
Periodic Broadcast and Patching Services -
Implementation, Measurement, and Analysis in an Internet

Streaming Video Testbed

Michael K. Bradshaw, Bing Wang, Subhabrata Sen
∗

, Lixin Gao†, Jim Kurose,

Prashant Shenoy, and Don Towsley

Dept. of Computer Science Dept. of Elect. and Comp. Engineering † AT&T Labs-Research∗

University of Massachusetts University of Massachusetts 180 Park Avenue
Amherst, MA 01003 Amherst, MA 01003 Florham Park, NJ 07928

(bradshaw,bing,kurose,shenoy, lgao@ecs.umass.edu sen@research.att.com
towsley)@cs.umass.edu

ABSTRACT
Multimedia streaming applications can consume a significant amount
of server and network resources. Periodic broadcast and patch-
ing are two approaches that use multicast transmission and client
buffering in innovative ways to reduce server and network load,
while at the same time allowing asynchronous access to multime-
dia streams by a large number of clients. Current research in this
area has focussed primarily on the algorithmic aspects of these ap-
proaches, with evaluation performed via analysis or simulation. In
this paper, we describe the design and implementation of a flexible
streaming video server and client testbed that implements both peri-
odic broadcast and patching, and explore the issues that arise when
implementing these algorithms using laboratory and internet-based
testbeds. We present measurements detailing the overheads asso-
ciated with the various server components (signaling, transmission
schedule computation, data retrieval and transmission), the interac-
tions between the various components of the architecture, and the
overall end-to-end performance. We also discuss the importance
of an appropriate server application-level caching policy for reduc-
ing the needed disk bandwidth at the server. We conclude with a
discussion of the insights gained from our implementation and ex-
perimental evaluation.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems;
C.5.5 [Computer Systems Organization]: Computer System Im-
plementation—servers

∗The work of this author was conducted when he was at the Uni-
versity of Massachusetts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMM ’01 Ottawa, Ontario Canada
Copyright 2002 ACM 0-12345-67-8/90/01 ...$5.00.

Keywords
Patching, Periodic Broadcast, Server

1. INTRODUCTION
The emergence of the Internet as a pervasive communication

medium has fueled a dramatic convergence of voice, video and
data on this new digital information infrastructure. A broad range
of multimedia applications, including entertainment and informa-
tion services, distance learning, corporate telecasts, and narrow-
casts will be enabled by the ability to stream continuous media data
from servers to clients across a high-speed network.

Several challenges must still be met before high quality mul-
timedia streaming becomes a widespread reality. Many of these
challenges result from the significant loads that video applications
place on both server and network resources. In order to address
these problems, new families of algorithms have been devised. Pe-
riodic broadcast and patching [9, 13, 15, 16, 24, 25, 32], de-
scribed in more detail in Section 2, are two approaches that have
received considerable recent attention. These approaches exploit
the use of multiple multicast sessions to reduce network and server
resource use over the case of multiple unicast transmissions, while
at the same time satisfying the asynchronous requests of individ-
ual clients and providing a guaranteed bound on playback startup
latency. Research on periodic broadcast and patching has been pri-
marily algorithmic in nature, with performance studied either ana-
lytically or through simulation. In either case, simplifying assump-
tions are necessarily made (e.g., abstracting out control/signaling
overhead, operating system issues such as the interaction between
disk and CPU scheduling, multicast join/leave times, and more) in
order to evaluate performance. While there are a number of exist-
ing production (e.g., Darwin, RealServer, Windows Media Server,
Oracle Video Server) and experimental [4, 5, 7, 6, 8, 10, 11, 22,
27, 36, 38] video server efforts, all of them use traditional unicast
or multicast streaming.

In this paper we report on the implementation, measurement, and
analysis of a working video server testbed implementing both peri-
odic broadcast and patching algorithms. Our testbed consists of
three seperate network configurations, a 100Mbps switched Eth-
ernet LAN, and high speed WAN, and a lossy WAN, connecting
a Linux-based, application-level video server with a collection of

both Linux- and Windows-based clients. The goals of our work are
to develop a proof-of-concept prototype, and to use this prototyp-
ing effort to expose and develop solutions to the underlying system
issues that arise when putting periodic broadcast and patching al-
gorithms into practice.

Our experimental evaluation presents measurements detailing the
overheads associated with the various server components (signal-
ing, transmission schedule computation, data retrieval and trans-
mission), the interactions between the various components of the
architecture, and the overall end-to-end performance. We find that
our server is able to support the real-time, bandwidth-intensive data
delivery requirements imposed by periodic broadcast and patch-
ing. Under periodic broadcast, our server can easily process a
client request rate of 600 requests per minute (returning periodic
broadcast schedule information to each client), while at the same
time streaming video segments over multiple multicast groups and
missing no more than a few (less than 1%) data transmission dead-
lines. Under patching, our server can come close to fully loading
a 100Mbps network with patched-in clients, again while missing
very few data transmission deadlines. Our measurements also show
that in a loaded LAN environment, an initial client startup delay of
less than 1.5 seconds is sufficient to handle signaling delays and
absorb data jitter induced at either the client or the server. WAN
experiments over the Internet show that the end-end performance
varies dramatically under various network connectivities. When
connectivity is good, the performance is similar to LAN conditions.
Experiments under poor connectivity indicate the need of packet
recovery schemes specific for periodic broadcast and patching, and
indicate that the manner in which a server places data on the net-
work has impact on loss parameters. Our evaluations also show that
we can dramatically reduce the demands placed on the underlying
server operating system by using a Least Frequently Used (LFU)
video-data-cache replacement policy. More generally, our results
highlight the importance of combining theoretical work with im-
plementation and empirical evaluation to fully understand systems
issues.

The remainder of the paper is organized as follows. Section 2
discusses periodic broadcast and patching algorithms. Section 3
lists the design guidelines that we used during the design phase of
the server. Section 4 describes the client and server architecture,
as well as the interactions between them. Our experimental con-
figuration and the performance metrics of interest are discussed in
Section 5, followed by our measurements, analysis and evaluation
in Section 6. Finally, Section 7 reflects on the important lessons
learned and concludes the paper.

2. ALGORITHMIC BACKGROUND

In this section we present background material on the multimedia
transmission algorithms. Many Internet multimedia applications
have asynchronous clients that may request playback of the same
video stream at different times. Economically viable high-volume
video services will require effective techniques to minimize the in-
cremental cost of serving a new client, while also limiting client
start-up latency and the likelihood of rejecting requests due to re-
source constraints. For popular video streams, server and network
resources can be significantly reduced by allowing multiple clients
to receive all, or part of, a single multicast transmission [2, 13, 15,
16, 19, 25, 28]. For example, the server could batch requests that
arrive close together in time [2], and multicast the stream to the set
of batched clients. A drawback of batching, however, is that client
playback latency increases with an increasing amount of client re-
quest aggregation. Several recently proposed techniques, such as

periodic broadcast and patching [9, 13, 15, 16, 24, 25, 33, 32, 39],
overcome this drawback by exploiting client buffer space and the
existence of sufficient client network bandwidth to listen to multi-
ple simultaneous transmissions. These capabilities can be used to
reduce server and network resource requirements, while still guar-
anteeing a bounded playback startup latency.

Periodic broadcast schemes [2, 13, 15, 16, 25] exploit the fact
that clients play back a video sequentially, allowing data for a later
portion of the video to be received later than that for an earlier por-
tion. A period broadcast server divides a video object into multiple
segments, and continuously broadcasts these segments over a set
of multicast addresses. To limit playback startup latency, earlier
portions of the video are broadcast more frequently than later ones.
Clients simultaneously listen to multiple addresses, storing future
segments for later playback.

In patching (closely related techniques are “stream tapping” and
“stream merging”) [9, 17, 24, 32], the patching server streams the
entire video sequentially to the very first client. Client-side worka-
head buffering is used to allow a later-arriving client to receive
(part of) its future playback data by listening to an existing ongoing
transmission of the same video; the server need only additionally
transmit those earlier frames that were missed by the later-arriving
client. As a result, server and network resources can be saved. Un-
like batching, patching allows a client to begin playback immedi-
ately by receiving the initial video frames directly from the server.
Similar to periodic broadcast, patching exploits client buffer space
to store future video frames. Unlike periodic broadcast, a patching
server transmits video data on-demand, when a new client arrives.

