfortunately, the increasing penetration of solar energy in
the grid complicates utility operations. In particular, utilities are
responsible for balancing electricity’s real-time supply and demand,
requiring them to compensate for variations in solar output over
multiple time-scales. At short time-scales, compensating for large
solar variations using mechanical generators is challenging, since
generator ramp rates are less than solar ramp rates. At longer
time-scales, utilities lose revenue from users generating their own
solar power during the day, but must still maintain the generating
capacity to provide these users electricity when the sun is not
shining, e.g., during cloudy weather, at night, and over the winter.
�is has serious implications to utilities’ business model.

As a result, governments generally place limits on the amount
of grid-tied solar capacity that can be installed and feed energy
into the grid. �ese limits are currently set based on a complex
political process that includesmultiple stakeholders with competing
interests, including politicians, utilities, environmental groups, and
solar installers. In the U.S., these limits vary widely by state, and
o�en restrict both the percentage of users with grid-tied solar, and
their aggregate solar power capacity. �e rapid growth in solar
power is now causing states to frequently hit these limits, triggering
protracted negotiations (o�en taking many months) among the
stakeholders to raise them. Since the limits, which are a form of
admission control, are hard, once they are hit, additional users
cannot install grid-tied solar until they are raised. For example, due
to such limits, users in Hawaii were recently barred from installing
grid-tied solar for two years [3, 10].
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Importantly, the aggregate power limits above are static and
based on the rated installed capacity of each solar site, and not the
amount of power they actually generate. Standard Test Conditions
(STC) for rating solar module capacity speci�es an irradiance of
1kW/m2 with an air mass of 1.5, no wind speed, and a cell tem-
perature of 25C.�ese conditions approximate the generation of
a south-facing solar module (tilted at the same angle as the Sun)
at solar noon near the equinox on a clear sunny day in the U.S.
with an ambient air temperature of 0C. Of course, weather condi-
tions are rarely this “ideal:” the ambient air temperature at STC is
unrealistic, roof lines dictate non-ideal orientations and tilts, and
solar irradiance is usually much less than 1kW/m2, e.g., during the
morning, evening, over much of winter, and under cloudy skies.

�us, the actual aggregate solar power generated is rarely, if ever,
at (or even near) the rated capacity, and varies widely each day, over
the year, and as the weather changes. For example, on cloudy days,
the aggregate contribution of solar power across many distributed
sites is much less than on sunny days. As a result, on a cloudy day,
the grid could potentially accept solar power from many sites that
are currently forced o�-grid without exceeding its capacity limit.
To address the problem, recent work proposes mechanisms [13]
and policies [8, 12] for actively controlling solar power output to
the grid. �is work enables so�ware to cap the solar power injected
to the grid as a con�gurable fraction of its time-varying maximum
output [13], and then, inspired by similar problems in networks,
designs rate allocation policies to limit the aggregate contribution
of distributed solar subject to the grid’s capacity [8, 12].

An important metric when determining how to dynamically
limit each solar site’s power output is preserving fairness between
sites. Prior work co-opts the traditional notion of “fairness” from
the networking literature, which computes it with respect to the in-
stantaneous sending rates of �ows, and not the cumulative amount
of tra�c they send over time. �is makes sense in networking, as
senders can potentially generate an arbitrary amount of tra�c at
any time. �us, if one idle sender does not generate tra�c for a
long period, then i) other senders should be able to increase their
rate to consume any excess bandwidth during this time, and ii)
the idle sender should not be able to accumulate unlimited credit
for their idleness, enabling them to monopolize the link once they
resume sending. �e former property ensures allocations are work-
conserving, while la�er property prevents starvation of senders.
Analogously, prior work a�empts to maintain “fair” grid rate allo-
cations, such that each solar site contributes near the same fraction
of their time-varying maximum instantaneous power output.

�e problem is that this traditional notion of fairness in networks
does not map well to the grid. Instead, we argue that the grid
should express fairness in terms of the total fraction of energy
users contribute over time (with respect to each other) rather than
in terms of their instantaneous rates of power. Ultimately, users
care about the amount of total solar energy they can feed into
the grid (over some time window), as a fraction of the total solar
energy they could possibly feed in, since this impacts both the cost
of their system and the revenue it generates. In particular, users
directly receive compensation for the energy they feed in, which
decreases with the fraction of energy they can contribute. �e
expected fraction of energy users cannot feed into the grid may
also necessitate additional system costs to store excess energy.

As we show, enforcing fair instantaneous rates, as in networking,
may result in unfair contributions of total energy over time. Unlike
in networking, solar sites can only generate “tra�c” at certain times
based the Sun’s irradiance, which is a function of location, time,
local weather, and physical installation characteristics. Importantly,
solar sites cannot control their location, the Sun, the weather, and o�en
their physical characteristics, and thus have no control over when
and how much solar power they can generate. In contrast, network
clients that are not generating tra�c are doing so voluntarily, and
could generate tra�c if desired. Clearly, if network clients directly
received compensation for the total amount of data they sent, they
most certainly would generate tra�c all the time, and the total
amount of data they sent over time would be critically important.

