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ABSTRACT
Heating, ventilation, and air conditioning (HVAC) accounts for
over 50% of a typical home’s energy usage. A thermostat gener-
ally controls HVAC usage in a home to ensure user comfort. In this
paper, we focus on making existing “dumb” programmable ther-
mostats smart by applying energy analytics on smart meter data to
infer home occupancy patterns and compute an optimized thermo-
stat schedule. Utilities with smart meter deployments are capable
of immediately applying our approach, called iProgram, to homes
across their customer base. iProgram addresses new challenges in
inferring home occupancy from smart meter data where i) training
data is not available and ii) the thermostat schedule may be mis-
aligned with occupancy, frequently resulting in high power usage
during unoccupied periods. iProgram translates occupancy patterns
inferred from opaque smart meter data into a custom schedule for
existing types of programmable thermostats, e.g., 1-day, 7-day, etc.
We implement iProgram as a web service and show that it reduces
the mismatch time between the occupancy pattern and the ther-
mostat schedule by a median value of 44.28 minutes (out of 100
homes) when compared to a default 8am-6pm weekday schedule,
with a median deviation of 30.76 minutes off the optimal sched-
ule. Further, iProgram’s yield a daily energy savings of 0.42kWh
on average across the 100 homes. Utilities may use iProgram to
recommend thermostat schedules to customers and provide them
estimates of potential energy savings in their energy bills.
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1. INTRODUCTION
Buildings account for over 40% of the energy and 75% of the

electricity usage in the U.S. [15] and other developed countries.
Heating, cooling and ventilation (HVAC) alone accounts for 54%
of the energy usage in residential buildings. Thermostats typically
regulate use of central HVAC systems by enabling users to specify
a desired setpoint temperature, and then cycling the system on and
off to maintain the temperature within a fixed range of the setpoint.

The simplest type of thermostat requires users to manually
switch the HVAC system on and place it into heating or cooling
mode, as well as specify the desired temperature. Manual ther-
mostats, while simple and inexpensive, are i) prone to human error,
since users may forget to turn them off when leaving for an ex-
tended period, and ii) reduce user comfort, since users cannot ac-
tivate them in advance of their arrival, causing an initial period of
discomfort on entry as a home (or room) heats up or cools down to
the setpoint. To address these drawbacks, most modern thermostats
are programmable. A programmable thermostat enables a user to
manually program a thermostat schedule, which specifies the time
each day the HVAC system should be on and its corresponding set-
point temperature. Users derive a schedule based on when they
expect to be home and away. If a user’s expectations are correct,
then a programmable thermostat can reduce human error by auto-
matically turning off (or adjusting the setpoint) when a user leaves.
To increase comfort, users may also enter schedules that pre-cool
or pre-heat a home (or room) in advance of their expected arrival.

Programmable thermostats are simple and cheap devices present
in tens of millions of homes. While programmable thermostats
are marketed for their potential energy savings, prior research has
shown they do not save energy in practice, largely because users of-
ten program them incorrectly or not at all [21, 23]. Unfortunately,
the interface to many programmable thermostats is difficult to nav-
igate and tedious to program, which often discourages users from
ever programming them. Even when taking the time to program
a schedule, users are left with the complex task of determining
a static schedule that optimizes their energy savings and comfort
given their occupancy pattern, which may be dynamic and diffi-
cult to predict. Further, since daily activities and, thus, occupancy
patterns inevitably change over time, e.g., summer activities dif-
fer from winter activities, users must periodically re-program their
thermostat as their optimal schedule changes, or risk losing any of
its energy-saving benefits. As a result of these challenges, many
users avoid programming thermostats, which defeats their purpose.

Smart thermostats, which sense occupancy and automatically
program a schedule without user intervention, were introduced to
address the drawbacks of programmable thermostats. There has
been a large amount of prior work on smart thermostats that mon-
itor and predict occupancy patterns using various techniques and



sensors, e.g., motion or GPS [1, 10, 11, 18, 24], and numerous com-
mercial smart thermostats are now available, including NEST [20],
Lyric [19], Ecobee [7], etc. However, smart thermostats are still
niche devices for energy-efficiency enthusiasts, largely due to their
high cost and the overhead of installing them. For example, smart
thermostats currently cost >10× more than a programmable ther-
mostat, e.g., $250 for the NEST versus $15 or less for an entry-level
programmable thermostat. While the cost of smart thermostats may
decrease over time, tens of millions of “dumb” programmable ther-
mostats will remain in homes for many years to come.

Thus, we focus on making existing “dumb” programmable ther-
mostats smart without requiring new investments to upgrade to an
expensive smart thermostat or install additional sensors. Our goal
is to address the problems that prevent existing programmable ther-
mostats from fully realizing their energy savings potential. Our key
insight is that electricity usage data from smart meters indirectly re-
veals occupancy patterns that can be used to automatically derive
custom thermostat schedules for each home. We argue that sched-
ules automatically derived from smart meter data are better aligned
with occupancy than schedules manually entered by users, enabling
users to save energy and making it easier for them to program their
thermostat. Importantly, our approach uses an existing sensor that
is already widely deployed in homes: as of 2014, 50 million smart
meters had been installed in the U.S., which covers more than 43%
of all meters [14]. Further, smart meter installations are growing
rapidly: in the past five years from 2009 to 2014 the number of
deployments increased by nearly a factor of four (from 13 million
in 2009 to 50 million in 2014 [14]) with 75% coverage expected
by 2016 [12]. In addition, utilities that collect smart meter data
have an interest in energy-efficiency, e.g., as part of government-
mandated energy-efficiency programs, and direct access to a large
set of customers and data. Thus, utilities are in the best position
to suggest thermostat schedules to users, to provide incentives for
users to adopt them, and to verify their adoption.