Our overview of periodic broadcast and patching has been nec-
essarily brief. We note here that our goal in this paper is not to
propose a new periodic broadcast or patching algorithm, but rather
to explore the issues that arise when these algorithms are put into
practice. In our testbed, we implement the periodic broadcast al-
gorithm from [16] and the patching algorithm from [17] as repre-
sentative algorithms. For a detailed description of these and other
periodic broadcast and patching approaches, the reader is referred
to the references cited above.

3. ARCHITECTURAL GUIDELINES
Before describing the server and client architecture in the follow-

ing section, it is valuable to consider several important principles
embodied in the design and implementation of our server testbed:

• Separation of control and data functionality. Both server
and client implementations separate control and data func-
tionality. Since the control and data paths impose signifi-
cantly different demands on the underlying system, this sep-
aration allows us to independently optimize each component.
A clean separation of control and data paths also allows us
to experiment with different server architectures. From an
operational standpoint, we will see that this separation also
allows one component to be isolated from effects of a work-
load overload on the other.

• Standards-based architecture. Our server and client imple-
mentations are based on existing streaming media standards
such as RTP [23, 30], RTSP [31] and SDP [21]. The advan-
tages of a standards-based architecture are two-fold. First, it
allows us explore how various streaming media techniques
such as periodic broadcast and patching can be implemented
in the context of these standards. Second, it helps us identify
potential limitations of these standards in supporting such
techniques.

Figure 1: Server and client architecture and interaction

• Support for IP Multicast. Our server and client implemen-
tations are designed to take advantage of IP multicast. The
use of IP multicast facilitates more efficient use of server and
network resources. Of particular interest to us in this paper
are practical considerations that arise in the use of IP mul-
ticast (e.g., multiplexing a finite number of multicast chan-
nels among users, client join/leave latencies and techniques
to hide such latencies). We note that while many-to-many
inter-domain multicast has been slow to be deployed, one-
to-many intra-domain multicast (as would be used in an en-
terprise or cable/DSL-based last-hop network network video
server) is much simpler to deploy and manage [12].

• Use of off-the-shelf components. Our server and client are
designed to run on vanilla operating systems such as Linux
and Windows. This allows us to easily set up multiple clients
and server. However,we do not benefit from the numerous
special-purpose resource management techniques (e.g., rate-
based scheduling) that have been proposed recently.

4. SERVER AND CLIENT ARCHITECTURE
In this section we describe the server and client architecture, as

well as the control signaling that occurs between them as shown in
Figure 1. We begin with the server.

4.1 Server Architecture
The server consists of two main modules, a Server Control En-

gine (SCE) and a Server Data Engine (SDE). The primary role
of the SCE is to handle control interactions between the server and
its clients. The primary role of the SDE is to retrieve video data
from disk (or an in-memory cache), and transmit the data into the
network.

For each client request, the SCE computes two schedules.

• The transmission schedule specifies when “segments” of
each video are to be retrieved from disk (or the in-memory
cache) and transmitted into the network. A “segment” of
video contains a continuous portion of data from a given
video; the start/stop times of a video’s segments depend on
the transmission algorithm (periodic broadcast or patching)
used, and (for the case of patching) the requests being gener-
ated by clients. The SCE passes the transmission schedule to
the SDE, which then retrieves and transmits RTP[23, 30] en-
capsulated data according to this schedule. There is only one
transmission schedule per video, even when multiple clients
are receiving a given video.

Stream
Information

Channel K
Address K

Channel 1
Address 1

Pause 0

Work Request 2

Work Request 3

Frames 0−1350

Work Request 1

Pause 0

Start t Repeat 0
Frames 0−100 Frames 100−1350

Start t Repeat 0

Start t Repeat 4

Pause 15 sec.

1 2

3

Media

Figure 2: Data Structure Organization

• The reception schedule specifies the order in which the end-
client receives this data. The reception schedule, formatted
as an SDP[21] message, is sent to the client in an RTSP[31]
response; the client then uses this schedule to receive data on
the specified multicast or unicast address.

As noted above, the two main server components are the server
control engine (SCE) and the server data engine (SDE). Let us con-
sider each of these in turn.

4.1.1 Server Control Engine (SCE)
The SCE is implemented as a multi-threaded single-process sys-

tem. A single SCE listener thread listens on a well-known port
for incoming client requests, and places an incoming request on a
message queue. A pool of free scheduler threads wait to serve re-
quests on the message queue. Once a scheduler thread receives an
incoming request, it is responsible for all subsequent control inter-
action with the client, including the generation of the transmission
and reception schedules, and the sending of the reception schedule
to the client.

Because of our use of periodic broadcast and patching, schedul-
ing requires different information than is typically used in video
servers. The scheduler thread must be aware of which videos are
currently being transmitted and the particular broadcast algorithm
being used. If a requested video is already playing, the scheduling
thread may need to augment the SDE’s transmission schedule for
that video to accommodate the new client. For example, if a client
requests a video that is being broadcast via patching, the sched-
uler thread must determine whether a unicast data patch should be
sent to the client (as well as the specific data that is to be sent),
or whether a new multicast transmission of that video should be
initiated. In either case, the scheduler thread will need to make
the necessary changes to the transmission schedule, and inform the
SDE of the new schedule. After sending the reception schedule to
the client, a scheduler thread waits for a new client request.

The example above suggests that the transmission schedule data
structure must be carefully designed in order to be sufficiently gen-
eral to express a transmission schedule for different video delivery
schemes (e.g., batching, patching, and periodic broadcast). As il-
lustrated in Figure 2, a data structure (Media) is maintained for each
media stream currently being transmitted. This data structure con-
tains stream-specific information such as the file location, length
in frames, and type of the stream. It also contains a list of struc-
tures, with each element corresponding to a multicast or unicast
address on which some part of the video is to be transmitted. Since
portions of the video can be transmitted simultaneously on multi-
ple addresses, a list of addresses is needed. Each channel structure
contains the type of transmission (multicast or unicast), the address
with which it is associated and a linked list of structures known
as “work requests.” The work request list contains information that

determines what data will be transmitted on that address, and when.
We note that an important advantage of specifying the transmission
schedule at the frame level is that it facilitates uniform handling of
different video file formats, e.g., MPEG, AVI, etc., at the SCE.

Let us illustrate the representation of a transmission schedule via
a simple example. Suppose the server needs to deliver a 45sec
(1350 frame) video according to the following transmission sched-
ule : (i) initiate transmission of the frames 0 − 100 on a network
address at time t1, (ii) initiate transmission of frames 100−1350 on
the same address at some later time t2. The work request list asso-
ciated with channel 1 in Figure 2 shows the abstract representation
for this schedule. Channel 1 in the video structure is initialized with
the outgoing address of this stream. The linked list of work requests
indicates that at time t1 the server will transmit frames 0−100 and
frames 100 − 1350 will be transmitted at time t2.

Some algorithms, such as periodic broadcast, require the repeated
transmission of a sequence of frames. If the server must transmit
frames 0 through 1350 on a second connection, once every minute
starting at time t3, for a total of five transmissions, it then allocates
a new channel (Channel K in Figure 2). A single work request is
then associated with this channel, for frames 0 − 1350. To indi-
cate a 15sec gap after each complete transmission, the Pause field
is set to 15sec. The Repeat field is set to 4, indicating the video
transmission will be repeated four additional times after the first
run.

The final important piece of the SCE is the multicast address
pool. In addition to determining what video segment to send and
when, the SCE must also select a multicast address to be used.
Rather than searching over all available time slots on all available
multicast addresses, the SCE uses horizon scheduling [37] to effi-
ciently make this assignment in linear time.

4.1.2 Server Data Engine (SDE)
Recall that the SDE is responsible for retrieving video data from

memory (either disk or an in-memory cache) and then transmitting
this data into the network.

The SDE is a multi-threaded, single-process entity. It maintains
two threads for each video that is currently being transmitted. A
disk thread (DT) handles retrieval of the video’s data from disk
into main memory; a separate network thread (NT) transmits the
data from main memory to the network according to the server
transmission schedule. A global buffer cache manager is respon-
sible for allocating equal-sized free memory blocks to each DT.
Each individual DT, in turn, is responsible for managing its cache
of video data. Currently, each DT is allocated a set number of free
memory blocks. We’ll see later that the DT’s cache management
policy plays an important role in determining system performance.

Both the DT and NT operate in rounds. Let the disk round-length
be denoted by δ and the network round-length be denoted by τ .
In each δ-round, the disk thread wakes up, uses the server trans-
mission schedule to determine which parts of the video are to be
retrieved in that round, issues asynchronous read requests for re-
trieving that data into main memory, and then sleeps until the next
round. In each τ -round, the network thread wakes up, determines
the data that are to be transmitted on each address in that round,
transmits that data from the main memory buffer cache, and goes
to sleep. Coarse-grained locks on the NT and DT threads (as op-
posed to finer-grained locks on the in-memory data blocks) are used
to ensure that threads for a given video do not concurrently access
individual data blocks.