�is paper identi�es this fundamental di�erence between fair
rate allocation in networks and fair grid energy access for solar, and
discusses how and why it arises. We then design a rate allocation
algorithm to enforce weighted fair grid energy access and evaluate
its tradeo�s. In doing so, we make the following contributions.
Fairness De�nition. While preserving fairness is a �rst-class
concern when sharing processors and networks, it has generally
not been a metric of interest in electric grids. We introduce and
de�ne the notion of distributed solar fairness (DSF), and discuss
how it di�ers from similar notions of fairness in computer systems
and networking. We also discuss how unfairness arises among
distributed solar sites with limits on their aggregate solar output.
Fair Energy Allocation Algorithm. We propose a simple energy
allocation algorithm to enforce fair grid energy access among dis-
tributed solar sites. While this algorithm allocates rates to di�erent
solar “�ows” over time, as in computer systems and networks, it
varies these rates to ensure users contribute the same fraction of
their actual solar energy capacity. �e algorithm exposes tradeo�s
in its convergence speed, �delity to the aggregate limit it enforces,
and robustness, i.e., the interval over which it must exchange data.
Implementation and Evaluation. We implement our algorithm
above and evaluate it on both synthetic data and real data from 18
solar sites. We show that traditional equal rate allocation results in
solar sites contributing up to 18.9% less energy over a single month
than our algorithm that enforces fair grid energy access.

2 FAIRNESS IN THE ELECTRIC GRID
In this paper, we consider grid-tied solar arrays with “net metering”
capabilities. �e current grid allows a net metered grid-tied solar
array to feed any amount of power into the grid, up to its maximum
installed capacity, with no restrictions. �us, the “admission control”
decision of whether to allow a solar array to net meter at all must
be made at installation time. Once a solar array is installed and tied
to the grid, there are no restrictions on the amount of power it can
net meter. As discussed earlier, this severely limits the number of
solar installations the grid can permit, since policies must plan for
the worst-case scenario, i.e., where all solar arrays concurrently
feed in their maximum capacity, even though this scenario is highly
unlikely (if not impossible), and can only occur one time per year.

�us, enforcing such limits at “run time” has the potential to
enable a much larger number of grid-tied solar arrays, while still
limiting the total net metered power to a pre-speci�ed capacity. In
the future, we expect the grid to have the capability to rate control
the amount of power that can be injected by a grid-tied solar array
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at any instant. Since the allowed rate may vary over time, each
solar array will need to enforce the assigned rate. �e ability to rate
control solar arrays at the time-scale of minutes or hours has many
bene�ts. For example, it can simplify the creation of generator
dispatch schedules in the presence of high renewable penetration,
since it place an upper bound on solar generation. It can also allow
the installation of a much larger number of solar arrays, while
limiting their stochasticity. Finally, it can incentivize the use of
local energy storage to store any surplus solar power that cannot
be net metered into the grid due to capacity limitations.

Given such a scenario, we examine the problem of how the grid
should assign rates to di�erent solar arrays, while maintaining both
an aggregate limit on solar output and fairness across users. Prior
work has used an analogy to the rate allocation problem in computer
networks and applied the notion of fairness from networking to
address this problem. Speci�cally, prior work uses analytical models
of TCP’s rate control algorithm, which achieve network fairness,
and weighted versions of this rate allocation problem to model the
problem [2, 8, 12]. However, with solar, owners directly receive
compensation for the solar energy they contribute and thus are
incentivized to always produce as much power as possible.

�us, rather than using a notion of fairness from networking,
we instead propose a new fairness metric for rate-controlled solar
arrays called distributed solar fairness (DSF) that is based on net
metered compensation. Let Eactuali (t2�t1) denote the actual energy
net metered by a solar array i over a duration [t1, t2) in the presence
of rate control, and E

max
i (t2 � t1) denote the maximum amount

of energy it could have produced in this time period with no rate
control, e.g., using standard techniques such as maximum power
point tracking (MPPT). Note that a site’s maximum generation
potential varies over time based on a site’s unique location, weather,
and physical characteristics. Since rate control reduces the total
energy that can be produced, the reduction in net metered revenues
over the interval [t1, t2), which we term as lossi (t2 � t1), is 1 �
Eactuali (t2�t1 )
Emax
i (t2�t1 ) . �is can be viewed as a direct monetary loss incurred

by solar array i over the speci�ed time interval due to rate control.
To be fair across users, we require that the percentage loss is the

same for all arrays over any time interval [t1, t2). �us our notion
of fairness requires that for any two arrays i and j,

|lossi (t2 � t1) � lossj (t2 � t1) | < � (1)
While our ideal de�nition of fairness requires that this condition

be true over any arbitrary time interval, in practice, achieving
fairness over very short time scales may be infeasible. For example,
if the sun has risen at the location of array i but it has yet to rise
at the location of array j, it is not possible to guarantee fairness
over a small time scale, since array j is unable to produce any
power. In the next section, we describe a number of factors that
complicate enforcing fairness at short time scales. However, it
is both acceptable and feasible to enforce fairness over the much
longer time scale of hours, days, or even at the time scale of a
monthly billing cycle. In general, consumers’ primary concern is
whether their monetary percentage loss is fairly distributed across
all arrays over these longer time scales. �us, in practice, the grid
only needs to ensure fairness over these longer intervals [t1, t2).

In the case of networks, fairness guarantees are provided only
when the network �ows are backlogged, which requires that the

�ows can continuously send data when network capacity is avail-
able. In our case, providing fairness over very short time scales
also requires that the solar arrays be capable of producing enough
power to use their allocated rates. However, over longer time scales,
it is possible for an array to not use its instantaneous allocation,
since it is unable to produce su�cient power, and yet “catch” up
later by injecting power at higher rates than other arrays.

