
Sync-on-the-fly: A Parallel Framework for Gradient
Descent Algorithms on Transient Resources

Guoyi Zhao, Lixin Gao and David Irwin
Dept. of Electrical and Computer Engineering

University of Massachusetts Amherst
guoyi@umass.edu, lgao@umass.edu and irwin@umass.edu

Abstract—Many cloud service providers offer transient re-
sources (e.g., spare servers) for a fraction of the cost of on-
demand servers. The iterative computations for big data analytic
tasks are ideal to run on transient resources. However, the
modern distributed data processing systems such as MapReduce
or Spark provide little support for running iterative compu-
tation on transient resources. The fault-tolerant mechanism
provided in MapReduce or Spark typically leads to cascading re-
computations after revocations on transiently available resources.
In this paper, we propose a distributed framework, Sync-on-the-
fly, that takes advantage of the fact that many machine learning
algorithms do not require fixed synchronization barriers. These
synchronization barriers can be established at any time, and
under the situation that some of the workers are revoked. We
use the widely used gradient descent algorithms as examples
to illustrate the design of Sync-on-the-fly. We implement sev-
eral popular gradient descent algorithms, Logistic Regression
and Matrix Factorization, under Sync-on-the-fly. Our evaluation
shows that Sync-on-the-fly can achieve up to 5x speedup over
Spark and reduce 85% of the costs.

Index Terms—flexible synchronous parallel, transient re-
sources, machine learning, gradient descent, distributed iterative
computation

I. INTRODUCTION

Many cloud service providers offer transient resources such
as spare servers only 10% to 20% of the cost of on-demand
servers. Users and companies can reduce the cost by using
transient servers to run their machine learning algorithms in
big data analytics. Where these big data analysis typically
requires a large amount of resources to process the data and
might need several iterations of processing.

The cheap price does not come for free, the transient
resources may be revoked at any time [7] since the demand
might fluctuate. Traditional distributed data processing systems
such as Hadoop [6], Spark [12], and Pregel [4] are designed
to run data analytic jobs on on-demand servers. These systems
can tolerate failures as rare events, but not tolerant frequent
revocations. They might suffer the excessive cost of cascading
re-computations in case of revocations on transiently available
resources.

Since most machine learning algorithms are not latency
critical, it is a natural fit for the transient resources. Some
recent works show the great potential to use transient resources
in the big data analysis. Flint [5] and TR-Spark [9] leverage
additional nodes of on-demand resources as storages to check-
point intermediate results. After a revocation, computations

can be resumed from the last checkpointed data. Pado [10]
use the additional reserved resources to selectively run the
computations that are most likely to cause high recomputation
costs once revoked. Although such systems introduced various
techniques to decide the optimal frequency of checkpointing,
it can still be quite expensive for data-intensive workloads. It
requires large amounts of data to be transferred back and forth
which incurs substantial network and disk overhead.

In addition to the overhead of checkpointing, transient
resources make it hard to perform synchronization. When
a revocation occurs to a worker, all other workers have to
wait for the recovery before performing synchronization. This
entails a large amount of resource waste. This is particularly
expensive when a large cluster of servers involved in one data
analytic job. Current distributed frameworks such as Spark or
Pregel use the bulk synchronous parallel (BSP) model where
all workers have to synchronize at a predefined barrier. Given
the unpredicted nature of server revocations, it is challeng-
ing to deploy BSP-based distributed frameworks on transient
resources for large-scale machine learning algorithms.

The recent parameter server framework [3] applies the
asynchronous communication model to avoid block on compu-
tation. Although, the asynchronous model reduce the wait for
revoked workers, the update of model parameter will suffer the
issue of staleness. The parameters we update will no longer
be the one we use, which may make the machine learning
algorithms suffer great fluctuations in convergence. In the re-
cent stale synchronous parallel model (SSP) [1], they reduced
the impact of the staleness in updating parameters by bounding
the maximum staleness. However, a synchronous model do not
even have a staleness issue. In flexible synchronous parallel
(FSP) framework [8], they break the fixed synchronous barrier
and apply the flexible synchronous parallel model in EM
algorithms. The dynamic synchronous intervals speedup the
computation while maintaining the convergence guarantee.