The separation of disk retrieval and network transmission activ-
ities is motivated by the very different nature of the disk and net-
work subsystems. To prevent starvation due to long or variable disk

access times, data is prefetched from disk and staged in main mem-
ory. To reduce the impact of disk overheads, the DT issues asyn-
chronous read requests for large chunks of data at a time. There-
fore the disk round, δ, is relatively large, and is currently set to
1sec. Note that δ is a lower bound on the startup delay a client
must experience before receiving a new stream. For the network, it
is desirable to avoid injecting bursts of traffic. The network round
length, τ , is thus typically much smaller than δ to allow the NT to
transmit data more “smoothly” into the network. Because Linux
is a non-real-time operating system, it is possible that a sleeping
thread is executed significantly later than its scheduled invocation
time. Thus, when a thread completes its activities for a round, it
checks if its start time for the next round has passed, and if so,
immediately starts its assigned activity for the next round rather
than going to sleep. Our experimental results show that although
the SDE runs on top of Linux, without real-time scheduling sup-
port, the SDE seldom suffers from timing irregularities that result
in missed data transmission deadlines.

4.2 Client Architecture
The client consists of the client control engine (CCE) and data

engine (CDE). The CCE obtains user requests using a GUI inter-
face and communicates them to the server using RTSP messages.
The client data engine receives data from multiple video segments
according to the reception schedule, and reorders received out-of-
playback-order data, thus presenting the abstraction of a logically
sequential stream to the decoder software. A clean separation of
functionality between the end-client (which is responsible for sig-
naling and receipt of data) and the video player (which is respon-
sible for decoding and display) allows a great deal of flexibility,
and enables our client software to inter-operate with several widely
used players, including mpeg2decode [20], Real and Windows Me-
dia players.

5. EXPERIMENTAL CONFIGURATION AND
PERFORMANCE METRICS

In this section, we discuss our experimental configuration in more
detail, describing the videos used in our testbed, the client/server
machines and the network connecting them, and the periodic broad-
cast and patching algorithms that are used in transmitting data. We
also define the performance metrics of interest.

The videos used in the experiments are listed in Table 1. Each
video is RTP packetized with additional headers added as specified
in [23]. In all experiments, the server transmits each stream at the
playback rate on separate addresses. That is, if a video is to be
played at 30 frames per second, the server transmits the video at 30
frames per second. Due to lack of space, we do not report exper-
iments performed to tune the values of δ and τ . The experiments
show that improper setting of δ and τ lowers the server perfor-
mance and that settings of δ = 1sec and τ = 33msec lead to good
server performance. We use these values throughout the evaluation
reported here.

For the local experimental measurements described in this paper,
we use three separate 400 MHz machines, each with a Pentium II
processor, 400MB RAM, and running a Linux OS. Each machine
is connected to a switch via 100Mbps Ethernet. Each of these three
machines serves a specific role: server, a workload generator, and
a client. We also do experiments over the Internet with a host at
the University of Maryland (UMD) and a host at the University of
Southern California (USC). The machines used in both UMD and
USC are running Linux with at least 128MB RAM and Pentium
CPUs. The machine in UMD has a 10Mbps interface to the network

Video Format Length(min) Frame rate Bandwidth(Mbps) File size(MB) # of RTP pkts
Blade1 MPEG-1 12 30 1.99 180.1 155146
Blade2 MPEG-1 15 30 3 337 296706
Demo MPEG-2 2.7 30 2 40.6 35138

Tommy MPEG-1 20 30 0.3 45.3 44803

Table 1: Sample videos for the experiments

t0

��������������
�������������������������� ������������������

������������������ ����������������������
	�	�	�	�	�		�	�	�	�	�	

�
��������
�
�
 ������ ������ ������ ������ ������ ���������������� ���������� ���������� � � !�!�!"�"�"�"�"#�#�#�#�# $�$�$�$�$%�%�%�%�%&�&�&�&�&�&'�'�'�'�'�'

(�()�) *�*+�+ ,�,-�-.�.�./�/�/0�01�1 2�2�23�3�34�4�4�4�45�5�5�5�5 6�6�6�6�6�67�7�7�7�7�7

l 2l L-7l4l

Idle Channel

video stream

seg. 1

seg. 3
seg. 4

seg. 2

client arrival

Figure 3: GDB segmenting scheme for Periodic Broadcast

while the machine in USC has a a 100Mbps network.
For experiments involving multiple videos, we use multiple copies

of the same video (chosen from Table 1), with each copy placed in
a separate file on disk. The server and the underlying operating
system treat each copy as a distinct video, and the server trans-
mits each video using a selected broadcast scheme. This approach
allows us to explore the system overheads under a homogeneous
video population.

The workload generator is a separate machine that generates a
background load of client requests in a Poisson manner, choosing
one of the multiple videos being transmitted from the server with
equal probability. The server sends the requested video to the work-
load generator. The latter does not play out the video data from the
server. Instead, it logs the timing information for the request to be
serviced. Once the background load reaches a steady state, we use
a client, running on the third machine, to request the full stream
and monitor the statistics on the received video data.

As noted in Section 2, we implemented the representative algo-
rithms described below from the families of periodic broadcast and
patching algorithms. In both cases, we assume that the client has
enough buffer to store the entire video.

• Periodic Broadcast: For periodic broadcast, we use the GDB
segmentation scheme [16]. Throughout the experimental sec-
tion, we use l-GDB to indicate a GDB scheme where the
initial segment is l seconds long. The subsequent segments
are of size 2i−1l where 1 < i < blog2 Lc. The length of
the last segment is set to L − ∑blog2 Lc

i=1 2i−1l. An exam-
ple is shown in Figure 3. Each segment is repeatedly trans-
mitted on a separate multicast address. Clients retrieve each
segments of the video by joining the appropriate multicast
group. Figure 3 shades the segments retrieved by a client
that arrives at time t0. In this example, segments 3 and 4
will be buffered at the client before playout. Note that the
length of the first segment determines the maximum client
startup delay under ideal system and network conditions. A
smaller value of l reduces this delay, but may increase the
number of segments and hence the transmission bandwidth
requirements. For the results reported, we use three values
of l: 3 seconds, 10 seconds, and 30 seconds. The segment
lengths of the resulting segmentation schemes for the 900sec

Scheme Segs. Segment Lengths(sec)
3-GDB 9 3, 6, 12, 24, 48, 96, 192, 384, 134.5(768)
10-GDB 7 10, 20, 40, 80, 160, 320, 270.9(640)
30-GDB 5 30, 60, 120, 240, 450.9(480)

Table 2: Attributes for 3 different GDB segmentations for the
3Mbps, 15min MPEG-1 Blade2 video

video Blade2 are reported in Table 2. In each case the actual
length of the last segment is less than the length specified by
GDB (shown in brackets) for that segment, due to the finite
video length. Note that segment i will be transmitted once
every 2i−1l seconds. For example in 30-GDB the first 30
seconds of the video are sent out every 30 seconds, the next
60 seconds of the video are sent out every 60 seconds and so
on until the last 450.9 seconds of the video, which are sent
out every 480 seconds.

• Patching. For patching, we consider the threshold-based
Controlled Multicast scheme proposed in [17]. The first re-
quest for the video is served with the initiation of a complete
transmission using multicast. Subsequent requests that arrive
within a threshold T time units of the last initiated multicast
transmission of the video will share that stream and obtain
only a prefix of the video from the server using unicast. A
request arriving beyond T time units is served by initiating
a new complete transmission for the video . When the client
arrival rate for a video is Poisson with parameter λ and the
length of the video is L seconds, the threshold is chosen to be
(
√

2Lλ + 1 − 1)/λ seconds to minimize the average trans-
mission bandwidth required to serve a client [17].

In our evaluations in the following section, we will focus on a
number of different performance measures. On the server side, we
consider the following metrics:

• System Read Load (SRL). This is the volume of video data
requested per unit time by the server from the underlying op-
erating system. A read request is initiated only if a required
data block is not present in the application-level cache. SRL
therefore presents a measure of the workload associated with
the data path that is imposed on the underlying system by the
video server. The system will satisfy the request from the
kernel buffer cache if possible, and otherwise fetch the block
from disk.