Even when enforcing fairness over longer time scales, the prob-
lem of allocating rates to each array is complicated by many factors.
For instance, a simple approach that allocates identical rates to two
arrays of identical size can yield unfair results. �is is because ar-
rays of identical size can still produce vastly di�erent power output
at any instant due to local di�erences in weather, as well as factors
such as tilt, orientation, and location. Ignoring these di�erences can
cause the fairness measure to diverge for various arrays. �us, a fair
rate allocation algorithm must consider several factors: assuming
identical weather conditions, two arrays at two di�erent locations
will have slightly di�erent sunrise, sunset and solar noon times,
yielding solar output curves that are time-shi�ed with respect to
one another. In the networking case, this is analogous enforcing
fairness for time shi�ed �ows, where to two identical �ows are
time-shi�ed and start transmi�ing data with di�erent start times.
Similarly, two solar arrays that are in proximity to one another
may also produce di�erent output due to micro climates, di�erent
shading e�ects, etc. Finally, di�erent arrays may have vastly dif-
ferent capacities and thus rates must be computed to equalize the
percentage loss for such heterogeneous size arrays.

Next, we describe fair rate allocation for solar arrays that
achieves our notion of fairness while accounting for these factors.

3 FAIR GRID ENERGY ALLOCATION
�e previous section compares the di�erent notions of fairness in
computer systems and networks, and in the grid. In this section,
we �rst examine how unfairness arises from the di�erences in the
shape of solar output across multiple sites. We describe the di�erent
types of e�ects that cause the “shape” of a solar curve to di�er even
across sites that are near each other. We then present our fair
energy allocation algorithm, and its tradeo�s.

3.1 Solar Shape Diversity
Unfairness in solar energy access to the grid derives from the di�er-
ence in output between solar sites, even when they are near each
other. �ere are many reasons why solar output between solar sites
di�ers. We describe the di�erent reasons below.
Solar Potential. �e Sun’s position in the sky is unique at each
location on Earth at each instant of time. �e Sun’s position in the
sky, in turn, a�ects the air mass light must travel through to reach
the Earth, which reduces the amount of irradiance that reaches the
ground. �e solar potential is also a function of elevation, such that
higher elevations have more potential than lower elevations at the
same location. As a result, even with clear skies, the maximum solar
generating potential is di�erent at every solar site at any moment.
It is even possible for one site to generate solar power at the same
time that another site is physically unable to generate any power.
Weather E�ects. �e weather also a�ects solar generation poten-
tial. In particular, solar power correlates with cloud cover, which
is much more stochastic and localized than other weather metrics,
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Figure 1: Illustrative examples of non-ideal solar sites.
such as temperature. For example, microclimates, such as those near
large bodies water, can cause weather, and thus solar generation
potential, to be signi�cantly di�erent at two nearby locations.
Physical Characteristics. Finally, the physical characteristics of
a solar site also a�ect its solar output. �ese include the solar mod-
ule’s tilt and orientation, as well as any occlusions from surrounding
buildings, trees, or mountains that may shade them. For example,
an east-facing solar module will both start and stop generating
power well before a west-facing one in the morning and evening,
respectively. In general, roo�op solar deployments are complex
and not ideal. Figure 1 illustrates typical roo�op solar deployments
with multiple modules at di�erent non-ideal tilts and orientations
with signi�cant shading from trees and other surroundings. In ad-
dition, soiling from debris can also cause solar generation to di�er
between two nearby sites with identical solar modules.

�e di�erences above manifest themselves as di�erences in the
shape of solar output at each site. We characterize these di�erences
below, which are the root of unfairness in solar allocation.
Shi�s. Shi�s occur when a solar curve is shi�ed with respect to
another solar curve, such that the �rst curve starts before or ends
a�er another curve. Shi�s occur either due to di�erences in the
orientation of modules or di�erences in location. For example, east
and west-facing modules at the same location will be shi�ed with
respect to each other. Similarly, a di�erence in longitude between
two locations also results in a shi�, since the sun rises and sets at
di�erent times (for the same daylength).
Squeeze. Squeezes occur when a solar curve is narrower with
respect to another solar curve, such that the �rst curve starts be-
fore and ends a�er another curve. Squeezes occur either due to
di�erences in the tilt of modules or di�erences in location. For
example, a south-facing vertically tilted module will be squeezed
with respect to a horizontally �at tilted one. Similarly, a di�erence
in latitude between two locations also results in a squeeze, since
the length of a day changes with latitude.
Dips and Cuts. Dips occur when the solar output drops below
the power level seen when the sky is clear. Dips may be caused
by clouds, shade from trees, or nearby buildings and reduce the

Figure 2: Pro�le of solar output for two homes 80km apart.

amount of sunlight seen by an array. �e amount of the power dip
depends on the magnitude of the reduction in the sunlight seen by
at array. Similarly, cuts occur when a solar curve’s power is cut-o�
(or blocked) with respect to another solar curve, such that the �rst
curve generates power normally while the second curve generates
nothing. Cuts typically occur in the morning and evening, since
these blockages are more prevalent when the Sun is low in the sky.
A cut is a special case of a dip where the output drops to zero.

Note that each solar deployment can exhibit an arbitrary com-
bination of the three characteristics above. �ese characteristics
are also static, since they are purely a function of a site’s location,
physical characteristics, and surroundings. As a result, if a solar
site experiences a shi�, squeeze, or dip relative to another solar site
one day, it will o�en experience it every day (although the extent
of it may change over the year). In addition, di�erent weather
conditions between sites also create di�erences in the solar curves.

Figure 2 illustrates how two nearby homes can exhibit di�erent
solar output over a day. In this case, Home 2, is more east-facing, as
in Figure 1 (bo�om), than Home 1, and thus its power generation is
shi�ed with respect to Home 1 on this day. However, Home 2 has
a cut near the end of the day, indicating a blockage in solar output
that causes its output to drop to zero, as in Figure 1 (top), which
has trees on its west-side that block sunlight near the end of the
day. In this case, imposing a limit on the aggregate power from
the two homes, and then satisfying this limit by allocating equal
rates of solar power output between the two homes results in an
unequal solar energy contribution at the end of the day.