Our system, called iProgram, analyzes data from a home’s smart
electricity meter to infer occupancy patterns and derive a custom
thermostat schedule. iProgram extends recent research [4, 16] in in-
ferring occupancy from smart meter data in important ways, which
are driven by its application context. For example, while prior work
uses training data to build a model that correlates occupancy with
certain features of smart meter data [16], our application does not
permit gathering training data, since it would require installing tem-
porary occupancy sensors in tens of millions of homes. In addi-
tion, the models in prior work typically use a home’s power usage
as primary feature to infer occupancy. Unfortunately, homes with
misprogrammed thermostats often exhibit high power usage when
unoccupied, since the HVAC system is often a home’s largest load.
Thus, prior techniques often perform poorly on exactly the homes
with the most to gain from iProgram. Finally, we evaluate iPro-
gram, not only using occupancy-centric accuracy metrics, but also
by its ability to derive effective thermostat schedules in real homes.

Our hypothesis is that iProgram can improve HVAC efficiency en
masse by analyzing smart meter data to infer long-term occupancy
patterns and compute a custom thermostat schedule. In evaluating
our hypothesis, this paper makes the following contributions.
• Targeted Occupancy Detection. We develop a targeted oc-

cupancy detection technique that performs well on energy-
inefficient homes with misprogrammed thermostats, and is
applicable to utility-scale datasets where training data is not
available. Rather than apply a general machine learning ap-
proach, we craft a domain-specific technique that leverages
time-series component analysis to isolate the “burstiness” of
interactive loads that directly correlate with occupancy.

• Deriving Thermostat Schedules. We show how to translate
the inferred long-term occupancy patterns into a probability
distribution of occupancy to derive a custom static thermostat
schedule. We present extensions to support scheduling differ-
ent types of thermostats, e.g., 5-2-day, 7-day, etc., identifying
sleeping periods, and changing occupancy patterns.
• Open Cloud Service. We implement iProgram as an open

cloud service where users may upload their smart meter data
and receive suggested thermostat-specific schedules. The ser-
vice also exposes a web services API to enable third-party de-
vices, such as a basic WiFi-enabled (but non-learning) pro-
grammable thermostat, to access its schedules.
• Evaluation. We evaluate the accuracy of iProgram’s tar-

geted occupancy detection technique and its derived thermo-
stat schedules, as well as its ability to infer thermostat sched-
ules in real homes. For the former, we use data from over 100
homes from the ECO [3, 16] and Pecan Street datasets [22],
which include one-minute power data for up to six months.
For the latter, we conduct an anonymous user study on 8
homes where we analyze their smart meter data to suggest a
thermostat schedule based on their inferred occupancy pattern.

2. BACKGROUND AND MOTIVATION
iProgram assumes a home is equipped with a networked power

meter—a smart meter—that reports aggregate electricity usage at
fine-grained intervals, e.g., every one to fifteen minutes. Most res-
idential HVAC systems are partially or fully electric: nearly all
space cooling, i.e., air conditioning, is electric and 38.1% of U.S.
homes use some form of electric space heating [8]. Even when us-
ing oil- or natural gas-based heating, the mechanical systems that
circulate the hot air or water are electric. In addition, the type of
HVAC system in a home is typically a matter of public record, and
available to iProgram (and utilities). Thus, given an address, iPro-
gram can identify the homes and seasons where HVAC usage is
included in smart meter data, and appropriately configure itself.

iProgram specifically targets homes that use programmable ther-
mostats to regulate HVAC operation. Only 7% of U.S. homes have
central heating but no thermostat, and only 1% of homes have
central cooling but no thermostat [9]. In contrast, 37% of U.S.
homes with central heating have a programmable thermostat, and
29% of homes with central cooling have a programmable thermo-
stat [9]. Importantly, iProgram does not dictate a specific type of
programmable thermostat or its configuration. There are a wide
range of thermostats available, including 1-day programmable, 7-
day programmable, and 5-2-day programmable. In addition, some
programmable thermostats are now networked, enabling users (or
third-party software) to remotely program and control them. Note
that network-enabled programmable thermostats differ from high-
end smart thermostats in that they do not automatically program a
schedule by learning home occupancy patterns via sensors.1

For homes with only manual thermostats (or no thermostat at
all), iProgram can still compute the misalignment between the
HVAC system’s operation and the occupancy pattern, and then
estimate the potential energy savings from upgrading to a pro-
grammable (or smart) thermostat.

2.1 Problem Statement
Our goal is to analyze a home’s smart meter data to derive a

thermostat schedule that accurately reflect its pattern of occupancy.
Formally, we represent a schedule as a function S(t) that returns a
desired thermostat setpoint temperature at each time t. In essence,

1See http://wifithermostat.com for examples.

http://wifithermostat.com


the thermostat schedule defined by S(t) consists of a series of
variable-length intervals that specify different setpoint and setback
temperatures, which denote the desired temperature when users are
present and away, respectively. A thermostat schedule must spec-
ify either a setpoint or setback temperature for each interval. In
addition, for programmable thermostats, the thermostat schedule
repeats every interval T , which limits t’s range. For example, for a
1-day programmable thermostat T = 24 hours, while, for a 7-day
programmable thermostat, T = 168 hours.

iProgram derives the schedule S(t) by analyzing the time-series
P (t) of power readings generated by a smart meter to infer when a
home is occupied. As in prior work, we represent occupancy as a
binary function O(t), where zero is an unoccupied home and one
is an occupied home. Occupancy detection then requires inferring
O(t) from P (t). Prior work on inferring occupancy from smart
meter data leverages the insight that power usage that is high and
variable often correlates with occupancy, since occupants use inter-
active devices that consume energy when home. Prior work eval-
uates many approaches for inferring occupancy based on this intu-
ition, ranging from employing simple thresholds on power’s mean,
variance, and range [4] to advanced machine learning techniques
using Hidden Markov Models (HMMs), Support Vector Machines
(SVMs), and k-Nearest Neighbor (k-NN) classifiers [16]. While
accuracy depends on the correlation between a home’s occupancy
and electricity usage, it generally ranges between 75% and 95%.