• Server Network Throughput (SNT). The SNT is the vol-
ume of video data transmitted per unit time by the applica-
tion, and measures the load imposed on the network proto-
col stack, network interface card and the outgoing network
connection. In the absence of any application-level buffered
video data, SRL is equal to the SNT.

0

20

40

60

80

100

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bi

ts
)

Number of Videos

Offered Load
No cache

Figure 4: System throughput under Periodic Broadcast

• Deadline Conformance Percentage (DCP). Given a trans-
mission schedule, the DCP is the percentage of frames that
the server was able to transmit to the network by their respec-
tive scheduled deadlines.

On the client side, we consider the following performance met-
rics:

• Client Frame Interarrival Time (CFIT). Suppose ri is the
time that the last packet of frame i reaches the client. The
difference between ri+1 and ri is the client frame interar-
rival time. For a smooth transmission, the frame interarrival
time should be constant. The variability of CFITs reflects the
delay jitter caused by both the server and the network.

• Reception Schedule Latency (RSL). The Reception Sched-
ule Latency is the time from when the client requests the
video to when it receives the reception schedule.

6. PERFORMANCE MEASUREMENT AND
EVALUATION

This section presents our experimental measurements and analy-
sis of these results. We first examine the server’s need for application-
level caching and explore the effects of different caching policies
on performance. Next, we present benchmarking results for the
signaling and data throughput in the absence of disk and network
constraints. Performance results regarding the end-to-end (server-
client) data path in local and WAN networks are reported. Finally,
we discuss how our threading structure provides isolation of server
control and data engines (SCE and SDE), and how naive schedul-
ing of videos using periodic broadcast schemes can lead to bursty
traffic.

6.1 Caching Implications for Periodic Broad-
cast and Patching

We begin our study by considering the load imposed on the un-
derlying system (disk subsystem and OS level-caching) by periodic
broadcast and patching. We note that the underlying disk/file access
and caching policies are those implemented in the standard Linux
release and thus are not optimized for video access. From an ar-
chitectural standpoint, our application-level cache sits above these
standard OS components and can be thought of as tailoring such
standard services for video access.

Figure 4 plots the offered load (data rate required to transmit the
requested number of videos) and the achieved system throughput

(labeled “no cache”), as a function of the number of videos the
server attempts to transmit using 30-GDB segmentation. Distinct
file copies of the Blade2 video were used. We find that the sys-
tem throughput matches the offered load up to 3 videos, suggesting
that the underlying operating system is able to keep up with im-
posed load. As the number of videos (and therefore the offered
load) increases further, the achieved throughput, in the absence of
application-level caching, decreases, indicating that the underlying
operating system is in an overloaded regime. We will see shortly
that our application-level cache can delay the onset of such over-
load behavior.

Today’s servers typically possess significant amounts of high
speed memory. We next investigate the use of an application-level
cache and application-specific caching policies for reducing the
demand on the underlying server operating system and its disks.
While existing work has considered video caching [1, 3, 14, 29,
34], none of them examine the effects of caching on the underly-
ing system using periodic broadcast and patching. Our application
locks an amount of main memory for application-level caching for
each video being transmitted. A per-video caching policy is used,
and the server makes read requests to the underlying systems only
if a block is not present in the application-level cache. We consider
Least Recently Used (LRU) cache replacement as a baseline policy.
LRU is widely quoted in literature and many conventional operat-
ing systems implement this policy in their underlying kernel buffer
caches. We also explore the Least Frequently Used (LFU) cache re-
placement policy, where blocks of video data are cached depending
on the frequency of their use. LFU caching possesses the following
interesting property for periodic broadcast and patching (the proof
of which is in Appendix A):
Theorem LFU per-video cache replacement policy for i) threshold-
based controlled multicast patching, under a Poisson arrival pro-
cess, and ii) any member of the periodic broadcast family of algo-
rithms, using any arrival process, minimizes the average server read
load into the underlying operating system.

6.1.1 Periodic Broadcast
Let us now explore the impact of an application-level cache on

performance. We first consider two GDB segmentation schemes:
3-GDB and 10-GDB. Figure 6 plots the read load for a single video
as a function of the application-level buffer cache size available
for that video. We consider both actual measurements from our
testbed and analytical computations of LRU and LFU performance
for the same cache size. The small deviations between the ana-
lytic and experimental values are due to the large application-level
memory blocks (100kb) used for these experiments. This graph
demonstrates how caching reduces the server read load (SRL). As
expected, the SRL is a non increasing function of increasing buffer
size. In addition, increases in buffer size produce diminishing re-
turns in SRL reduction.

The SRL for periodic broadcast exhibits some interesting char-
acteristics under LRU caching. In order for caching gains to be re-
alized, the buffer must be large enough for an entire segment to be
cached. If the allocated buffer is less than the length of a segment,
LRU will result in the replacement of blocks in increasing order of
the nearest time in the future that a block is required next - effec-
tively, a block will be requested from the underlying system each
time it has to be transmitted. This explains the step-like behavior in
Figure 6. A step change corresponds to a point where LRU has suf-
ficient buffer to cache an additional segment. Hence the steps are
3Mbps (equal to the bandwidth for any segment) in height. This is
followed by a horizontal portion where the additional buffer is not
sufficient to fully cache the next segment.

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

Fr
ac

tio
na

l O
cc

ur
an

ce

System Read Load (Mbps)

no buffer

(a) no cache

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

Fr
ac

tio
na

l O
cc

ur
en

ce

System Read Load (Mbps)

16 MB buffer

(b) 16MB cache

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

Fr
ac

tio
na

l O
cc

ur
an

ce

System Read Load (Mbps)

48 MB buffer

(c) 48MB cache

Figure 5: Distribution of server read loads for patching for a range of per video cache sizes

5

10

15

20

25

30

10 20 30 40 50 60 70

S
er

ve
r

R
ea

d
Lo

ad
(M

bp
s)

per video buffer (MB)

3-GDB:LRU:Analytic
Experimental

10-GDB:LRU:Analytic
Experimental

3-GDB:LFU:Analytic
Experimental

10-GDB:LFU:Analytic
Experimental

Figure 6: Caching effects on Periodic Broadcast: plots the
experimental and analytic values of the read overhead under
LRU and LFU replacement policies

We next consider the impact of an increase in the length of the
first segment of a periodic broadcast scheme on the SRL. By in-
creasing the length of the first segment, one can trade off an in-
crease in client playback startup latency for a decrease in the re-
quired server network throughput (SNT). For instance, 10-GDB
has a longer first segment but a smaller SNT than 3-GDB. When
SRL is the performance metric of interest, however, we find that
decreasing the first segment length can sometimes result in a lower
SRL For example, with 27MB of buffer, under application-level
LRU caching, 10-GDB induces a read load of 19.27Mbps, while
3-GDB results in a SRL of 18.88Mbps (Figure 6). On the other
hand, for other buffer sizes, 10-GDB results in a larger SRL than
3-GDB. These results suggest that the use of additional caching
(rather than adjusting the initial segment length) is the most “sure-
fire” approach for reducing the read load.

Figure 6 also shows that LFU produces a significant reduction
in the SRL over LRU, across a range of buffer sizes. For exam-
ple, under 10-GDB, with a 32MB buffer, the SRL drops from
16.27Mbps under LRU to 10.14Mbps under LFU, a reduction of
38%. Under LFU, every additional unit of cache contributes to
caching gains. This explains why the SRL for LFU decreases more
smoothly than for LRU.

The above study illustrates that application-level caching can be
very effective in reducing the read load imposed on the system. For
example, with just 8MB of per video cache, and in the presence

of LFU caching for each video, we find that the offered load and
achieved throughput remain the same, as the number of videos in-
creases from one to five in the setup for Figure 4. In the remainder
of the paper we shall therefore report results using LFU caching,
implemented using techniques from [26].

6.1.2 Patching
We next explore the impact of application-level caching on patch-

ing. We consider an aggregate arrival rate of 5 clients per minute,
requesting one of 3 distinct file copies of Blade2 with equal prob-
ability. Figure 5 shows the measured distribution of SRL for one
instance of the Blade2 video, over a 5 hour run with 3 different
buffer sizes using LFU caching.

In the absence of cache, the expected SRL is 18.7Mbps. The
resultant SRL reduces to 17Mbps in the presence of a 16MB per
video cache and to 11Mbps for a 48MB cache. The graphs illus-
trate that for a given buffer size, the instantaneous read load can
be much higher than the mean, and that LFU caching with even a
modest amount of buffer can substantially reduce both the expected
SRL, as well as lower the peak instantaneous SRL.