�is occurs because at the beginning of the day Home 2 is gen-
erating no power, and thus Home 1 is able to contribute a high
fraction of its generation up to the limit. Due to the cut in power,
once Home 2 starts generating power it must share the grid with
Home 1 by contributing an equal fraction of its time-varying max-
imum power potential up to the limit, even though Home 1 has
already a contributed a signi�cant amount of energy to the grid.
�us, even though Home 2 contributes the same fraction of power
as Home 1 at all times, its fraction of energy always remains less
than Home 1, since it is never able to catch up.

3.2 Fair Energy Allocation Algorithm
We assume amechanism exists to remotely control the time-varying
fraction of maximum power a solar deployment contributes to the
grid, as described in recent work [13]. We also assume that a
grid balancing authority sets limits on the aggregate solar energy
output across all solar sites by controlling this mechanism at each
individual site. We assume that the grid’s transformers and feeders
are well-provisioned to handle the maximum solar generation, such
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Figure 3: Divergence in the fraction of energy contributed
by Homes 1 and 2 from Figure 2, even when the fraction of
power they contribute is equal, assuming a 5kW limit.

that the transformers never exceed their capacity and feeders do not
reverse their power �ow. �ese assumptions are likely true for the
foreseeable future, as transformers and feeders are generally over-
provisioned for energy consumption, and grid-tied solar power
actually reduces the energy consumption. As a result, we need not
consider the impact of the grid’s topology or the capacity of its
distribution infrastructure in determining rate allocations.

Instead, the grid balancing authority sets aggregate limits on the
distributed solar output based solely on net metering regulations.
However, in our case, we assume these limits are dynamic and based
on actual solar generation, rather than static and based on the rated
capacity of solar sites as is the case today. �e balancing authority
may also alter the limit to improve operations, such as increasing
it during times of peak demand to allow more solar energy to �ow
into the grid. In this case, the curtailed solar power operates like
high-quality reserve capacity or a demand response resource.

Our problem is to allocate the fraction of maximum power con-
tributed by each site such that all sites contribute the same fraction
of energy over each time window T . In general, we assume T is
a long period, such as a week or a month, since it may be di�-
cult or infeasible to ensure fairness over shorter time periods. �e
analogous rate allocation problem in networking, if we assume the
grid’s transformers and feeders are well-provisioned, is to simply
enable all sites to contribute the same fraction (or rate) of their
time-varying maximum power at all times. �us, to enforce an
aggregate limit, the balancing authority might enforce that all sites
contribute only 50% of their maximum power. Note that, we as-
sume the grid balancing authority speci�es the aggregate limit as
an absolute power (as in current net metering policies), and thus it
will have to adjust the equal fraction of power contributed by each
site over time as it varies to maintain the limit. In this case, we can
compute this equal rate across all sites as simply the aggregate limit
(L) divided by the sum of the current power output (P) of each of
the n sites at any time t . We can augment this approach to include
a weight, as in weighted fairness [4], such that the allocated rates
are in proportion to each site’s weights, rather than being equal.

Rate (t ) =min(
L(t )

Pn
i=1 Pi (t )

, 1) (2)

However, as discussed above, this does not result in an equal (or
weighted) contribution of energy over time. Figure 3 illustrates this
behavior for Homes 1 and 2 in Figure 2. While the rate, expressed
as a fraction of each site’s maximum generation potential, is always

Variable Description
n Number of solar sites
i Index of sorted homes
T Duration over which the fairness is enforced
Pi (t ) Maximum power that a site i can generate at

time t
Passi�nedi (t ) Fraction of maximum power assigned to site

i at time t .
Energy Fraction (EF) Fraction of solar energy fed into the grid over

interval T for a given site i .
Fair Energy Fraction (FEF) Fair fraction of solar energy over interval T .
L(t ) Aggregate limit on solar capacity at time t .
Pa�ail (t ) Di�erence between aggregate limit and as-

signed power at sites at time t .
Pa��est (t ) Estimated aggregate power
K Correction gain

Table 1: Variable de�nitions for Algorithms 1-3.

equal (top), the fraction of energy each contributes diverges (bot-
tom). In this case, the aggregate limit is set to 5kW throughout
the day. Since Home 2 does not generate any power early in the
day, Home 1 is able to feed a disproportionate amount of energy
into the grid. �en, once Home 1 starts generating power, Home
1 and Home 2 each feed power in with equal rates. However, as
the bo�om graph indicates, the initial generation early in the day
enabled Home 1 to feed in more energy (as a fraction of its total
energy generation potential) relative to Home 2. In this case, Home
1 fed in 10% more energy than Home 2 in only a single day.