2.2 Research Challenges
Unfortunately, applying prior work to iProgram’s application of

deriving optimal thermostat schedules en masse from smart meter
data is problematic for multiple reasons. As we describe below,
iProgram i) does not have access to training data, ii) has a par-
ticular emphasis on reducing the energy use of energy-inefficient
homes with misprogrammed thermostats, and iii) focuses on deriv-
ing thermostat schedules and not just detecting occupancy.
No Training Data. Prior techniques for inferring occupancy from
smart meter data rely on an initial set of training data to build a
model that correlates occupancy with power data. Gathering train-
ing data requires instrumenting the home with occupancy sensors
or directly tracking occupants’ location, e.g., via their smartphone.
While gathering training data is feasible in a few homes, it does not
scale to utility-sized datasets. Further, many users will not likely
consent to such instrumentation due to privacy concerns. While im-
proving home thermostat schedules across a large number of homes
has the potential to significantly reduce energy use, the cost to pri-
vacy may not be worth the benefit in energy savings for many users.
While privacy concerns also exist with smart meters [5], consumers
must already trust utilities with their smart meter data.

Of course, one way to address the lack of training data using
the techniques above is to simply apply models built from training
data from some sample test homes to a much larger set of homes.
Other energy data analytics, such as Non-Intrusive Load Monitor-
ing (NILM), often take this approach [17]. However, NILM’s goal
is to extract common, and often repetitive, device power signatures
from smart meter data. Importantly, these signatures are often simi-
lar across homes. For example, every home likely has a refrigerator
with a similar repeating pattern of energy consumption. In contrast,
occupancy patterns, as well as how occupants interact with electri-
cal devices, are highly user-dependent, and typically vary signifi-
cantly across homes. As a result, applying training data from test
homes to a wider set of homes without training data is not as useful.
Misprogrammed Thermostats. Prior techniques for inferring oc-
cupancy from smart meter data work well when occupancy patterns
align with power usage. However, when a thermostat is mispro-
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Figure 1: Any approach that correlates high power usage with
occupancy is error-prone for misprogrammed thermostats.

grammed, it will turn on the HVAC system when occupants are
not home, or turn off the HVAC system when they are home. This
results in an inherent mismatch between the the HVAC system’s
power usage, which is a large component of a home’s overall power
usage, and its occupancy. In this case, using power usage to derive
occupancy is more error-prone, especially during the misaligned
intervals when the HVAC system is on and the home is unoccu-
pied (or vice versa). In fact, as shown in Figure 1, previous oc-
cupancy techniques that use the magnitude of power consumption
as a metric to infer occupancy often yield incorrect results during
misaligned periods. To be effective, iProgram must derive more
accurate occupancy patterns despite periods of misalignment.

More generally, the more energy-efficient a home, the more the
simple features from prior work, e.g., power’s mean, variance, and
range, will correlate with occupancy—since an energy-efficient
home is one that uses a minimal amount of power when occu-
pants are away. Conversely, the less energy-efficient a home, the
less these features will correlate with occupancy. This relationship
between energy-efficiency and the accuracy of energy data analyt-
ics (and privacy) has also been identified in computer systems [6].
Thus, to accurately infer occupancy in energy-inefficient homes,
iProgram requires a more targeted approach than prior work. As
we discuss, we craft an approach specifically tailored to the inher-
ent characteristics of power data that signify occupancy.
Thermostat Scheduling. There is substantial work on deriving
thermostat schedules from occupancy patterns. For example, smart
thermostats actively sense occupancy using motion or GPS sen-
sors [18, 24] and dynamically alter a thermostat’s schedule in real
time based on the current occupancy. The scheduling problem
for iProgram differs from smart thermostats, since it computes a
static schedule based on long-term occupancy patterns for a pro-
grammable thermostat, rather than directly sensing and dynami-
cally adjusting to real-time occupancy. Work by Gao and White-
house [13], which computes a thermostat schedule based on long-
term occupancy statistics gathered from sensors, is most similar to
iProgram’s scheduling problem. However, their approach is limited
to computing the time and duration of a single unoccupied period
each day, while our approach is general and computes the optimal
thermostat schedule for a given long-term pattern of occupancy.

2.3 Evaluation Metrics
Since iProgram ultimately focuses on translating occupancy pat-

terns into a thermostat schedule, we use evaluation metrics relevant
to thermostat scheduling, rather than simply quantifying the accu-
racy of our new binary classifier for occupancy detection. In par-



ticular, we use miss time (MT) and waste time (WT) to quantify the
performance of a thermostat schedule. Intuitively, the miss time is
the amount of time a home is occupied but the HVAC system is not
on, i.e., where its temperature deviates by more than X◦ from the
setpoint. Likewise, the waste time is the amount of time a home is
unoccupied and the HVAC system is on, i.e., where the temperature
deviates by less thanX◦ from the setpoint. Formally, we define the
miss time and waste time in terms of the conditioning period (CP)
below for T time periods with occupancy O(t) ∈ 0, 1.

CP (t) =

{
1, if the home is conditioned at time t,
0, otherwise.

(1)

Given CP(t), we define the average daily miss time and waste
time over an N day period, as shown below.

MT =

∑
t

(O(t)− CP (t))

N
∀ t where O(t) = 1 (2)

WT =

∑
t

(CP (t)−O(t))

N
∀ t where CP (t) = 1 (3)

Our definition of miss time differs from prior work [13], which
defined the metric by assuming only a single contiguous unoccu-
pied period during the day, e.g., from the time occupants leave in
the morning to when they return in the afternoon/evening. In gen-
eral, our metric reflects that there may be multiple non-contiguous
unoccupied periods during the day, e.g., if someone leaves for
work, comes home for lunch, and then leaves again. Our defini-
tion of miss time is applicable to such non-contiguous schedules.

Of course, a simple way to achieve a miss time of zero is to never
alter the thermostat setpoint, even when a home is not occupied;
likewise, a simple way to achieve a waste time of zero is to never
turn on the HVAC system, even when the home is occupied. There
is a tradeoff between miss time and waste time, which corresponds
to a tradeoff between user comfort and HVAC energy usage: a low
miss time signifies high user comfort but results in higher HVAC
energy usage, while a low waste time signifies low HVAC energy
usage but results in lower user comfort. To resolve this tradeoff, we
also define the mismatch time for a particular schedule as the sum
of its miss time and waste time. The mismatch time essentially
places an equal value on both energy-efficiency and comfort.