6.1.3 Choosing between Periodic Broadcast and
Patching

It has been shown in [18] that there exists a request arrival rate
above which periodic broadcast results in lower network bandwidth
usage and below which patching results in lower network band-
width usage. This result also holds when SRL is the performance
metric of interest, in the absence of application-level caching. Here
we examine the effect that LFU caching has on this crossover point,
in the context of the SRL. Figure 7 plots the values of the SRL,
obtained from analysis, for patching and 10-GDB periodic broad-
cast across a range of request arrival rates, for different per-video
LFU cache sizes. In the absence of a cache, the crossover point be-
tween patching and periodic broadcast occurs at an arrival rate of
0.046 requests per second (2.8 per minute). At this point the SRL
imposed by both schemes is equal to 25Mbps. With increasing
buffer size, the crossover point for the two schemes shifts to lower
arrival rates. These studies demonstrate that the caching scheme
and cache buffer size both impact the crossover point and need to
be factored in its computation.

6.2 Component Benchmarks
We now turn our attention to the performance of individual com-

ponents in the server. In particular, we consider the time needed to
complete a signaling operation (serve a client’s request to view a
video) at the server, and the times needed for a network thread and
a disk thread to execute during a τ -round and δ-round, respectively
(see Section 3.1).

In order to make these measurements, the server is configured
as follows. As before, there are 5 scheduler threads that handle

0

5

10

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2

S
er

ve
r

R
ea

d
Lo

ad
(M

bp
s)

Arrivals / second

10-GDB: no cache

10-GDB: 16 MB

10-GDB: 32 MB

patch: no cache

patch: 16 MB

patch: 32 MB

3-GDB. 16 MB
3-GDB. 32 MB

patching no cache
patching 16 MB
patching 32 MB

Figure 7: Server Read Load for patching and 10-GDB for video
Blade2 with LFU caching

client requests to view a video. In order to remove the (unknown)
effects of an unknown amount of OS-internal disk block caching,
all video data is pre-loaded and locked into our application-level
video cache. In configuration 1 (see Table 3), three copies of the
demo video (see Table 1) are placed into memory, with each video
divided into eight equal-length segments (note that this is only an-
other version of periodic broadcast). Each video segment is then
transmitted over a separate multicast group, resulting in a total of
24 segments being transmitted, each over its own multicast address.
In configuration 2 (see Table 3), one copy of the demo video is di-
vided into 24 segments and locked into memory. Again, each video
segment in then transmitted over a separate multicast group. In both
configurations, the server transmitts a total of 48Mbps per second.

6.2.1 Signaling Costs
Let us first consider the average time between the receipt of a

client’s request by a server scheduler thread until its generation and
transmission of a client reception schedule to the client. This in-
cludes the time needed to compute the client’s reception schedule
and update the server transmission schedule. In configuration I,
the workload generator varied client request rates between 1 and
1670 clients per minute. We observed that the time needed to com-
plete the signaling remained nearly constant at 8ms with negligible
queuing delay (where “queueing delay” refers to the time between
the servers receipt of the client’s request and the initiation of han-
dling of that message by a scheduler thread). Beyond 1670 clients
per minute, the server was no longer able to accept client TCP sig-
naling connections within TCP’s timeout period, and the connec-
tions were consequently refused by the OS.

We next measure the average signaling delay and queueing delay
under configuration II. Figure 8 shows these results. As the client
request rate increases, the average signaling delay (the time needed
to process the client request once the client request has begun being
processed) needed to process the request increases. We also see
that the average queueing delay remains negligible until the request
rate becomes 600 per minute. Beyond this rate, the server is no
longer able to respond to requests and connection timeouts occur.
It is interesting to note that the signaling delay increases as the
client request rate increases. We conjecture that this results from an
increased chance of the scheduler thread being interrupted during
processing.

6.2.2 Cost of Delivering Data
We now discuss the amount of time needed by the disk thread

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600 700

M
ill

is
ec

on
ds

Requests per minute

signaling delay
queueing delay

Figure 8: Signaling delay and Queueing delay for Clients in
Configuration II

(DT) and the network thread (NT). The disk thread runs once per
second. It performs three actions: determine what data the NT will
send out in the next second, check the cache for the data needed,
and request any missing data from disk. Since all of the data is in
memory, our benchmarks do not include any time needed to make
requests to the disk. The network thread executes 30 times a sec-
ond. During each execution it determines what data needs to be
sent on the network and sends the data into the network. For the
two configurations, the amount of time needed by the DT and NT
is shown in Table 3. In general, we find that the amount of time
needed for each of these threads depends on the amount of data
being sent out. Perhaps most interesting is that the deadline con-
formance percentage (DCP) for these experiments was over 99%,
an observation that we will return to in Section 6.5.

6.3 End-End performance in a local network
We next evaluate the server and client performance under pe-

riodic broadcast and patching schemes in a local network. This
network is isolated from the rest of the department network with
the network support of 100Mbps. We use three copies of Blade2.
Each copy is treated as a distinct video by all components of the
videos server and the underlying operating system. The total size
of the videos (1011MB) being delivered is significantly larger than
the size of the server’s main memory (400MB) making it impos-
sible to cache the videos completely in main memory, and insuring
that the disk subsystem will be exercised in the experiment. The
workload generator creates requests for each of the three videos
with equal probability. After the server load reaches a steady state,
our measurement client requests one video every 40 minutes. Our
measurements focus on the server and client performance of the
video requested by the measurement client. Throughout this set
of experiments, each video is allocated a 16MB application-level
cache. Parameters specific to periodic broadcast and patching are
described separately in the following subsections.

6.3.1 Periodic Broadcast
Our aim in this experiment is to evaluate the end-end perfor-

mance of periodic broadcast. We use three GDB schemes at the
server: 3-GDB, 10-GDB and 30-GDB. As described in Table 2,
the number of segments corresponding to three copies of Blade2
for the three schemes are 27, 21 and 15 respectively. In any GDB
scheme, the amount of data sent out from the server into the net-
work (SNT) does not depend on the client arrival rate. However a
high arrival rate incurs more signaling and processing overheads at

Configuration # Addresses # Videos Bandwidth per Video NT completion time DT completion time
I 8 3 16Mbps 1.60ms/30ms 6.16ms/1sec
II 24 1 48Mbps 5.08ms/30ms 8.39ms/1sec

Table 3: Timing Measurements in the Server Data Engine

the server. The workload generator sends out requests at a low rate,
1 per minute, and a relatively high rate, 600 per minute.

We first investigate the server performance. Since the server re-
ports a processor utilization of 15% (almost all of it in system time),
deadline conformance percentage (DCP) proves to be a good indi-
cator of stress observed at the server. We find that the DCP at the
server under the various GDB schemes and arrival rate is always
over 99% for the different scenarios. More streams and higher ar-
rival rates do not necessarily lead to noticeably poorer DCP.

We next examine the performance observed at the client. We find
that the client does not have any problem receiving multiple streams
simultaneously. Across these experiments, reception schedule la-
tency (RSL) ranges from 15 to 40 milliseconds. We use the client
frame interarrival time (CFIT) to measure the quality of transmis-
sion observed by the client. Figure 9 plots the histogram of CFIT
under 3-GDB, 10-GDB and 30-GDB respectively when the request
rate is 600 requests per minute. Each plot shows the result of one
run. Other runs under the same configuration display similar behav-
ior. For each GDB scheme examined, the CFITs under the arrival
rates of 1 request per minute are very similar to those plotted in
Figure 9, confirming that even the high arrival of 600 requests per
minute does not cause performance degradation at the server.

In Figure 9, the histogram of CFITs under 3-GDB and 10-GDB
are both unimodal in the range of 20 to 50 milliseconds with the
peak at 38 and 33 milliseconds respectively. The variance and co-
efficient of variation for 3-GDB are 28.63 and 0.16, while the vari-
ance and coefficient of variation for 10-GDB are 12.01 and 0.10.
The CFIT from 3-GDB has higher variation than CFIT from 10-
GDB. The histogram of CFITs under 30-GDB is bimodal, with
two peaks at 31 and 41 milliseconds respectively. These can be
explained as follows. For a scheduled transmission of one frame
per 33 millisecond, the frame interarrival times at the client are
expected to be 40 milliseconds or 30 millisecond (if no jitter is
generated over the server and the network) due to the 10 millisec-
ond granularity of scheduling in Linux. If the server can keep
up with the schedule, the percentage of 40-millisecond and 30-
millisecond interarrival times are expected to be 67% and 33%
respectively. The CFIT in 30-GDB is close to this expectation
while the CFIT in 10-GDB and 30-GDB deviate from this expecta-
tion. This is due to heavier traffic over the network in the later two
schemes. The total network loads in 3-GDB (73.59Mbps) and 10-
GDB (57.81Mbps) are 1.66 and 1.30 times of the network load
in 30-GDB (44.43Mbps) respectively. Similar behavior is also ob-
served in the end-end patching experiment described next. Finally,
our experiments show that if the client starts playback around 80
milliseconds after receiving the first frame, it is able to receive all
the frames before the playback time. This implies that a very small
amount of waiting time after receiving the first frame can guarantee
continuous playback in periodic broadcast in our testbed.