In this paper, we propose Sync-on-the-fly, a distributed
framework for machine learning algorithms. It enables ma-
chine learning computations to establish synchronization bar-
riers during runtime. Sync-on-the-fly exploits the fact that
synchronization in machine learning algorithms does not have
to be performed after a full pass of the data or a fixed
set of data points. Synchronization barriers are established
for building consistent model parameters, and thus can be
performed at any time during the computation, even under

the situation that one or several servers are revoked and have
not been recovered.

We design and implement the distributed framework using
the gradient descent algorithms as examples. Sync-on-the-fly
provides the capability to initiate synchronizations at runtime.
When there is a revocation, Syn-on-the-fly ensures all remain-
ing workers can continue to synchronization without waiting
for the recovery of the revoked workers. We evaluate Sync-on-
the-fly with several well-known machine learning algorithms,
Logistic Regression and Non-negative Matrix Factorization, on
a cluster of Amazon EC2 instances. We perform experiments
on simulated revocation scenarios and revocation scenarios on
the spot market of Amazon EC2. The results show that we can
achieve up to 5x speedup over Spark and reduce 76%-85% of
the cost from using the on-demand severs even under high
revocation situation.

The remainder of this paper is organized as follows. Section
II formally introduces the sync-on-the-fly programming model
and suitable algorithms. Section III presents the design of
the Sync-on-the-fly framework. Section IV reports extensive
evaluation results. Section V finally concludes this work.

II. SYNC-ON-THE-FLY PROGRAMMING MODEL

In this section, we first introduce the Sync-on-the-fly pro-
gramming model for gradient descent algorithms. We then
illustrate a series of machine learning problems that can be
expressed under the Sync-on-the-fly model.

A. Sync-on-the-fly

Gradient Descent Algorithms are widely used in supervised
machine learning. It considers the problem of minimizing an
objective function that has the form of a sum as

Q(~w) =

N∑
i=1

Qi(~w, xi) (1)

where ~w is the model parameter vector to be learned, and the
function Qi is associated with the i-th observation, xi, from
the input data set.

Starting with an initial guess of the model parameters, GD
algorithms iteratively update model parameter with a gradient
vector. The gradient vector is computed as a summation of the
gradient at each data point.

g(~w) =
1

|X|
∑
xi∈X

∂

∂ ~w
Qi(~w, xi) (2)

Then the model parameter ~w can be updated with the
gradient as follows.

~w = ~w − ηg(~w) (3)

where η is the learning rate.
To implement GD in a distributed environment, it is com-

mon to use the Bulk Synchronous Parallel (BSP) model. That
is, the input data points are distributed among workers. Each
worker computes the gradient from a mini-batch of the data

Predefined
Sync. barrier

Worker1 Worker2 Worker3

(a) BSP model

Sync. barrier

Worker1 Worker2 Worker3

Sync. barrier

Sync. barrier

Revoked

(b) Sync-on-the-fly in transient resources

Fig. 1: Illustration of the process order for BSP model (a)
and Sync-on-the-fly model (b). The dashed lines indicate
synchronous barriers. Each block represents one data point.
The dashed box in (b) indicates that a revocation occurs on
Worker3

points assigned to the worker. These gradients are aggregated
together at a synchronization barrier. Each worker then updates
the model parameter with the gradient and computes the
gradient for the next iteration. We show an example of GD
under the BSP model in Figure 1(a).

GD under the BSP model has several drawbacks. First, it
requires a full pass of the input data set before performing
synchronization. In reality, it is possible to compute the
gradient based on a subset of input data points, This is
commonly referred to as mini-batch GD. Second, even under
min-batch GD, the synchronization barrier is predefined. This
is problematic since stragglers are common in practice [11].
Predefined synchronization barrier can result that fast workers
wait for a straggler. Third, predefined synchronization barriers
make it hard to take advantage of transient resources in the
cloud. Transient resources can be revoked at any time. A
revocation to one worker might lead to all other workers wait
in the synchronization barrier.