Note that iProgram computes a thermostat schedule S(t) for
homes that specifies when the thermostat should be at a setpoint
or a setback temperature. However, it does not determine the set-
point and setback temperature for the user. These values should be
defined by a home’s occupants, since they depend on occupants’
subjective notion of comfort, i.e., some people may like their home
warmer or colder than others. iProgram could aid in setting set-
back temperatures based on the regularity and length of a home’s
occupancy pattern. For example, the more regular and predictable
a home’s schedule, the deeper the setback that is possible without
causing discomfort on arrival (since the schedule will be able to re-
liably pre-heat the home before the expected arrival). In addition,
setting the depth of the setback also depends on a home’s size and
insulation, since these attributes affect the time it takes to change
the temperature back to the setpoint temperature. We leave setting
the setback temperature’s depth as future work: in our current pro-
totype, iProgram computes the schedule, while the user sets their
desired setpoint and setback temperature for different periods.

In addition to scheduling-centric evaluation metrics, we also
quantify the performance of our occupancy detection technique us-
ing standard metrics for binary classifiers, which are defined based
on values in a confusion matrix. Specifically, we compute the per-
centage of time our occupancy detector yields a true positive (TP),
true negative (TN), false positive (FP) and false negative (FN).
Given these values, we compute accuracy as shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Since different homes may be occupied for different durations,
accuracy is not an ideal evaluation metric. For example, if a home
is occupied 90% of the time, then an approach that simply assumes
the home is always occupied will perform well. Thus, a better sin-
gle measure of a binary classifier’s performance is the Matthews
Correlation Coefficient (MCC), shown below, which ranges from
−1.0 to 1.0 where a 0.0 is equivalent to random guessing, a 1.0 is
equivalent to perfectly predicting occupancy, and a −1.0 is equiv-
alent to being perfectly wrong about every prediction. The MCC is
generally a better single measure for a binary classifier than Preci-
sion, Recall, or F-Score, since it is robust to different values of the
ground truth data and does not depend on the arbitrary labeling of
values in the confusion matrix.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

3. IPROGRAM DESIGN
iProgram’s basic workflow, depicted in Figure 2, is to i) apply an

occupancy detection technique to infer occupancy from smart me-
ter data, ii) use the inferred long-term occupancy pattern to com-
pute a histogram of the probability of occupancy at any time each
day, and iii) generate a static schedule that minimizes the mis-
match time (or optimizes a user-specified tradeoff between miss
time and waste time). Since prior general occupancy detection
techniques [4, 16] do not work well for iProgram, as discussed in
Section 2, we present a new targeted technique designed specif-
ically to work without training data on energy-inefficient homes
with misprogrammed thermostats. We then discuss translating the
inferred occupancy patterns into non-contiguous schedules for pro-
grammable thermostats. Our techniques combine several statisti-
cal methods, including time-series decomposition and probability-
based occupancy modeling, to derive custom thermostat schedules.
In addition, we present multiple extensions to our basic technique.

3.1 Detecting Occupancy
Our approach derives from the notion of “burstiness” in network

protocols, such as TCP [26]. A TCP flow consists of a sequence of
packets from a source to a destination server. Intuitively, a burst is
then a group of consecutive packets with shorter inter-arrival times
than packets occurring before or after the group. In addition, a
group of bursts with shorter inter-arrival times than bursts occurring
before or after the group is referred to as a family of bursts.

In our context, packets are analogous to significant power events,
i.e., increases or decreases in power. We apply burstiness to occu-
pancy detection, in part, because we view it as the most innate char-
acteristic of power usage that directly correlates with occupancy:
when occupants are home they cause bursts of power events by
turning devices on and off. Other characteristics of home power
usage that correlate with occupancy, including power’s mean, vari-
ance, and range, only indirectly derive from burstiness. For exam-



Occupancy	
  Detec,on	
   Probability	
  Quan,fica,on	
   Schedule	
  Genera,on	
  

Figure 2: iProgram’s basic workflow

ple, power’s mean tends to increase as occupants turn devices on.
Likewise, power’s variance (or standard deviation) is essentially a
dampened form of burstiness, while power’s absolute range simply
captures the largest burst within some period.

Since the characteristics above are not the most direct reflection
of occupant presence in smart meter data, their correlation with oc-
cupancy is generally less strong than burstiness. As discussed in
Section 2, any technique that correlates occupancy with a high av-
erage power will incorrectly detect occupancy if the HVAC system
turns on in an unoccupied home.

Of course, burstiness, as with the other metrics, may not always
perfectly correlate with occupancy, as large background loads like
the HVAC system also cause bursts of power events. To isolate
these bursts, we use basic time-series decomposition to deconstruct
the power time series (P ) into the seasonal(Ps), trend(Pt), and
noise (Pn) components. The seasonal component of a time se-
ries captures patterns that tend to repeat semi-regularly over known,
fixed periods of time (of any duration). Thus, the seasonal compo-
nent only includes the non-interactive background loads, which are
typically periodic and cause bursts of power usage in an unoccupied
home. In contrast, the trend component captures the general non-
repetitive trend in the data, e.g., increasing or decreasing over time,
by filtering out medium and high frequency fluctuations. Thus, in
our algorithm below, we only correlate bursts in the power usage of
the trend component with occupancy. Finally, the noise component
represents random fluctuations that are neither repetitive nor follow
a trend. We extract the noise component from the trend component
to eliminate random bursts that are less likely to be associated with
human activity, which are generally part of a trend.

Below, we present our occupancy detection algorithm that com-
bines time-series decomposition and burstiness to detect occupancy
from smart meter data. For each day, from time dStart to time
dEnd, we isolate the periodic background loads using time-series
decomposition. Specifically, we compute the seasonal component
of the daily time-series for all window sizes [1 . . . νmax], and then
select the value νopt that maximizes the seasonal component’s av-
erage power consumption over the day. Here, the time-series de-
composition will extract any repeating patterns of usage that are
near the specified window size. Our goal is to isolate the HVAC
system’s operation from the power usage; since the HVAC system
is generally the largest load in the home, computing the seasonal
component at its window size, i.e., its periodic interval, will result
in the largest energy consumption over the day. Since we do not
know the HVAC system’s duty cycle and periodicity in advance,
we perform an exhaustive search over all possible window sizes.