To address this problem, we design a rate allocation algorithm
that enforces fair energy access to the grid. We �rst discuss a
centralized version of this algorithm, assuming a tightly-coupled
system, and then present a distributed version. In both cases, the
algorithms �rst start by computing the equal rates above, and then
determine which and how much sites can deviate from this equal
rate based on the their current cumulative fraction of energy. We
use the equal rate allocation as a starting point, since we need some
basis for assigning initial rates to users. Equal rate allocation repre-
sents a good starting point, since under ideal conditions, i.e., where
sites have exactly the same solar pro�le at all times, se�ing equal
rates above will result in equal long-term energy contributions.
Only when the solar pro�les diverge does the equal rate allocation
also diverge from a fair long-term energy allocation.
Centralized Algorithm. Algorithm 1 shows the pseudocode for
our centralized algorithm, which we label as fast centralized alloca-
tion. Table 1 de�nes the algorithm’s variables. In the centralized
case, we assume that each solar site knows the fraction of solar
energy each other site has fed into the grid over the current time
window T , e.g., a month, which we call the Energy Fraction (EF).
�e algorithm then simply sorts each solar site by their EF, and
assigns rates based on a solar site’s position in the list. In par-
ticular, lower-ranked solar sites get allocated higher rates than
higher-ranked solar sites to allow them to “catch up.” �e algo-
rithm enables sites to catch up fast, since it allocates rates to 100%
of solar power in sorted order, starting with the lowest-ranked site,
until it reaches the aggregate power limit or it reaches a site that
has an energy fraction equal to the mean across all sites, which we
call the Fair Energy Fraction (FEF). At this point, the algorithm sets
the rates of sites with energy fractions above the FEF based on the
fair rate allocation algorithm above, but where the limit L(t ) is the
remaining power a�er se�ing rates for the low-ranked sites. �us,
the algorithm is work-conserving in that it does not penalize sites
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Algorithm 1 Centralized Energy Allocation (Fast)

Require: Pi (t ) and P

assi�ned
i (t ) f or all homes o�er time T , L(t )

1: Compute EFi =
PT
t=0 P

assi�ned
i (t )

PT
t=0 Pi (t )

, 8 i

2: Compute FEF =
Pn
i=0
PT
t=0 P

assi�ned
i (t )

Pn
i=1
PT
t=0 Pi (t )

3: Sort & index homes in ascendin� order o f EF ("ni=1)
4: Pa�ail (t ) = L(t ) �Pni=1 P

assi�ned
i (t )

5: while (Pa�ail (t ) > 0) do
6: if (EFi < FEF ) then
7: P

assi�ned
i (t ) = Pi (t )

8: Update P

a�ail (t ), i + +
9: else
10: break

11: Rate (t ) = Pa�ail (t )Pn
i=1 Pi (t )

f or homes abo�e FEF

12: Update EF f or all homes

that have contributed more than their fair energy by not allowing
them to feed solar into the grid. As above, we can also apply a
weight to each site, such that the fraction of energy they feed in
should be in proportion to their weight.

One problem with the algorithm above is that it has the potential
to starve out solar sites if other sites are not able to feed in solar
for a long period. For example, a�er a snowstorm, the snow may
melt o� solar modules at di�erent rates, enabling large di�erences
in their maximum power. As a result, some solar site may not
be able to feed power into the grid, and will thus “get behind” in
terms of its energy contribution. Once the snow melts from this
solar site, the algorithm above would set its rate to 100% until it
catches up, which would reduce the rates of other �ows. Tomitigate
the starvation problem, we can limit the catch-up rates for sites
that are behind. In this case, rather than set these sites to 100%
of their maximum power, we can set a limit between the equal
rates computed in Equation 2 and 100%. In our algorithm, we apply
proportional control to set these rates, such that the more behind a
solar site, the faster it is able to catch up. In particular, we increase
the rate in Equation 2 by the same proportion the site is behind in
energy. �us, if a solar site has 20% less than their “fair” fraction
of global energy, we allow it to increase its rate in Equation 2 by
20%. Algorithm 2 shows the pseudocode for this algorithm, which
we label as slow centralized allocation, where line 7 applies the
proportional adjustment to the rate.
DistributedAlgorithm. �e centralized algorithms above assume
accurate generation information is available from all solar sites in
real-time, and that it is able to instantaneously set the rates of all
solar sites without any delay. �is implies that solar sites form a
tightly-coupled system with utilities, where they stream generation
data to utilities in real-time and utilities are able to instantaneously
control their rates. Implementing such a tightly-coupled system
is not realistic today. Most smart meters communicate wirelessly
over the cell network and thus have limited bandwidth and periodic
connectivity issues. In addition, a centralized approach represents
a single point of failure and is not robust to network failures. �us,
we also present a distributed algorithm that uses incomplete infor-
mation propagated at lower rates, e.g., minutes to hours.

Algorithm 2 Centralized Energy Allocation (Slow)

Require: Pi (t ) and P

assi�ned
i (t ) f or all homes o�er time T , L(t )

1: Compute EFi as in Al�orithm 1
2: Compute FEF as in Al�orithm 1
3: Sort & index homes in ascendin� order o f EF ("ni=1)
4: Compute f air rate Rate (t ) = L(t )Pn

i=1 Pi (t )

5: Pa�ail (t ) = L(t ) �Pni=1 P
assi�ned
i (t )

6: while (Pa�ail (t ) > 0) do
7: if (EFi < FEF ) then
8: P

assi�ned
i (t ) = (1 + (FEF � EFi )) ⇥ Rate (t )

9: Update P

a�ail (t ), i + +
10: else
11: break

12: Rate (t ) = Pa�ail (t )Pn
i=1 Pi (t )

f or homes abo�e FEF

13: Update EF f or all homes

Algorithm 3 Distributed Energy Allocation

Require: L(t ), Pesta�� (t ), and Rate (t ) o�er time T

1: Estimate a��re�ate power P

est
a�� (t ) usin� �ossip protocol

2: Compute EFi as in Al�orithm 1

3: Estimate FEF =

PT
t=0 (P

est
a�� (t )⇥Rate (t ))PT
t=0 P

est
a�� (t )

4: Compute f air rate Rate (t ) = L(t )
Pa��est (t )

5: P
assi�ned
i (t ) = (1 + K (FEF � EFi )) ⇥ Rate (t )

In this case, individual sites do not know the speci�c power and
energy generation of other sites, and thus cannot compute precise
rates that satisfy the aggregate limit and correctly apportion fair
rates across sites. Individual sites can only increase or decrease
their rate relative to the equal rates in Equation 2 and based on
the di�erence between the globally fair energy fraction and their
local fraction of energy. �us, in our distributed algorithm, sites
that are both above and below the globally fair energy fraction
decrease and increase, respectively, the rate in Equation 2 by the
same proportion that the site is ahead or behind in energy.