In this paper, we propose Sync-on-the-fly for Gradient
Descent algorithms. Under Sync-on-the-fly, synchronization
can be performed at any time. At each synchronization point,
the gradient from each worker is aggregated and broadcast to
all workers. Then each worker updates the model parameter
with the gradient and computes the gradient at each input
data point until a synchronization barrier is established. This
process repeats. Figure 1(b) shows GD under the Sync-on-the-
fly model. When using transient resources, the Sync-on-the-fly
model can greatly reduce the impact of the revoked workers.

For the convergence of GD algorithm, our proposed Sync-

2

on-the-fly model is equivalent to for a mini-batch SGD algo-
rithm. Because in each synchronization, the gradients are com-
puted from a set of data points among all workers. Consider
the smallest set of data points from all the synchronizations
as the mini-batch size, we can achieve the same convergence
property as the mini-batch GD.

B. GD algorithms under Sync-on-the-fly

Formally, the gradient of the objective function at input data
point i is computed as

g(~w, xi) =
∂

∂ ~w
Qi(~w, xi) (4)

The gradient in each worker will be aggregated as a local
gradient. At a synchronization point, the global gradient is
computing by summing up all the local gradients

θ(~w) =
1

|B|
∑
xi∈B

g(~w, xi) (5)

where B is the set of the immutable variables that contribute
the gradient in this synchronization. The gradient is then used
to update the model parameter as in Equation (3).

Many machine learning algorithms can be written in a form
of GD under our Sync-on-the-fly model. For Logistic regres-
sion(LogR), which is a supervised machine learning algorithm
that derived the relationship between input data points and
outcomes. We model each data point xi ∈ X contains d at-
tributes and one additional value yi which indicates outcomes
as a boolean variable. The model parameters w is derived
to make the values from logistic function P ()̇ in Equation
P (xi) =

1
1+exp(−xT

i w)
close to yi for data point xi. That is,

we aim to derive w that minimizes the loss function Q(w) =∑
xi∈X ((yi − 1) ∗ log(1− P (xi))− yi ∗ logP (xi)).
To compute the gradient at each data point i, we have the

jth dimension of the gradient as gj(w) = (P (xij)− yij)∗xij .
Since computation of the gradient at each data point requires
all dimensions of the model parameter, we will distribute the
model parameter to all workers and consequently, the model
parameter will be updated at each worker.

Take Nonnegative Matrix Factorization (NMF) as another
example. NMF aims to factorize a given matrix A ∈ Rm×n

+

with observed entries into two nonnegative low-rank factor
matrices W ∈ Rm×k

+ and H ∈ Rk×n
+ , where A ≈ W · H

and the positive integer k � min{m,n}. It minimize a loss
function L(A,W,H) = ||A −W · H||2F based on Frobenius
norm || · ||F .

The matrix loss function L can be written as a series of
independent functions for parallel optimization. Towards this
end, let WI denotes the I-th row of W , HJ denotes the J-
th column of H , and AI,J denotes the entry of A at row I
and column J . Then L can be expressed as L(A,W,H) =∑

J

∑
I(AI,J −WIHJ).

Under the Sync-on-the-fly model, W and H are two param-
eters to update. They can be updated alternatively by fixing
one variable and update the other one. So every time we
can use the latest version of the feature vector to compute

the gradients. So for the gradient computation in Equation
(4), we can rewritten specifically for W or H at each data
point AI,J as gWI

(AI,J ,W) = (AI,J − WIHJ)H
T
J and

gHJ
(AI,J , H) =WT

I (AI,J −WIHJ).
Note here to figure out the gradient at the point AI,J for

W requires only HJ and WI . We therefore store WI and
HJ at the worker where AI,J resides. Therefore, the model
parameter does not have to be stored (and updated) at all
workers and rather at workers where their corresponding input
data points reside.

C. Programming Interfaces

To program GD algorithms under Sync-on-the-fly model,
we have the following APIs.
• initialization(): Initialize the model parameter ~w.
• partition(X , ~w): Indicate the location of the workers

where input data points and model parameters reside.
• gradient(xi, ~wk): Function for computing the gradient

of objective function at xi for dimension k of ~w. It is
possible to have several of these functions, each of which
is for one model parameter.