After isolating the seasonal component with the window size that
maximizes daily energy consumption, we consider the magnitude
of the change in the trend component over time. In particular, if
the change in the power usage of the trend component from any
time t − 1 to time t is greater than the average reading-to-reading
change in power, we flag time t as a power event. If the time period
between two events is within a threshold δday , we label the time
period between the events as a burst. Similarly, if the time period
between two bursts is within a threshold δday , we label the time pe-

Algorithm 1 Occupancy Detection
1: procedure OCCUPANCYDETECTION(P )
2: Initialize: O[i]← 0 ∀ i ∈ 1 . . . length(P )
3: Pday ← P [dStart : dEnd]
4: Ps[ν], Pt[ν], , Pn[ν]← Decompose(Pday, ν)

∀ ν ∈ 1 . . . νmax
5: νopt ← argmax

ν
|σ(Ps[ν])|

6: P opts , P optt , P optn ← Decompose(Pday, ν
opt)

7: Oday ← 1(O1[P
opt
t ]| > mean(|O1[P

opt
t ]|))

8: Oday[i : i+ 1]← 1 ∀ T (i+ 1)− T (i) <= δday
9: Onight[i]← Oday[i] ∀ i ∈ T [nStart : nEnd]

10: Onight[i : i+ 1]← 1 ∀ T (i+ 1)− T (i) <= δnight
11: O[i]← 1 ∀ i ∈ Oday[i] = 1
12: O[i]← 1 ∀ i ∈ Onight[i] = 1
13: return O
14: end procedure

riod between the bursts as a family of bursts. We set δday = 2 hours
in our current prototype. We then interpolate between families of
bursts and label periods between them as being occupied, while all
other periods are labeled as non-occupied. Note that the algorithm
above only considers daytime detection from 6am to 11pm.

We detect nighttime occupancy separately from daytime occu-
pancy, since nighttime occupancy is not strongly correlated with
burstiness in the power usage. Here, we focus on evening and
morning bursts that occur between 7pm-11pm and 6am-9am, re-
spectively. If we do not detect a burst in either period, we label the
nighttime period as unoccupied, otherwise we compute occupancy
as above. This strategy works well in practice, although it cannot
differentiate between occupants going to sleep and then waking up
in the middle of the night, and occupants going out late at night and
then coming home in the early morning hours. Pseudocode for our
algorithm above is shown in Algorithm 1.

Note that burst detection above is based on the magnitude of each
change in power relative to the average reading-to-reading change
in power for a home. Thus, the algorithm requires no training data
of ground truth occupancy to learn a model a priori. We select the
average change in power as the threshold because we have found
that changes in home power are bimodal with many small changes
in power (near zero) that stem from natural variations in a device’s
power usage, and a few large changes in power that stem from hu-
man activity. In computing the mean change in power, we are able
to detect the latter, while eliminating the former.

3.2 Generating Schedules
The algorithm above infers periods of occupancy and non-

occupancy each day. Over many days, we can then compute a his-
togram that shows the probability of occupancy for each sampling
interval, e.g., every minute in our dataset. The histogram captures
the regularity of a home’s occupancy pattern. Figure 3 shows an
example of the histogram for Home B in the UMass Smart* dataset
over a three week period. The figure shows the probability the
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Figure 3: An example histogram of the probability of occu-
pancy (inferred and ground truth) each minute of the day over
a three week period for Home B in the Smart* dataset [2].

home is occupied each minute of the day for both the ground truth
occupancy and our inferred occupancy. For this home, our occu-
pancy detection technique works well, and the home has a highly
regular pattern of usage, making it a good candidate for a static
thermostat schedule. Using this histogram, we can directly com-
pute a schedule that optimizes for a specific miss time, waste time,
or mismatch time. For example, we can specify a miss or waste
time, and compute the schedule that minimizes the waste and miss
time, respectively. We can also compute the schedule that mini-
mizes mismatch time, i.e., the sum of miss and waste time.

The basic algorithm sorts the histogram by the probability of oc-
cupancy for each given time period. We may then specify a target
average daily miss time and compute the schedule that minimizes
the waste time. We start with the period with the lowest probabil-
ity of occupancy and compute average miss time over this period
assuming that we turn off the HVAC system (or shift it to the set-
back temperature). We can compute the average daily miss time
directly from the histogram by simply multiplying the length of the
time period by the probability of occupancy. We then compute the
average daily miss time over the period with the next smallest prob-
ability of occupancy, assuming that the HVAC system is off during
this period, and increment our total average daily miss time. We
continue iterating in sorted order until the total accumulated miss
time reaches our target. Since the HVAC system is off during these
periods, it contributes no waste time, as waste time only accrues
when the HVAC system is on (and the home is unoccupied).

Computing the minimum miss time for a target waste time fol-
lows the same procedure, but starts with the period with the largest
probability of occupancy and iteratively computes the per-period
waste time (and increments the total waste time) assuming the
HVAC system is on. Computing the optimal mismatch time works
in the same way, but computes the mismatch time for each pe-
riod, and stops when the mismatch time increases after any iter-
ation. Computing the mismatch time may proceed in either sorted
order, i.e., largest to smallest or vice versa. If the occupancy in-
formation is accurate, then the algorithms described above are op-
timal with running time linear in the size of the input data, which
includes a day’s worth of minute-level power data. Constructing
the histogram is also linear in the size of the input data, which we
generally limit to the previous four months due to changes in oc-
cupancy across seasons. Pre-conditioning homes before occupants
come home is necessary to maintain user comfort. iProgram can
incorporate such pre-conditioning times by adjusting its schedules
to account for the time required by the HVAC system to return the
home from the setback to the setpoint temperature.

Note that our schedules are not limited to a single contiguous
period of non-occupancy each day, as in prior work [13], and may
result in multiple periods of non-occupancy. For example, if a user
regularly comes home for lunch, the schedule would indicate the
increase in occupancy probability during lunchtime, which would
affect position of the lunchtime period in the sorted order above.

(a) (b)

Figure 4: iProgram screenshots, including the inferred occu-
pancy (a) and generated thermostat-specific schedule (b).