6.3.2 Patching
Our aim in this experiment is to explore the end-end performance

for threshold-based patching. The aggregate request rates of the
workload generator are chosen to be 1 and 5 requests per minute
(for higher arrival rates the 100Mbps network link becomes a bot-
tleneck).

The average network load for an arrival rate of 5 per minute is
55.27Mbps, which is 2.65 times of the network load for arrival
rate of 1 per minute (20.85Mbps). As with periodic broadcast, we
find that the DCP remains steady at 99.9% for the two arrival rates,
which demonstrates that the server has no difficulty in handling
this range of request rates. On the client side, reception schedule
latency is around 15 to 20 milliseconds. The CFIT histograms (not
shown here due to space constraints) are bimodal, similar to the
30-GDB result in Figure 9 Another important observation is: if
the client starts playback 1.5 seconds after sending the request, it
is able to receive all the frames before the playback time. This
1.5 seconds includes the latency for the first frame of the video to
come in and some delay after that to accommodate the packets that
arrive later than the scheduled playback time. We conclude that the
network becomes the bottleneck in 100Mbps switched Ethernet
LAN settings for patching since the server is able to send near to
the bandwidth of the link without experiencing poor quality video
at the client.

6.4 End-End performance over the Internet
We next evaluate the server and client performance under pe-

riodic broadcast and patching schemes over the Internet. We ex-
ecuted experiments between our site (UMass) and one site at the
University of Maryland (UMD) and another at the University of
Southern California (USC). Our preliminary experiment with the
two sites shows that the route between UMass and UMD is very
well provisioned, while the route from UMass to USC is lossy.
We believe that experiments with these two sites can reflect differ-
ent aspects of the performance of periodic broadcast and patching
schemes over the wide area network.

As the bandwidth to UMD is constrained by a 10Mbps network
interface, we choose the low bandwidth CBR video, Tommy, for
the experiments. As shown in Table 1, this movie is 300Kbps, 20
minutes long and 30 frames per second. The video is packetized
according to [23]. For this low bandwidth video, 87.5% of the
frames are contained in one packet and 94.2% of the frames require
no more than 2 packets. Therefore, we expect the frame loss ratio
to closely match the packet loss ratio, which is confirmed by our
experiments.

Ideally, we would like to evaluate the end-end performance using
multicast. Unfortunately, the sites for our WAN experiment did not
have multicast connectivity at the time of the experiments. Given
this, we use unicast to simulate multicast/broadcast. That is, we
place the workload generator and the measurement client on the
same machine called the client machine. All requests come from
the client machine and the server transmits all the streams to the
client machine. In this way, periodic broadcast and patching can
be used since streams for different requests can be shared. In our
experiments, as described later, the average traffic to the client ma-
chine is slightly over 2Mps. The CPU usage on the client machine
is minimal (less than 1%). We therefore believe that the artifact
created by running client workload generator and the measurement
client on the same machine is negligible.

The workload generator creates requests for the video according
to a Poisson distribution at the rate of 2 requests per minute. The
arrival process is fixed for all of the experiments for ease of compar-

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

Fr
ac

tio
n

Frame interarrival time (ms)

(a) 3-GDB

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

Fr
ac

tio
n

Frame interarrival time (ms)

(b) 10-GDB

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

Fr
ac

tio
n

Frame interarrival time (ms)

(c) 30-GDB

Figure 9: Client Frame Interarrival Time (CFIT) histogram under 3-GDB, 10-GDB, and 30-GDB at 600 requests per minute.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Fr
ac

tio
n

load(Mbps)

(a) 10-GDB

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1.5 2 2.5 3 3.5 4 4.5

Fr
ac

tio
n

load(Mbps)

(b) patching

Figure 10: Histogram of Network bandwidth required for periodic broadcast and patching under the chosen requests arrival process.

ison. After the server load reaches a steady state, our measurement
client starts to send requests to the server with two consecutive re-
quests spaced at least 30 minutes apart. We choose 10-GDB as an
example of periodic broadcast scheme. The video is divided into 7
segments with the length of 10, 20, 40, 80, 160, 320, 570 seconds.
The network bandwidth required for periodic broadcast is indepen-
dent of the arrival process. The optimal threshold for patching is
4 minutes for this arrival process [17]. Fig. 10 (a) and (b) illus-
trate the histogram of network bandwidths required by 10-GDB
and patching under the chosen arrival process. The average net-
work bandwidth required by 10-GDB and patching are 2.09Mbps
and 2.32Mbps respectively. The network bandwidth required by
10-GDB ranged between 1.6 to 2.4Mbps and the majority of the
bandwidth requirement is from 2 to 2.2Mbps. The network band-
width required by patching falls in a larger range (1-4Mbps) and
the majority of the bandwidth falls between 1.5 to 3Mbps. Finally,
if all of the videos are delivered using individual unicast, the aver-
age network bandwidth for this arrival process is 12Mbps, 5 times
greater than that required by 10-GDB and patching.

Throughout this set of experiments, the video is allocated a 64MB
application-level cache. At the server side, the deadline confor-
mance is over 99.99% and the signalling latency for the requests is
less than 10ms. We therefore focus on the reception quality of the
video at the client side. Our emphasis here is to examine the per-
formance of periodic broadcast and patching over networks with
varied connectivities and the effect of packet loss and network jitter
on the reception of the client. More systematic performance evalu-
ations will be the focus of future work. We carry out bi-directional
experiments between UMass and UMD. That is, we examine where
the server is placed at UMass and the client at UMD and where the
server is located at UMD and the client at UMass. The experiments
with our host in USC is unidirectional; video is transmitted from
UMass to USC. We next describe the experiments in details. All
the times are given in East Standard time.

Time (2002) Server-client Scheme Pkt. loss RS lat.
2/21 14:25 Th UMD-UMass 10-GDB 0.2% 77 ms
2/21 15:20 Th UMD-UMass 10-GDB 0.005% 87 ms
2/22 13:10 F UMD-UMass patching 0.02% 112 ms
2/22 15:30 F UMD-UMass patching 0.07% 69 ms
2/25 14:10 M UMass-UMD 10-GDB 0.8% 126 ms
2/25 14:40 M UMass-UMD 10-GDB 0.2% 96 ms
2/26 20:00 Tu UMass-UMD patching 0.02% 120 ms

Table 4: Some experiment results between UMass and UMD
under both 10-GDB and patching.

6.4.1 Experiments between UMass and UMD
Table 4 summarizes some of the experiments carried out between

UMass and UMD. We observe that the packet loss ratio between
the two sites is less than 1% for both 10-GDB and patching. In
the table, the RS latency ranges from 70 to 120 ms. Fig. 11 (a)
shows the histogram of the RS latencies for all of the requests for an
experiment from UMass to UMD using patching. The RS latency
lies in the range of 100 to 400ms. The RS latency seen by most of
the requests is less than 300ms. The behavior of RS latency under
10-GDB is similar.