• scheduleUpdate(~w): Indicate the order of updating model
parameters. When computing gradient, we go through
input data points in a round-robin fashion. This scheduler
determines the order we update model parameters and the
corresponding gradient computation function used.

• progress(xi): Function for computing objective function
for data point xi. This function is used for determining
termination condition and when to synchronize.

III. SYSTEM DESIGN

A. System Overview

In the Sync-on-the-fly model, a global view of the worker
status and progress is necessary to identify the revocation and
determine a proper synchronous barrier. So we introduce a
centralized coordinator in our system to keep track of the
progress of the computation on each worker and monitor the
health status of workers. As shown in Figure 2, the coordinator
communicated with workers through signals. When enough
progress has been made by active workers, it initiates a syn-
chronization by broadcasting Sync signals to active workers.
When a worker gets revoked, the revocation signal from the
transient servers is passed to the coordinator through WRevok
signal. The future synchronization will exclude that worker
until it is recovered. When an available worker is found, the
coordinator starts a recovery process. The coordinator and the
worker communicate through Recv and paraReq signals to
recover and catch up the computation.

The worker mainly takes charge of scheduling the compu-
tation of gradients and updating of the model parameter. The
workers schedule the computation of gradients in a round-
robin fashion in the computation module. When the interrup-
tion signals such as synchronization or revocation occur, the
worker interrupt the update or computation. As the worker
receives a new global gradient, it updates the model parameter
and then continues the computation of gradients.

3

Worker 2Worker 1 Worker N… …

Replaced
Worker 1

Initiate
recovery

Revocation
interruption

Send progress reports
Coordinator

Collect	progress	
reports

Update	model
Parameters

Initiate	
synchronization Broadcast parameters

Send Sync signals

Fig. 2: Sync-on-the-fly system overview. The arrow lines
indicate the gradients that are sent from the workers to the
coordinator and the communication signals.

The coordinator monitors the status of workers and controls
synchronization among active workers. It maintains a worker
status table and keeps track of the progress of computa-
tion on each worker from the worker reports since the last
synchronization. The progress quantifies the contributes to
the convergence of objective function between two synchro-
nizations. The coordinator accumulates the progress of each
active worker and decides when to synchronize the workers.
After a synchronization is initiated, it waits for all the local
gradients from the active workers and aggregates them as
global gradients. Then it distributes the global gradient based
on the partition function of model parameter.

B. Synchroization on-the-fly

Frequent synchronizations make the model parameter keep
being updated and increase the computation quality. However,
the synchronization is not free. The more synchronization
will decrease the quantity of computations per unit time.
So identifying a proper synchronization point is extremely
important for the efficiency of our system.

The observation of the convergence curve for the objective
functions of GD algorithms shows that the progress from the
first a few epochs are much larger than the later ones. The
increasing updates in the first few epochs will accelerate the
convergence speed for updating the model parameter. Because
the updates will make use of the most updated value. Our
intuitive is to frequently update the model parameter in the
first a few epochs. We slow down the synchronization rate in
the later epochs gradually based on the accumulated progress
reports from workers. When some workers get revoked, we
will need the active workers to make more progress rather
than having a fixed synchronous barrier.

The coordinator aggregates the progress of the worker
reports to p(t) at iteration t. The p(t) will keep increasing
after more worker reports have received. The progress p(t)

will be compared with the previous progress p(t−1). Since the
value difference of the objective function is getting smaller and
smaller, we predefined a percentage λ to reduce the progress
needed for the later synchronization. When p(t) > λp(t−1), we
assume enough progress has been made and we can initiate a
new synchronous barrier. By default, λ is set to 0.8.

Generally, the progress score can reflect the data amount
that contributes to the gradients. However, the update of
the model parameter from a small set of the data points or
outliers can make the objective function value fluctuate. An
accumulation of the gradients can reduce the fluctuation by
adding gradients from more data points. So as long as we
reach a certain progress on the objective function, it worths a
new synchronization.