3.3 Scheduling Extensions
We extend iProgram’s basic algorithm in multiple ways.

Different Thermostat Types. We can use the same algorithm as
above to compute schedules for different types of programmable
thermostats, such as 5-2-day or 7-day, by simply considering dif-
ferent datasets. For a 7-day thermostat, we run the algorithm sepa-
rately for datasets with all Mondays, all Tuesdays, etc. to compute
a separate Monday schedule, Tuesday schedule, etc. Likewise, for
a 5-2-day thermostat, we partition the data into two sets—for week-
days and weekends—and separately compute schedules for each.
Sleeping Schedules. iProgram may also separate sleeping from
non-occupancy in its schedules. The sleeping period differs from
non-occupancy in that homes may have a different thermostat set-
ting when the home is occupied and sleeping versus not occupied.
For example, homes may set bedroom heating or cooling zones in
multi-zoned systems based only on the sleeping versus not sleep-
ing periods, irrespective of occupancy (since bedrooms may not be
occupied during the day, even when the home is occupied). iPro-
gram assumes the sleeping period is the longest period of nighttime
occupancy (between 7pm and 9am).
Dynamic Learning. Our algorithm above computes static ther-
mostat schedules for different types of programmable thermostats.
However, schedules may change over time. For example, homes’
pattern of occupancy generally changes with each season due to
changes in the climate or based on the academic calendar, i.e., chil-
dren are out of school over the summer. We have extended our ap-
proach above to be more dynamic by recomputing schedules based
on new data. In our case, we use a moving average approach that
gives more weight to more recent data. To do so, we recompute the
histogram above each day using a weighted measure of occupancy
that discounts older occupancy data. In our prototype, we apply
this discount on a monthly basis, since we are primarily focused on
adapting to seasonal changes. Thus, to compute the histogram, we
give full weight to occupancy data within the past month, and dis-
count older data by a factor α < 1. While a recomputed schedule
would need to be manually (re)programmed by the user, which im-
plies it should be infrequent and only capture large changes in the
schedule, the process may be automated for newer programmable
thermostats with WiFi capabilities.

4. IPROGRAM IMPLEMENTATION
We implement iProgram as an open web service that enables

users to upload their power data and select their type of thermo-
stat and then visualize their occupancy patterns, as well as gener-
ate a custom thermostat schedule. The architecture consists of six
modules: a profile manager, storage engine, occupancy analyzer,
schedule generator, visualization engine, and API manager.

The profile manager handles account creation, user authentica-
tion, and user meta-data. The profile manager interacts with the
storage engine to store and retrieve information on user profiles, as



well as power consumption data. Users may upload power data
directly as CSV files or provide a URL for a third-party meter
that stores the data. We currently support eGauge power meters,
but intend to add additional third-party meters in the future, such
as TED. The occupancy analyzer implements occupancy detection
and schedule generation algorithms from the previous section. The
module stores the discretized occupancy information in the storage
engine. The occupancy information is then read by the scheduler
generator, which is capable of generating schedules for 1-day, 5-2-
day, and 7-day programmable thermostats. The schedule generator
supports the different scheduling algorithm variants, which either
specify a target miss/waste time and minimizes waste/miss time,
respectively, or optimizes for the mismatch time.

The visualization engine displays the occupancy information and
the generated schedules to the user. Figure 4(a) shows a sample
of the inferred occupancy information for a home, where green
indicates the home is occupied and awake, red indicates it is un-
occupied, and yellow indicates it is occupied and sleeping, and
Figure 4(b) shows a sample thermostat schedule for a home. Fi-
nally, iProgram exposes an external REST API via the API man-
ager, which provides a programmatic interface for networked ther-
mostats to auto-program themselves using iProgram’s schedules.
The API exposes information in JSON format, and could be ex-
tended to offer If-This-Then-That (IFTTT) recipes to trigger auto-
mated actions for certain events, e.g., if the schedule changes.

iProgram’s web service is built using Django, a popular Python-
based web application framework. We use SciPy stack, which in-
cludes assortment of scientific computing libraries for Python, to
process, store, and analyze power data. For time series decomposi-
tion, we use Statsmodels [25], a python library for time series anal-
ysis. We use dygraph, a Javascript graphing library for displaying
occupancy data, and a sqlite3 database to store each user’s profile,
power data, occupancy information, and thermostat schedules.

5. EXPERIMENTAL EVALUATION
We evaluate iProgram using both data from over 100 homes

across three public datasets, as well as results from a user study in
8 anonymous homes. Our datasets include the ECO dataset [3], the
UMass Smart* dataset [2], and the Pecan Street dataset [22]. Each
dataset includes different types of homes in different climates. The
ECO dataset includes both 1Hz average power data for 6 homes in
Switzerland, where 5 homes include binary occupancy data rang-
ing from 25 to 66 days. Similarly, the UMass Smart* dataset in-
cludes 1Hz average power data for 3 homes in Massachusetts, and
binary occupancy data for 1 month in two of the homes (Home
A and Home B), as described in recent work [4]. Note that even
though these datasets include 1Hz data, we apply our techniques to
minute-level power data, since that is the highest resolution offered
by utilities. Our method should also apply to even lower resolution
data, as they will also capture the trend component, although the
accuracy of the schedules may degrade at coarse resolutions. The
Pecan Street dataset includes average power data every minute for
1,200 homes across Texas, Colorado, and California.

We have ground truth occupancy for the ECO and UMass
datasets. Note that the ground truth is only used to determine the
accuracy of our approach; ground truth data is never used by the
iProgram algorithm, since iProgram does not require ground truth
when computing schedules. While Pecan Street does not provide
occupancy data, it does include average power data for a large
number of circuits in each home. For our evaluation, we iden-
tify circuits in the dataset that only power interactive devices, e.g.,
lighting, televisions, microwaves, etc., and use our burstiness tech-
nique (without the initial time-series decomposition step to remove
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Figure 5: Graphical depiction of the confusion matrix for
homes in the ECO and Smart* datasets, along with the asso-
ciated MCC (atop each bar).

background loads) to infer occupancy, which we use as a proxy for
ground truth occupancy. In prior work, we demonstrate that power
events for circuits that only power interactive devices highly corre-
late with occupancy [4]. Importantly, the Pecan Street dataset also
instruments the circuits related to HVAC energy usage, enabling us
to identify the HVAC usage pattern and quantify its energy usage.