Algorithm 3 shows the pseudocode for this algorithm, which we
label as distributed energy allocation. Each solar site independently
runs the distributed algorithm at a speci�ed interval to determine
their solar rate. �e length of this interval represents the expected
time period between disseminating new generation information to
other solar sites. While each solar site can broadcast to all other
solar sites, full mesh communication has the same issues as the
tightly-coupled centralized approach. Instead, similar to prior work
on distributed rate limiting in networks [11], we can use a more
robust push-sum gossip protocol that periodically disseminates
recent generation information to a random set of N other sites
each interval [7]. �is push-sum gossip protocol may take a few
intervals to converge, such that each site has an accurate estimate
of the “fair” fraction of global energy and the global equal rate
from Equation 2. We also add a multiplicative gain factor, K , as
a con�gurable parameter to adjust how fast sites catch up in the
distributed algorithm, similar to Algorithm 2.
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(a) Shi�s (b) Dips and Cuts (c) Squeeze
Figure 4: Impact on energy fairness as a function of the magnitude of shi�s (a), cuts (b), and squeezes (c) for two solar sites.

(a) Equal Rate Allocation (b) Centralized Energy Allocation (Fast)

(c) Centralized Energy Allocation (Slow) (d) Distributed Energy Allocation
Figure 5: Distribution of energy allocation (relative to maximum energy potential) under a limit of 60kW for the equal rate
(a), centralized fair energy (fast) (b), centralized fair energy (slow) (c), and distributed fair energy algorithms (d).

3.3 Fidelity of Control
Both the centralized and distributed algorithms must make deci-
sions based on stale information, as solar power changes contin-
uously. In the centralized case, even though this time period may
be small, e.g., one minute, solar output can �uctuate signi�cantly
even over these short time periods. Since large �uctuations can
have a negative impact on electronics, the �delity of the control,
i.e., how close the algorithm is able to maintain the aggregate limit
that is set, is an important performance metric. In addition, large
�uctuations in the rates from the algorithm can also have a negative
impact on the electronics that control solar output, and thus are
also undesirable. As we show, the centralized algorithm with a
fast catch-up su�ers from increased �uctuations as it periodically
focuses solar allocation on a few sites by increasing their rates to
100% of maximum output, and thus causes large changes in allo-
cated rates. Of course, the distributed algorithmmay also take more
time to propagate information, causing it to diverge more from the
aggregate limit. We evaluate the �delity of control and fairness of
this algorithm under di�erent conditions in §5.

4 IMPLEMENTATION
We evaluate our centralized and distributed algorithms from the
previous section in simulation using both real and synthetic solar
traces. We derive our synthetic solar traces from clear sky solar
irradiance models implemented in the Pysolar Python library [1].
�e resolution of this synthetic solar data is one minute, and we
convert the irradiance into power assuming a typical solar module

e�ciency of 18%. We then vary the maximum solar capacity of
di�erent sites from 1-20kW, and also vary the orientation and tilt
angles of the simulated modules. For our real solar sites, we use data
from 18 solar sites in the Western part of the U.S. We implement
our simulator in Python and vary the simulated interval by which
each site propagates its generation information.

5 EVALUATION
We evaluate both the impact of diversity in solar output on fairness
using the equal rate allocation algorithm, as well using the di�erent
variants of our fair energy allocation algorithm. In addition, we
also evaluate the tradeo� between fairness and the �delity of the
algorithm to maintain an aggregate limit. We quantify the �delity
using Mean Absolute Percentage Error (MAPE) between the limit
and the actual aggregate generation, as below.

MAPE =
100
T

TX

t=0
|
L(t ) �Pni=0 P

assi�ned
i (t )

L(t )
| (3)

Note that we only compute the MAPE for all t where we enforce
the aggregate limit, i.e.,

Pn
i=0 Pi (t ) > L(t ). �antifying fairness

is more challenging than accuracy, since average fairness metrics,
such as Jain’s fairness index, can obscure highly unfair behavior
between any two sites by averaging over many sites. For example,
if there are many �ows, Jain’s fairness index can be close to 1
(indicating a fair allocation) even though some set of solar sites
(or solar “�ows”) may experience highly unfair allocations. Since
energy fed into the grid directly correlates with money, unfairness
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Figure 6: Aggregate power of the 18 homes over 30 days.

Figure 7: Daily pro�les of home H1 and H18 in Figure 5(a).

even among a few users is problematic. �us, we avoid aggregate
measures of fairness acrossmany sites, and instead quantify fairness
by examining the distribution of energy allocations across sites.

5.1 Microbenchmarks: Shape Diversity
Figure 4 �rst looks at the impact on fairness between two solar
sites for di�erent magnitude shi�s, dips and cuts, and squeezes.
We use the equal rate allocation algorithm, which always satis�es
the aggregate limit by se�ing rates equal to each other. For this
experiment, we use synthetic data based on clear sky generation for
two sites at the same location, and then alter one site’s generation
to shi� it, cut it, or squeeze it by a certain amount of time. �us,
these results do not include other e�ects that could impact energy
fairness, such as weather, location, or tilts. �e results are also a
function of the aggregate limit, which we set to 14kW in this case,
where the maximum power of the sites is 10kW (or 20kW total).
�ese experiments quantify the e�ects over an entire year, and
include two scenarios: one where the weights are equal (where
each site should contribute the same fraction of their maximum
solar energy potential) and one where the weights are in a 1:2 ratio.