Then the coordinator broadcasts the sync signal to all the
active workers. Initially, the p(0) will be computed based on
the first r reports from the workers, where r is the same as
the unit of the data points for the progress report.

When the worker receives a Sync signal from the coordina-
tor, it will first finish the computation of the gradient on the
current data point as an atomic operation. Then it sends the
local gradients to the coordinator and waits for the new global
gradients. In the meantime, the local context will point to next
data point. If the Sync signal arrives when the worker is still
in a model parameter update stage, the worker will restart the
model parameter update stage with the new global gradient.

C. Revocation handling

Revocation: When a worker gets revoked, it first receives a
Revok signal from the transient server. The revocation requires
an immediate response so that it can be handled within
the advanced warning time. Therefore, the worker sends a
WRevok signal to the coordinator first. If the worker is in the
stage of local gradient computation, it interrupts the current
computation immediately and sends the local gradients to the
coordinator. Then it archives the local context which points
to the current data point. When the worker is waiting for the
next synchronization, it just archives the local context.

The coordinator is a key component in our system to control
the synchronization. It requires an immediate recovery if the
coordinator gets revoked to prevent the waiting for all the
workers. Since the total progress from the last synchronization
and worker status table are relatively small, we can easily
archive them and select a worker to replace the revoked
coordinator. But when the global gradients are large or the
advanced warning time is very limited, it is better to place the
coordinator in an steady servers to prevent possible revocation.

Recovery: A recovery process is initiated by the coordinator
when an available worker is found. After the new worker
receives a WorkRecv signal with the location of the input data
and archived data, it reloads the input data and sets the local
context as the archived one. Then it requests the current model
parameter by sending a paraReq signal to the coordinator.
Since the coordinator does not maintain the model parameter,
it will send requests to active workers for the gradients.

If a recovery of coordinator is required, the selected worker
first reloads the lists of workers and the historical progress
scores. Then the coordinator notifies all the active workers
with a coordRevok signal. So the workers can send their
local gradients or resend the local gradients from the last

4

synchronization. After receiving all the local gradients, it
resumes the function.

IV. EXPERIMENTS

We evaluate Sync-on-the-fly on several algorithms to show
the benefits of our dynamic synchronous barrier. By comparing
with the state-of-art system, we illustrate the speedup by Sync-
on-the-fly on handling different revocation situations using
transient resources. We further calculate the expense we can
save by using our system on transient resources in the real
spot market.

A. Experiment Setup

We first describe our experiment environment, the data
processing engines that we compare, the revocation scenarios
and the measurement of the evaluation.

We conduct our experiments on an AWS EC2 cluster with
two types of instances to test the performance and scalability
of our algorithms. One type is EC2 m4.large instance which
contains 2 CPU cores at 2.3-GHz and 8GB memory. Another
one is EC2 t2.micro instance which contains 1 CPU core with
high frequency Intel Xeon processors and 1GB memory. Each
experiment is conducted with half the instances as m4.large
and the other half are t2.micro. The free tier t2.micro instance
is treated as a straggler.

We test two representative applications, Logistic Regression
(LogR), and NMF to explore the performance features of all
tested frameworks. For regression, we tested on the YearPre-
dictionMSD DataSet from UCI Machine Learning Repository
which contains 0.5 million with 90 dimensions. The NMF test
is performed under the user-movie matrix from the Netflix
prize [2]. The matrix contains 480,190 rows and 17,770
columns with 100 million non-zero elements.

We simulate two revocation models to test low or high
revocation ratio. The low rate one takes an average 10 minutes
revocation time, while the high rate one takes an average 2
minutes revocation time. The restarting time for one worker is
set as 3 minutes, which is built on the assumption that a spot
instance with a higher bid price or other types will always
available to us. And the restart of an instance takes roughly
2-3 minutes to deploy our system.

Two metrics are evaluated in experiments, running time
and objective function value. Running time is defined as the
elapsed time from the point when computation starts to the
point when an algorithm converges. The overheads of loading
data and dumping results are excluded since they are the same
for all compared frameworks. Objective function value, i.e.,
Q(), has been given when introducing tested algorithms. In
particular, Q() needs to be minimized for Nonnegative Matrix
Factorization and the log-likelihood of Logistic Regression
need to be maximized.