Since Pecan Street uses a consistent nomenclature for labeling
circuits in homes, we choose circuit labels with a high probability
of only powering interactive loads, and only select homes that have
i) more than five dedicated interactive circuits, ii) a central HVAC
system, and iii) a normal occupancy rate in the range of 60-90%.
Based on this criteria, we select 100 homes from the Pecan Street
dataset. While our proxy for ground truth occupancy may result in
more false negatives, i.e., where occupants are home but not using
any interactive devices, than the actual ground truth data, evaluating
iProgram across 100 homes gives an indication of its flexibility for
different types of homes with a range of occupancy patterns.

5.1 Occupancy Detection Accuracy
Figure 5 shows the performance of our occupancy detection tech-

nique on each home in the ECO and UMass Smart* datasets across
their respective time periods. The figure graphically depicts each
possibility in the confusion matrix, where the bottom two (red and
green) portions of each bar represent the accuracy, and the number
atop each bar is the MCC. The accuracy is in the range of 75%-
95%, while the MCC ranges from near 0 (or akin to random guess-
ing) to 0.76. Home 5 from the ECO dataset demonstrates why
accuracy is not a good measure of performance: since the home’s
occupancy rate is high, our accuracy is also high (85-90%), but the
MCC indicates our technique performs similar to random guessing.
In contrast, Home A in the Smart* dataset yields the lowest accu-
racy, largely due to its low occupancy rate, but third highest MCC.
Note the occupancy rate is TP + FN (the green and yellow bars).

Overall, our results on the ECO dataset compare favorably with
prior work [16]. In some cases, our MCC results are better than the
best approach in prior work, e.g., ECO2 (winter), ECO3 (winter),
ECO4 (winter), and in some cases they are slightly worse. The only
notable deviation is ECO5, where our accuracy results are in line
with prior work, but our MCC results are much worse than the best
technique, e.g., an SVM. However, our technique uses the coarser
minute-level data offered by current smart meters, rather than the
second-level data used in prior work. In addition, iProgram’s tech-
nique, which does not use training data, compares favorably to the
best option out of multiple techniques, e.g., based on threshold-
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Figure 7: Accuracy of occupancy detection on HVAC sys-
tems that are misaligned with occupancy on the Pecan Street
datasets. The color of each dot represents each home’s MCC
with the average MCC labeled for each value on the x-axis.

ing, kNN, SVM, and HMMs, that require training data. However,
since there is little consistency in prior work as to which training-
based technique is best across homes (or even seasons within the
same home) in the ECO data, there is no way to choose the best
training-based technique a priori without empirically comparing
results from each one. Thus, we view iProgram’s targeted occu-
pancy detection approach, which does not require training data and
is directly applicable to smart meter data (at smart meter data reso-
lutions), as an advance in the state-of-the-art.

Similarly, Figure 5 shows the performance of iProgram’s occu-
pancy detection technique on each home in the Pecan Street dataset.
Since there are over 100 homes, we use a scatterplot of the TP and
TN values for each home, where the color indicates the MCC and
the top right portion of the graph indicates the highest accuracy.
The graph shows that our technique works well for many homes,
although 15 of the homes are blue, indicating a low MCC. The re-
sult illustrates that occupancy detection from smart meter data is
not perfect. Of course, accuracy and MCC are occupancy-centric
metrics, while iProgram’s goal is to improve HVAC schedules and
save energy. As with Home 5 in the ECO dataset, in many cases,
homes with low MCCs also exhibit high occupancy rates, e.g.,
>80% where thermostat scheduling is not a challenging problem.

We next show that iProgram’s occupancy detection technique is
robust to HVAC systems that are not aligned with occupancy. To
demonstrate this, we intentionally shift the HVAC system usage in
the smart meter data by different amounts up to 2 hours forward and
backward in time to misalign it with occupancy, and then detect oc-
cupancy on the resulting traces. Figure 7 shows the results, where
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Figure 8: Estimated energy savings for different target miss
times for each home in the Pecan Street dataset.

accuracy is on the y-axis, and the color of each dot represents each
home’s MCC with the average MCC labeled for each value on the
x-axis. The graph shows that the magnitude of misalignment in the
HVAC system has little effect on the accuracy of occupancy detec-
tion. We do not plot the ECO dataset, since none of its homes have
a central HVAC system labeled in the data.

5.2 Thermostat Scheduling Performance
Figure 8 shows the estimated average daily energy savings each

home in the Pecan Street dataset could achieve over 6 months using
iProgram with different target miss times. Each point on the x-
axis represents the estimated energy savings for a home, where we
order homes by their energy savings when using a 1-day schedule.
Here, we estimate the energy savings assuming the HVAC system
uses iProgram’s schedule; we then count any energy consumed by
the HVAC system during an off period in the schedule towards our
savings. Of course, the HVAC system may occasionally turn on
during unoccupied periods to maintain the setback. In this case, we
assume the setback is sufficiently deep that occupants are not away
long enough for the temperature to reach it.

The graph shows that, as expected, a 7-day schedule achieves
slightly more energy savings than a 5-2-day schedule, which in turn
achieves slightly more savings than a 1-day schedule. However,
the savings relative to a 1-day schedule, while significant in some
homes, are not significant on average. Also as expected, the greater
the acceptable target miss time (and the lower the tolerable comfort
level), the more energy savings the homes achieve. The maximum
energy savings (with a miss time of 60 minutes) is near 2.5kWh
per day, which is over 10% of a typical U.S. home’s average daily
energy usage. Overall, the average daily energy savings is in the
range of 0.25 kWh (for a 15 minute miss time) to 1.0kWh (for a
60 minute miss time), which represents a 1-5% energy reduction
in an average U.S. home. However, the strength of our approach
does not lie in achieving large energy savings in a small number of
homes, as with smart thermostats, but rather in being immediately
applicable to saving energy across a large number of homes.