We observe that, throughout the experiments, the CFIT (Client
Frame Interarrival Time) forms a bell shape, with most of the mass
in the range of 20 to 60 ms. This is different from the observation
under the same settings in LAN, where the CFIT has strong peaks
at 30 and 40ms . The spread in the client frame interarrival times
reflects the jitter introduced by the network. However, we observe
that, for patching, an extra waiting time of less than 50ms after
receiving the first frame of the video can guarantee that all frames
arrive before the playback time. It usually takes 1 to 2 seconds for
the client to receive the first frame of the video after sending the

Time (2002) Server-client Scheme Pkt. loss RS lat.
3/04 10:10 M UMass-USC 10-GDB 21.1% (5.6%, 8.4%, 13.3%, 15.1%, 17.7%, 22%, 23.4%) 91 ms
3/04 10:40 M UMass-USC 10-GDB 20.9% (8%, 11.2%, 12.3%, 14.3%, 17%, 21%, 24%) 91 ms

3/07 1:50pm Th UMass-USC 10-GDB 18.6% (8.2%, 11.6%, 10%, 12.9%, 16.1%, 18.7%, 21%) 124 ms
3/07 2:20pm Th UMass-USC 10-GDB 18.3% (7.2%, 11.2%, 9.3%, 11.9%, 16.8%, 18.3%, 20.7%) 136 ms
2/28 15:30 Th UMass-USC patching 7.3% (15.1%, 6.4%,) 111 ms
2/28 16:00 Th UMass-USC patching 5.4% (10.7%, 5.4%) 111 ms
3/06 16:00 W UMass-USC patching 5.0% 168 ms
3/06 16:30 W UMass-USC patching 4.0% (6.6%, 3.4%) 110 ms

Table 5: Some experiment results from UMass to USC under both 10-GDB and patching.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

50 100 150 200 250 300 350 400

Fr
ac

tio
n

RS latency(ms)

(a) one run of patching from UMass to UMD

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500

Fr
ac

tio
n

RS latency(ms)

(b) one run of patching from UMass to USC

Figure 11: Histogram of RS latencies of one run from UMass to UMD and from UMass to USC using patching scheme.

request. Therefore about 2 seconds of waiting time is sufficient to
guarantee continuous playback.

6.4.2 Experiments from UMass to USC
Table 5 summarizes some of the experiments from UMass to

USC. The fourth column records the average packet loss ratio over
the whole video. If the client is scheduled to receive multiple
streams, the loss of each received stream is recorded in the paren-
theses, in increasing order of their positions in the video. We ob-
serve that the packet loss ratio over the whole video here is much
higher than that between UMass and UMD. The majority of the
losses are single loss. We also notice that the packet loss ratio is
not uniform across the streams. In 10-GDB, the packet loss ratio of
the earlier segments (e.g. the first and second segment) is less than
that of the later segments. In patching, the packet loss ratio of the
patch is higher than that of the complete stream.

We conjecture that the differences of the packet loss ratio is an
artifact of how the streams are placed on the network. Packets are
not sent out in a continuous stream. Instead, the server network
thread wakes up every τ ms (33ms for our experiments), and sends
out all of the packets which are scheduled for delivery before the
next round occurs. In our system the scheduled packets of a stream
are placed on the network before meeting the needs of the next
stream. This conjecture holds as the streams which are processed
first, the early segments of 10-GDB or the previously scheduled
streams in patching, are the streams that show less loss. Further
exploration of ways to reverse these effects are topics in further
work.

In the table, the RS latencies lie in the range of 90 to 170 ms.
However, the RS latency for all the requests varies dramatically
during one run. Fig. 11 (b) shows the histogram of the RS latencies
for all the requests in an experiment using patching from UMass
to USC. The graph shows that the majority of the RS latencies is

less that 500ms. However, some requests experience a RS latency
as long as 3 seconds. The behavior of RS latency under 10-GDB
is similar. We do not see longer CFITs here than those between
UMass and UMD. On the other hand, the CFIT only shows the
interarrival time of consecutive frames that actually reach the client.
For patching, the extra waiting time after receiving the first frame
of the video to ensure that frames arrive by the playback time varies
from several milliseconds to over 200 milliseconds.

6.5 Control and Data Engine Interaction
In this section we examine some of the implications of hav-

ing the control and data engine run as separate entities. From
Section 6.3 we see that for a deadline conformance percentage
> 99%, the clients receive good service. Furthermore, we ob-
serve in Section 6.2.2 that all DCP values remained > 99% for
all levels client request rates. To understand why this occurs we
need to look at what is happening for each active thread in the
server. The disk thread needs very little computation time each
second and has a negligible effect on the processor. Using the
measurements observed for configuration II in Section 6.2.2 (see
Table 3), we can calculate the amount of time that the network
thread needs each second. We find that the NT needs 5.08ms per
round and there are 30 rounds in a second. Therefore, the NT needs
(30/sec) ∗ (5.08ms) = 152.4ms/sec in order to perform its task.
In general the amount of time that the NT will need each second
is 3ms per Mbps of the data transmitted. The only other active
entities are the 5 scheduler threads. This means there are total of
six active threads in the server, excluding the DT. Assuming a sim-
ple processor sharing model we see that each thread will receive
166ms of processor time each second. This should allow the NT
thread to essentially run in isolation from the scheduler threads. To
test this hypothesis, we re-ran configuration II with 20 scheduler
threads and used a high request rate. While the server was able to

20

40

60

80

0 1000 2000 3000Se
rv

er
 N

et
wo

rk
 T

hr
ou

gh
pu

t (
M

bp
s)

time (sec)

timeseries

(a) 3-GDB synchronized

20

40

60

80

0 1000 2000 3000Se
rv

er
 N

et
wo

rk
 T

hr
ou

gh
pu

t (
M

bp
s)

time (sec)

timeseries

(b) 3-GDB non- synchronized

Figure 12: Synchronization between transmission schedules could lead to bursty behavior

service more clients, the resulting DCP was only 4.26%. This indi-
cates that without some form of guarantee for processor time, the
number of active threads needs to be chosen carefully.

6.6 Scheduling Among Videos
When supporting 3 videos (copies Blade2) using periodic broad-

cast, we observe that the server generated bursty network traffic
(see Figure 12(a)). In particular, bursts of traffic were found to
occur every 768 seconds. This can be explained as follows. The l-
GDB algorithm periodically repeats each segment of the video at a
certain rate. Due to the fact that the last segment is smaller than the
repetition rate, the server will transmit the last segment for a short
amount of time; the address remains idle until the next repetition. If
several videos are transmitted with this last address synchronized,
the server will generate a burst in network traffic. In order to avoid
the bursty behavior, we examined what happened when the sched-
ules were started separately at an interval of three minutes apart.
Figure 12(b), shows three 3-GDB broadcasts, staggered to prevent
them from synchronizing the retrieval of the last segment, and find
that the sustained bursts disappear. Scheduling to avoid synchro-
nization removes the necessity of provisioning high peak server
network throughput. This example illustrates the benefit of using
techniques for smoothing out the offered load, especially for high
loads.

7. CONCLUSIONS
The high transmission bandwidth requirements of streaming video,

coupled with the best-effort service provided by today’s IP net-
works makes it a challenging problem to provision network re-
sources for delivering such media to remote clients. In this paper,
we presented the design and implementation of an experimental
streaming media testbed for investigating scalable streaming solu-
tions like periodic broadcast and patching. The testbed consists of
a distributed video server and client software running on top of off-
the-shelf PCs executing commercial Linux and Windows operating
systems.

Experimental evaluations indicate that the server is able to sup-
port the real-time, bandwidth intensive data delivery requirements
imposed by schemes like periodic broadcast and patching, vindi-
cating many of the key design principles incorporated in the ar-
chitecture. Under periodic broadcast, our server can easily pro-
cess a client request rate of 600 requests per minute (returning
periodic broadcast schedule information to each client), while at
the same time streaming video segments over multiple multicast
groups and missing few data transmission deadlines. Under patch-
ing, our server again comes close to fully loading a 100Mbps net-

work connection with patched-in clients, while missing few data
transmission deadlines. Our measurements also show that in a
loaded LAN environment, an initial client startup delay of less than
1.5sec. is sufficient to handle startup signaling and absorb data
jitter induced by the non real time operating systems at either the
client or the server, as well as any network jitter. Our experiments
over the Internet shows that the end-end performance varies dra-
matically under various network connectivities. When connectiv-
ity is good, the performance is similar to LAN conditions. Exper-
iments under poor connectivity indicate the need of packet recov-
ery schemes specific for periodic broadcast and patching. Radical
differences in packet loss between streams, pushes further exami-
nation into the manner in which streams are placed on the network.

Our evaluations show that application-level data caching can dra-
maticly reduce the bandwidth demands placed on the underlying
server operating system even when using a simple Least Recently
Used (LRU) cache replacement policy, and that substantial addi-
tional performance gains can be realized under a Least Frequently
Used (LFU) Replacement Policy. Furthermore, we have shown that
LFU is an optimal cache replacement policy for for periodic broad-
cast and patching schemes.

Our testbed allows us to collect benchmarking measurements for
individual components in the server. Using this data we can deter-
mine bottlenecks and search farther for lessons on how the individ-
ual components interact to effect the quality of service that the end
client sees.

Building on our experience and the insights we have gained, we
are developing a network proxy server testbed for exploring proxy-
based techniques for efficient deliver high quality streaming video
over best-effort IP networks.