B. Experiment Results

1) Performance Evaluation: We first evaluate the conver-
gence acceleration (objective function value decrease) for the
two example algorithms. We vary the revocation rate and the

-40
-35
-30
-25
-20
-15
-10
-5
 0

 0 500 1000 1500 2000 2500 3000

Lo
g-
Li
ke
ly
ho
od

 (
x
10
3)

time (s)

Sync-on-the-fly short recov
Sync-on-the-fly long recov

Spark short recov
Spark long recov

(a) Logistic Regression under
low revocation rate

-40
-35
-30
-25
-20
-15
-10
-5
 0

 0 500 1000 1500 2000 2500 3000

Lo
g-
Li
ke
ly
ho
od

 (
x
10
3)

time (s)

Sync-on-the-fly short recov
Sync-on-the-fly long recov

Spark short recov
Spark long recov

(b) logistic Regression under
high revocation rate

 40

 60

 80

 100

 120

 0 700 1400 2100 2800 3500

O
bj
ec
tiv
e
sc
or
e
(x
10
7)

Running time (sec)

Spark long recov
Spark short recv

Sync-on-the-fly long recv
Sync-on-the-fly short recv

(c) NMF under low revocation
rate

 40

 60

 80

 100

 120

 0 900 1800 2700 3600 4500

O
bj
ec
tiv
e
sc
or
e
(x
10
7)

Running time (sec)

Spark long recov
Spark short recv

Sync-on-the-fly long recv
Sync-on-the-fly short recv

(d) NMF under high revocation
rate

Fig. 3: Running time comparison between Sync-on-the-fly and
Spark

recovery time to test the performance. Considering the running
time of each algorithms, we select the ”short recov”, shown in
the Figure fig:converg, with 3 minutes to find a new replaced
worker. While the ”long recov” requires 6 minutes for a new
worker.

The results of Logistic Regression are shown in Figure
Figure 3(a) and 3(b). In the Spark case, for an average of 5 to 6
epochs, there will be one revocation, which randomly revokes
1 to 8 workers. After the revocation, Spark reloads the RDD
from the last checkpoint and recomputes the gradient. Under
low revocation rate, the Sync-on-the-fly can improve 54% of
the final convergence time towards the Spark implementation.
It saved 85% of the running time to reach an objective function
value around 5 × 107 to 8.5 × 107 in the middle of the
computation.

In Figure 3(c) and 3(d), we show the results for NMF
algorithm. In the first a few epoch of the run, the convergence
is relatively slow because the initial feature vector is quite
different from the final vector. To avoid the divergence of the
algorithm, the step size is usually not very large. After around
5 to 10 epochs of one run, the convergence speed increases
much more. Generally, the Sync-on-the-fly model can reach
23% and 39% improvement for low revocation rate and high
revocation rate.

2) Scalability Evaluation: We further evaluate Sync-on-the-
fly on the large-scale cluster to test its scalability. With the
number of workers increases, the probability that a revocation
occurs will increase in an exponential rate. With a low rate
revocation, the estimate revocation of one worker occurs every
10 minutes. But with 64 workers, the expected time that at
least one revocation occurs reduces to 9.4 seconds. So it is
important to test the scalability of Sync-on-the-fly.

In the experiments, we scale the dataset with the number of

5

workers instead of using the same dataset for more workers.
This is because using the same dataset, the short the running
time, the more impact of the time from recovery when the
number of workers increases. When the dataset scales at the
same ratio of the workers, we can expect the same behavior
of revocation. And the running time should be the same for
the ideal case.

 500

 1000

 1500

 2000

 2500

643216842

R
u

n
n

in
g

 t
im

e
(S

e
c
)

of workers

high revocation rate
low revocation rate

(a) Logistic Regression

 2000

 2500

 3000

 3500

 4000

643216842

R
u

n
n

in
g

 t
im

e
(S

e
c
)

of workers

high revocation rate
low revocation rate

(b) NMF

Fig. 4: Scalability evaluation on Sync-on-the-fly

In Figure 5, we show the performance of Logistic Regres-
sion and NMF under sync-on-the-fly. We test the scalability for
both low rate and high rate revocation. When the number of
workers increases, we observe very good scalability results.
The running time increase at most 10% compared to a two
worker case.