We also compare iProgram’s schedule to a default 8am-6pm ther-
mostat schedule. We find that it reduces the mismatch time by a
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Figure 9: Illustration of the benefits of a non-contiguous ther-
mostat schedule with multiple unoccupied periods.
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Figure 10: The mismatch time for homes in the Pecan Street
dataset with different shifts in the HVAC system usage.

median value of 44.28 minutes (out of the 100 homes) for a week-
day schedule, with a median deviation of 30.76 minutes off the
optimal schedule (assuming perfect occupancy). In this case, iPro-
gram would yield a daily energy savings of 0.42kWh on average
across the 100 homes. Note that this estimated energy savings is
conservative, since most Pecan Street homes are already highly ef-
ficient, and have little room for improvement. The Pecan Street
participants have volunteered to have their homes instrumented by
Pecan Street and are highly aware of their energy usage. Thus, we
expect the energy savings possible in a typical U.S. home is likely
to be much higher.

iProgram is more general than prior work [13] on computing
static thermostat schedules based on occupancy data in that it can
compute non-contiguous schedules that include multiple distinct
unoccupied periods. Figure 9 illustrates such a non-contiguous
schedule. Here, the red line depicts the probability of occupancy
at each point during both a typical Monday (top) and Friday (bot-
tom), the blue region depicts the unoccupied period for the optimal
contiguous schedule, which is restricted to a single unoccupied pe-
riod, and the green region depicts the unoccupied periods of the
optimal non-contiguous schedule. On both days, there is a slight
increase in the occupancy probability near the middle of the day at
lunchtime, presumably resulting from the occupants coming home
for lunch. Our optimal non-contiguous schedule recognizes this
and turns on the HVAC system (indicated by the lack of the green
regions when the probability rises), while the contiguous schedule
keeps the HVAC system off (indicated by the remaining blue region
when the probability rises). The optimal non-contiguous schedule
reduces the overall miss time of the resulting schedule by 20 min-
utes across both days compared to the optimal contiguous schedule.
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Figure 11: iProgram’s schedule adapts as occupancy changes.

Figure 10 shows the optimal mismatch time for homes in the
Pecan Street dataset, where we shift the HVAC system usage from
0 to 2 hours to misalign it with occupancy. Our results show that
iProgram’s schedules are robust to such misalignments, as the mis-
match time across homes does not vary significantly with the shift
in HVAC usage. The graph also shows that the average optimal
mismatch time for the Pecan Street data set is near 60 minutes,
although the average is affected by a few homes with very large
mismatch times; 75% of the homes have a mismatch time below 60
minutes and 50% of them have a mismatch time <30 minutes.

Figure 11 illustrates iProgram’s ability to adapt to changes in a
the pattern of occupancy. In this case, iProgram computes a sched-
ule using one month of data from a representative home. We then
swap every Wednesday and Sunday for the next month to simu-
late a change in working hours. The graph then shows two sched-
ules: static, where the schedule is generated using the first month’s
occupancy, and adaptive, where schedules are generated using a
moving window of 1 month. In the first week, both static and adap-
tive approaches derive the same schedule as they are using data for
the same time period. As shown, iProgram adapts quickly to the
changed schedule with new data available every week.

5.3 User Study
To validate our algorithm in a real world setting, we conducted

a user study, which asked participants to rate the schedules gen-
erated by iProgram for their respective homes. The objective of
the study was to i) get user feedback on iProgram’s schedules, ii)
better understand user interactions with their thermostats, and iii)
validate scheduling anomalies identified by iProgram. We worked
with a local utility company in the northeast U.S. to solicit 8 anony-
mous users for the study. Each user consented to analysis of their
smart meter data, which was anonymized to preserve the privacy
of the participants. In this case, the data for each home covered a
3 month period with average power data recorded every 5 minutes.
We used iProgram to derive a 7-day schedule, and then presented
a customized questionnaire to each participant that asked them to
rate their schedule on a scale of 1 (does not match my occupancy
pattern) to 5 (perfectly matches). In addition, the questionnaire
included questions about the type and usage of the home’s ther-
mostat, and the weekly work patterns of the home’s occupants. We
also included customized questions to corroborate any anomalies in
the schedule derived by iProgram. Such anomalies included long
periods of low electricity usage over multiple days, a repeating un-
occupied period on one specific day of the week, etc.

Based on the results, we discovered each participant had a pro-
grammable thermostat in their home, but all the homes manually
adjusted the thermostat without programming it. Most the partic-
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Figure 12: User ratings of iProgram’s thermostat schedules for
different days of the week. Over 73% of the daily schedules
have good ratings of 3 or higher.
ipants work patterns followed a 5-2-day schedule, although one
home included a retired couple with a much higher rate of occu-
pancy. iProgram was also able to correctly identify a majority of
the scheduling anomalies discovered during the analysis. Figure 12
shows the participants’ ratings of iProgram’s schedule for different
days of the week. The figure shows that 73% of the schedules and
derived occupancy patterns got ratings of 3 or higher. In addition,
participant P4, which was the retired couple, gave a poor rating for
weekdays. In this case, the occupants were frequently home on
weekdays but did not consume much electricity, so iProgram iden-
tified these periods as unoccupied when generating its schedule.2

Finally, 5 of the participants had an average rating above 3, and 3
of the participants had an average rating above 4 across all days.

6. CONCLUSION
In this paper, we present iProgram, a system for inferring smart

schedules for programmable thermostats from smart meter data.
iProgram cannot directly apply prior work on occupancy detection
from smart meter data due to its application context, which does
not provide access to training data and has a particular emphasis on
inefficient homes with misaligned thermostats. Thus, we design
a more targeted occupancy detection approach, which leverages
time-series component analysis to isolate the burstiness of interac-
tive loads. In addition, we show how to translate inferred patterns
of occupancy into an optimal static thermostat schedule. We imple-
ment iProgram as a web service, and evaluate it across data from
over 100 homes, as well as conduct a user study to verify its effi-
cacy in real homes. As part of future work, we plan to work with a
local utility to include iProgram’s suggested thermostat schedules
in real energy bills and as part of energy audits.
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