8. ACKNOWLEDGMENTS
The authors thank Abhinav Garg and Ellen Zhang for their re-

spective contributions to the development of this testbed. This re-
search was supported in part by the National Science Foundation
under Grants ANI-9977635, ANI-9805185, ANI 9973092, EIA-
0080119, NCR-9508274, ANIR-9977555, and ANIR-9875513, and
by a gift from Intel Corporation. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the funding
agencies.

9. REFERENCES
[1] S. Acharya and B. Smith. Middleman: A video caching proxy server.

In Proc. International Conference on NOSSDAV, 2000.
[2] C. Aggarwal, J. Wolf, and P. Yu. On optimal batching policies for

video-on-demand storage servers. In Proc. IEEE International
Conference on Multimedia Computing and Systems, June 1996.

[3] J. M. Almeida, D. L. Eager, and M. K. Vernon. A hybrid caching
strategy for streaming media files. In MMCN, 2001.

[4] K. Almeroth and M. Ammar. An alternative paradigm for scalable
on-demand applications: Evaluating and deploying the interactive
multimedia jukebox. In IEEE Transactions on Knowledge and Data
Engineering Special Issue on Web Technologies, July/August 1999.

[5] D. Anderson, Y. Osawa, and R. Govindan. A file system for
continuous media. ACM Trans. Computer Systems, pages 311–337,
November 1992.

[6] W. J. Bolosky, R. P. Fitzgerald, and J. R. Douceur. Distributed
schedule management in the tiger video fileserver. In Proceedings of
the sixteenth ACM symposium on Operating Systems Principles
(SOSP’97), Saint-Malo, France, pages 212–223, December 1997.

[7] M. Buddhikot, X. Chen, D. Wu, and G. Parulkar. Enhancements to
4.4 bsd unix for efficient networked multimedia in project mars. In
Proceedings of the IEEE International Conference on Multimedia
Computing and Systems (ICMCS’98), Austin, TX, pages 326–337,
July 1998.

[8] M. Buddhikot, G. Parulkar, and J. Cox. Design of a large scale
multimedia storage server. Journal of Computer Networks and ISDN
Systems, pages 504—524, Dec 1994.

[9] S. Carter and D. Long. Improving video-on-demand server efficiency
through stream tapping. In Proc. International Conference on
Computer Communications and Networks, 1997.

[10] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. Demonstrating
the effect of software feedback on a distributed real-time mpeg video
audio player. In Proc. ACM Multimedia, November 1995.

[11] S.-F. Chang, A. Eleftheriadis, and D. Anastassiou. Development of
Columbia’s video on demand testbed. Image Communication
Journal:Special Issue on Video on Demand and Interactive TV, 1996.

[12] C. Diot, B. Levine, B. Lyles, H. Kassan, and D. Balsiefien.
Deployment issues for the ip multicast service and architecture. IEEE
Network, January 2000.

[13] D. Eager, M. Ferris, and M. Vernon. Optimized regional caching for
on-demand data delivery. In Proc. Multimedia Computing and
Networking (MMCN ’99), January 1999.

[14] D. Eager, M. Ferris, and M. Vernon. Optimized caching in systems
with heterogeneous client populations. Performance
Evaluation,Special Issue on Internet Performance Modeling, pages
163–185, September 2000.

[15] D. Eager and M. Vernon. Dynamic skyscraper broadcasts for
video-on-demand. In Proc. 4th Inter. Workshop on Multimedia
Information Systems, September 1998.

[16] L. Gao, J. Kurose, and D. Towsley. Efficient schemes for
broadcasting popular videos. In Proc. Inter. Workshop on Network
and Operating System Support for Digital Audio and Video, July
1998.

[17] L. Gao and D. Towsley. Supplying instantaneous video-on-demand
services using controlled multicast. In Proc. IEEE International
Conference on Multimedia Computing and Systems, 1999.

[18] L. Gao, Z. Zhang, and D. Towsley. Catching and selective catching:
Efficient latency reduction techniques for delivering continuous
multimedia streams. In Proc. ACM Multimedia, 1999.

[19] L. Golubchik, J. Lui, and R. Muntz. Adaptive piggybacking: A novel
technique for data sharing in video-on-demand storage servers. ACM
Multimedia Systems Journal, 4(3), 1996.

[20] M. S. S. Group. Public domain MPEG2 encoder/decoder software.
ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg2/conformance-
bitstreams/video/verifier.

[21] M. Handley and V. Jacobson. SDP: Session description protocol,
request for comments 2327, April 1998.

[22] R. Haskin. Tiger shark–a scalable file system for multimedia. IBM
Journal of Research and Development, 42(2):185–197, March 1998.

[23] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. Rtp payload
format for mpeg1/mpeg2 video, request for comments 2250, January
1998.

[24] K. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true
video-on-demand services. In Proc. ACM Multimedia, September
1998.

[25] K. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-demand systems. In Proc. ACM
SIGCOMM, September 1997.

[26] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existance of a spectrum of policies that subsumes the
least recently used LRU and least frequently used LFU policies. In
SIGMETRICS, 1999.

[27] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz.
The Fellini multimedia storage server. Multimedia Information
Storage and Management , Editor S. M. Chung, Kluwer Academic
Publishers, 1996.

[28] J.-F. Paris, S. Carter, and D. Long. A low bandwidth broadcasting
protocol for video on demand. In Proc. 7th Inter. Conference on
Computer Communications and Networks, October 1998.

[29] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia proxy
caching mechanism for quality adaptive streaming applications in the
internet. In INFOCOM, MAR 2000.

[30] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications, request for comments
1889, January 1996.
ftp://ftp.isi.edu/in-notes/rfc1889.txt.

[31] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming
protocol (RTSP), request for comments 2326, April 1998.
ftp://ftp.isi.edu/in-notes/rfc2326.txt.

[32] S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patching
schemes for efficient multimedia streaming. In Proc. International
Conference on NOSSDAV, June 1999.

[33] S. Sen, L. Gao, and D. Towsley. Frame-based periodic broadcast and
fundamental resource tradeoffs. In Proc. IEEE International
Performance, Computing, and Communications Conference, April
2001.

[34] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for
multimedia streams. In Proc. IEEE INFOCOM, April 1999.

[35] A. Silberschatz, J. Peterson, and P. Galvin. Operating System
Concepts, 3rd edition. Addison-Wesley Publishing Company, Inc.,
1991.

[36] F. A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming raid – a disk
array management system for video files. In Proceedings of ACM
Multimedia ’93, Anaheim, CA, pages 393–400, 1993.

[37] J. Turner. Terabit burst switching. Journal of High Speed Networks,
1999.

[38] M. Vernick, C. Venkatramini, and T. Chiueh. Adventures in building
the stony brook video server. In Proceedings of ACM Multimedia’96,
1996.

[39] B. Wang, S. Sen, M. Adler, and D. Towsley. ”optimal proxy cache
allocation for efficient streaming media distribution”. In Proc. IEEE
INFOCOM, 2002.

APPENDIX

A. OPTIMALITY PROOFS OF LFU
Theorem 1: LFU per-video cache replacement policy for i) threshold-

based controlled multicast patching, under a Poisson arrival pro-
cess, and ii) any member of the periodic broadcast family of algo-
rithms, using any arrival process, minimizes the average server read
load into the underlying operating system.

Proof: We prove this from a well known result in the OS com-
munity [35]:

An optimal page-replacement algorithm that has the low-
est page-fault is: Replace the page that will not be used
for the longest period of time.

If the access frequency is known beforehand, LFU satisfies the
property that the data that will not be used for the longest period
of time are replaced first. Hence it is an optimal policy. We next
show that the expected access frequency in periodic broadcast and
threshold-based patching can be predetermined.

In periodic broadcast, each segment is broadcast periodically ir-
relevant to the request rate of the clients. Therefore, if the length of

segment i is si, then the access frequency of the segment from the
memory is 1/si. The smaller the segment, the more frequent it is
accessed.

In threshold-based patching under a Poisson arrival process, let
T be the threshold and λ be the arrival rate. We consider the interval
between two complete streams. The video block after the threshold
is required once. For video block [x, x + δ], x < T , where δ is
small enough, this block is required 1 + λ(T − x) times. The
smaller the x, the more frequent it is being required.

Therefore, LFU minimized the miss rate hence the read over-
load on the system in both periodic broadcast and threshold-based
patching.

In effect, the more frequently accessed segments (blocks) are not
replaced but kept cached by using LFU. It should be noted that
for segmentation schemes such as GDB where the length of the
segments are in an increasing order, a prefix of the video ends up
cached. In threshold-based patching, since the earlier video blocks
have higher access frequency, it also turns out that a prefix of the
video is cached.