Figure 4(a) shows the e�ect of a shi�, where the x-axis indicates
the duration of the shi�, the right y-axis is the percentage of energy
lost due to unfairness in the allocation, and the le� y-axis is the
mean fraction of energy the solar site should have fed into the grid.
�e �gure shows that the energy loss is only modestly impacted
by shi�s (1%-2%), in large part because they cancel each other out,
such that a shi� increases one site’s allocation at the beginning of
each day, but decreases it at the end of each day. As also illustrated
in Figure 2, cuts (in Figure 4(b)) have a much larger impact on the
energy loss, causing one site to lose nearly 10% of its energy relative
to a fair allocation in the case of equal weights, and nearly 20%
when weights are in a 1:2 ratio. �e unequal weights increase the
relative loss, since it exacerbates the amount of solar power one site
is able to feed into the grid when another site is unable to generate
power. �is e�ect is similar for squeeze with losses near 10% and
20%, respectively, with equal and weighted rates.

Figure 8: Fidelity of each algorithm at enforcing a limit with
a one-minute communication interval.

Figure 9: Energy di�erence between H1 and H18 in Fig-
ure 5(a), as a function of the aggregate limit.

5.2 Fair Energy Allocation
�e previous subsection demonstrated the relative di�erence in fair-
ness between two ideal synthetic homes with di�erent shi�s, cuts,
and squeezes. We also experiment with controlling a small group
of 18 homes in the western U.S. to get a sense of the di�erences
in energy allocation across many homes with real solar power. In
this case, we experiment with the equal rate allocation algorithm,
as well as the three di�erent variants of our fair energy allocation
algorithm, including the extreme centralized algorithm with fast
catchup, the centralized algorithmwith slow (proportional) catchup,
and our distributed algorithm. For these experiments, we assume
all the rates are equal, and set the limit to 60kW. Figure 6 shows the
aggregate power across all the homes over a month-long period, as
well as the 60kW limit. While we maintain a �xed limit, note that,
in practice, a balancing authority may vary this limit over time.

Figure 5 then shows the distribution of the energy gain/loss
relative to the fair energy in each case over a one month period,
which corresponds to a typical billing cycle. Note that this percent-
age directly translates into the fraction of money gained and lost
from net metering. In the equal rate allocation case (a), the largest
di�erence is over 27%, such that one home gets 27.8% less than
another home and 18.9% less than their fair energy allocation. For
each of the other algorithms, the percentage drops to near 0%, since
they explicitly a�empt to maintain a fair energy allocation over
time. Figure 7 then shows a sample sunny day for both the most
advantaged and disadvantaged solar site with equal rate allocation;
we can see from this graph the impact of shi�s, cuts, and squeezes
on fairness, as these two homes have signi�cantly di�erent solar
curves. As the �gure shows, these sites have signi�cantly di�erent
capacities, with one site having a capacity near 50kW and the other
having a capacity of only 7kW. Note that a goal of our fair energy
access algorithm is to enable both of these sites to contribute the
same fraction of their maximum generation potential, which is
relative to their capacity. In contrast, despite these di�erences, in
all variants of the fair energy allocation algorithms, we see this
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Figure 10: Fidelity of maintaining the aggregate limit as a
function of its magnitude for the di�erent variants.

Figure 11: As the propagation delay increases the �delity of
control for the distributed algorithm decreases.

di�erence narrowing signi�cantly, with all having a di�erence of
less than 1% in terms of grid energy access over the month.

In all of the algorithms above, we assume a one-minute update
interval, such that the rate is updated once every minute based on
data from the previous minute. Figure 8 shows the �delity of each
algorithm in maintaining the limit with this update interval. We see
that the equal rate allocation has the highest �delity (corresponding
to the lowest MAPE), since it adjusts rates instantaneously. �e
small divergence here is due to the minute-to-minute changes in
solar power, as the algorithm can only adjust rates a�er it senses
that solar output has changed (which takes 1 minute in this case).
�e centralized algorithm with the fast catchup has a lower �delity,
which is also exacerbated due to the stochasticity in solar at minute-
levels. �is algorithm results in highly imbalanced rates during
its catch-up phase, where some solar sites are contributing 100%
of their energy generation. As a result, if these sites change their
output signi�cantly within a minute (before the rates are updated),
the aggregate solar power will diverge from the limit. In the equal
rate allocation case, the likelihood of such aggregate changes is
low because it requires all sites to suddenly change their output
in unison. However, when a small number of sites are catching
up and have a disproportionate share of grid energy, it increases
the likelihood that these sites will alter their generation within a
minute. �e centralized algorithm that uses a slower proportional
catch-up mitigates this e�ect and has a MAPE near that of the equal
rate algorithm. Finally, the distributed algorithm has signi�cantly
lower �delity than the others due to its long propagation delays.

�e deviation above changes with the limit as shown in Figure 9.
For the equal rate algorithm, the unfairness decreases as the limit
increases, since it mitigates the e�ect of di�erences in the solar
curve between sites. However, the di�erence between the di�erent
variants of our fair energy algorithms remain largely constant and
generally under 5%. However, Figure 10 shows that the equal rate
algorithm has the highest �delity across all aggregate limits. For the
fair energy algorithms, the lower the limit, the worse the �delity

Figure 12: As the propagation delay increases, the fairness
for the distributed algorithm also increases.