3) Evaluation on Spot Market: To evaluate our framework
in the real Amazon EC2 spot market, we test the performance
of machine learning algorithms under different revocation
scenarios. Since the revocation is affected by the fluctuation
of the price which we are unable to control, we repeat each
experiment several times and then category the results based
on different recovery time after a revocation.

When no available workers can be found in a short time,
the spark can not converge due to the lack of revoked data.
But the Sync-on-the-fly can still finish the job with around
30%-50% more time than run without revocation.

 0

 0.2

 0.4

 0.6

 0.8

 1

Spot-EvictSpot-NoEvicton-Demand

C
o

s
t

($
)

Spark
Sync-on-the-fly

(a) Logistic Regression

 0

 0.5

 1

 1.5

 2

Spot-EvictSpot-NoEvicton-Demand

C
o

s
t

($
)

Spark
Sync-on-the-fly

(b) NMF

Fig. 5: Cost comparison between Sync-on-the-fly and Spark

We compare the cost for different experiment settings for
Spark and Sync-on-the-fly using on-demand instance and spot
instance in Figure 5. During the testing, the price for on-
demand instance m4.large is $0.1, while the average hourly
rate of spot price is US east zones are $0.0189 to $0.0244.
So we will get 20% of the price to request a spot instance.
From the experiments, we can reduce 76%-85% of the cost

from using the on-demand instances even with high revocation
rate.

V. CONCLUSION

This paper investigates the problem of machine learning
algorithms using transient resources. We propose a sync-on-
the-fly programming model to initiate flexible synchronous
barriers afforded by many gradient descent algorithms. The
model abstract the key components in gradient descent algo-
rithms and enable flexible computation in gradients and update
on model parameters. The framework enables a coordinator
to actively synchronize workers when necessary and support
frequent revocation and recovery. The Sync-on-the-fly can
smoothly handle the revocation and reduce the recomputation
time. The progress based on synchronization decision can
further reduce the overhead of synchronizations. Extensive
experiments show that the Sync-on-the-fly consistently outper-
forms the state-of-the-art solutions. In future work, we plan to
investigate the influence of spot market price from the ordering
more instances and apply the model to more machine learning
algorithms.

ACKNOWLEDGMENT

This work is partially supported by NSF grants CNS-
1815412 and CNS-1802523.

REFERENCES

[1] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing. More effective distributed ml via
a stale synchronous parallel parameter server. In Advances in neural
information processing systems, pages 1223–1231, 2013.

[2] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8), 2009.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning
with the parameter server. In OSDI, volume 14, pages 583–598, 2014.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135–146. ACM, 2010.

[5] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: batch-
interactive data-intensive processing on transient servers. In Proceedings
of the Eleventh European Conference on Computer Systems, page 6.
ACM, 2016.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on, pages 1–10. Ieee, 2010.

[7] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan. Here
today, gone tomorrow: Exploiting transient servers in datacenters. IEEE
Internet Computing, 18(4):22–29, 2014.

[8] Z. Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu. Fsp: towards flexible
synchronous parallel framework for expectation-maximization based
algorithms on cloud. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 1–14. ACM, 2017.

[9] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda. Tr-
spark: Transient computing for big data analytics. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, pages 484–496. ACM,
2016.

[10] Y. Yang, G.-W. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho,
and B.-G. Chun. Pado: A data processing engine for harnessing transient
resources in datacenters. In Proceedings of the Twelfth European
Conference on Computer Systems, pages 575–588. ACM, 2017.

[11] J. Yin, Y. Zhang, and L. Gao. Accelerating expectation-maximization
algorithms with frequent updates. In Cluster Computing (CLUSTER),
2012 IEEE International Conference on, pages 275–283. IEEE, 2012.

6

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010.

7