Figure 13: Maintaining the limit at a 1-minute interval.
at maintaining the aggregate limit. �is impact of low limits is
particularly severe for the centralized algorithm with fast catch-
up, since at low limits it is subject to increasingly more extreme
versions of the e�ects described above.

5.3 Distributed Algorithm
Finally, we explore the impact of information propagation delay
in the distributed algorithm. Figure 11 shows this delay on the
x-axis, while the y-axis shows the resulting MAPE relative to the
limit. �e graph demonstrates that, as expected, the �delity of the
control decreases (yielding a higher MAPE), as the propagation
delay increases. �is increase is faster for the distributed algorithm,
since it takes some time for the rates to converge. However, in
contrast, fairness actually improves as the delay increases. Figure 12
shows the percentage maximum di�erence in the percentage of
energy gain/loss between any two homes (in this case, H1 and H18
from Figure 5(a)). �e graph shows that as the propagation delay
increases this percentage trends towards 0%. Of course, the equal
rate algorithm is unfair and thus takes longer to converge. With
longer propagation delays, solar sites operate at the same fraction
of power for longer windows of time. As a result, the amount of
energy they contribute to the grid relative to each other converges.
�us, our fair energy access algorithms enable a tradeo� between
propagation delay, �delity of control, and fairness.

Figure 13 illustrates the �delity of maintaining an aggregate
60kW limit for the distributed algorithm over a representative
sunny day with a communication interval of one-minute. �e
graph shows that the centralized equal rate algorithm is able to
maintain the 60kW limit precisely, while the distributed algorithm
maintains a limit that is slightly above the 60kW threshold. Finally,
Figure 14 shows how we mind the gap between �delity and fairness
by accelerating the catch-up amount in the distributed algorithm.
In this case, we specify a gain value, which is a multiplicative factor
applied to the typical rate computed by the distributed algorithm
(which enables sites to increase their rate in proportion to the
amount of energy they are behind). Here, a gain of 0 indicates
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Figure 14: Impact of accelerating the “catch up” of sites that
are behind in their fair energy allocation by amultiplicative
gain factor in the distributed algorithm.
no additional increase, while a gain of 10 increases the rate by a
factor of 10. �e graph illustrates the tradeo� between fairness and
�delity: as we increase the gain value (to accelerate catching up
sites that are behind in their energy allocation), the MAPE of the
aggregate limit increases (reducing the �delity of control), while
the fairness increases (as speci�ed by the decrease in the largest
di�erence in energy allocation between two sites). For comparison,
we also plot the fair energy fraction for the distributed algorithm,
which increases slightly, as more power is fed into the grid (as a
result of overshooting the limit as seen in Figure 13).

6 RELATEDWORK
�ere is a large body of work in the systems and networking litera-
ture on fair rate allocation and scheduling. �is work di�ers from
our work in that it focuses on maintaining instantaneous fairness
when �ows are backlogged, and not fairness over long periods of
time. Recently, there have been adaptations of this work to the
electric grid to dynamically manage increasing penetrations of solar
energy [8] and electric vehicles [2]. However, as we show, direct
adaptations of instantaneous rate allocation from networks can re-
sult in unfair energy access. Similarly, iPlug [12] proposes a policy
for decentralized dispatch of solar power based on congestion-
aware network protocols. iPlug di�ers from this work in that solar
sites backo� based on sensing grid congestion, e.g., due to a devia-
tion in nominal values for voltage and frequency. One issue with
this approach is that it requires degrading the power quality of the
grid to send feedback signals. Balancing authorities are unlikely
to allow such degradation in power quality. �us, we adopt an
approach that directly communicates generation via the network
to maintain a fair energy allocation over time. Finally, iPlug’s ap-
proach is not fair, since di�erent users sense di�erent voltages and
frequencies depending on their position in the grid. For example,
a user at the end of the distribution line will have lower voltages,
and thus backo� more than a user further up the line.

Enforcing fair energy access is important in the grid, since users
directly receive compensation for the amount of energy that they
net meter into the grid. Another key di�erence with prior work is
that it generally assumes the key constraints are in the network:
the capacity of the transformers and feeders that are analogous to
network switches and routers. However, we assume the network
is unconstrained, and that unfairness can arise simply from the
di�erences in the generating potential (or “workload”) between
solar sites independent of network constraints. Importantly, sites
are unable to control this generating potential in the same way
that network clients can control when they send tra�c. Prior work

also does not explore the �delity of control based on the time to
propagate generation information in a distributed system.

Finally, prior work in the power systems community explores
di�erent strategies for curtailing solar power. However, these ap-
proaches have largely focused on preserving the reliability of the
grid, and responding to over-voltage situations [9, 14–17]. Instead,
our work focuses on enabling fair control of distributed solar ca-
pacity, which has not been a metric of interest in prior work.
7 CONCLUSIONS
�is paper highlights an important di�erence between fair rate
allocation in networking and enforcing “fairness” in the grid. In
particular, enforcing fairness based on the relative amount of energy
injected into the grid over time is more important than enforcing
instantaneous rates. �is discrepancy arises from fundamental dif-
ferences in enforcing “fair” access to the grid to contribute solar
energy, compared to analogous fair-sharing in networks and pro-
cessors. To address the problem, we present both a centralized and
distributed algorithm to enable control of distributed solar capacity,
while enforcing fair grid energy access. We implement our algo-
rithm and evaluate it on both synthetic data and real data from 18
solar sites. We show that traditional rate allocation that enforces
equal rates results in solar sites contributing up to 18.9% less energy
than an algorithm that enforces fair grid energy access.
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