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Abstract

In this paper, we present Chameleon—an application-level
power management approach for reducing energy consump-
tion in mobile processors. Our approach exports the entire
responsibility of power management decisions to the applica-
tion level. We propose an operating system interface that can
be used by applications to achieve energy savings. We con-
sider three classes of applications—soft real-time, interactive
and batch—and design user-level power management strate-
gies for representative applications such as a movie player, a
word processor, a web browser, and a batch compiler. We im-
plement our approach in the Linux kernel running on a Sony
Transmeta laptop. Our experiments show that, compared to
the traditional system-wide CPU voltage scaling approaches,
Chameleon can achieve up to 32-50% energy savings while
delivering comparable or better performance to applications.
Further, Chameleon imposes small overheads and is very ef-
fective at scheduling concurrent applications with diverse en-
ergy needs.

1 Introduction

1.1 Motivation

Recent technological advances have led to a proliferation of
mobile devices such as laptops, personal digital assistants
(PDAs), and cellular telephones with rich audio, video, and
imaging capabilities. While the processing, storage, and com-
munication capabilities of these devices have improved as
predicted by Moore’s law, these advances have significantly
outpaced the improvements in battery capabilities. Conse-
quently, energy continues to be a scarce resource in such de-
vices. The situation is exacerbated by the resource-hungry
nature of many applications, such as movie players and batch
compilations.

Modern mobile devices use energy judiciously by incorpo-
rating a number of power management features. For instance,
modern processors such as Intel’s XScale and Pentium-M
and Transmeta’s Crusoe incorporate dynamic voltage and fre-
quency scaling (DVFS) capabilities. DVFS enables the CPU

speed to be varied dynamically based on the workload and re-
duces energy consumption during periods of low utilization
[15, 16, 29]. In general, such techniques must be carefully de-
signed to prevent the processor slowdown from degrading the
responsiveness of the application.

DVFS techniques proposed in the literature fall into three
categories. Hardware approaches such as Longrun [10] mea-
sure processor utilization at the hardware level and vary the
CPU speed based on the measured system-wide utilization.
Software approaches—implemented primarily in the operat-
ing system—measure the current processor demand in soft-
ware and determine an appropriate processor speed setting
[9, 8, 17, 18]. Cooperative software approaches involve OS-
application interactions and allow applications to provide use-
ful information to the OS, thereby enabling the OS to make
more informed power management decisions [6, 32].

This paper explores a fourth approach, namely application-
level power management. We argue that applications know
best what their resource and energy needs are, and conse-
quently, applications can implement better power manage-
ment policies than the operating system. We propose an ap-
proach where applications are given complete control over
their CPU power settings—an application is allowed to spec-
ify its CPU power setting independently of other applications,
and the operating system isolates an application from the set-
tings used by other applications. Our approach resembles the
philosophy of the Exokernel, where the OS grants complete
control of various resources to the applications and only en-
forces protection to prevent applications from harming one
another [7]. The Exokernel project successfully demonstrated
the benefits of application-level networking, application-level
memory management, application-level file systems and CPU
scheduling [13]. Our work extends this notion to application-
level power management.

1.2 Research Contributions

The notion of application-level power management opens up
a realm of possibilities that are infeasible using existing ap-
proaches.
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• Performance: Our approach enables each application to
make local power management decisions based on its
processor demand and processor availability. We exper-
imentally show that local decisions by individual appli-
cations can globally optimize system-wide energy con-
sumption and is better than choosing a single system-
wide power setting for all applications.

• Flexibility: Such an approach enables each application
to implement a power management policy that closely
matches its energy and performance requirements. Dif-
ferent applications can choose different policies and yet
coexist with one another concurrently. Legacy applica-
tions or those applications that do not wish to implement
their own strategy can delegate this task to a user-level
power manager that chooses appropriate settings based
on observed behavior.

• Generality: Our approach is general and unlike some ex-
isting approaches, does not make specific assumptions
about the nature of applications. Any application can
make use of the power management interface to manage
its energy needs, and we demonstrate such strategies for
several different applications.

• Modest implementation costs: We show that user-level
power management policies can be implemented by ap-
plications at modest cost. The cost of implementing our
policies varied from 40 to 239 lines of code, a relatively
minor modification to applications that contained tens or
hundreds of thousands of lines of code.

At first glance, it may appear that an application-level
power management approach loses the ability to couple the
power management strategy with the CPU scheduling algo-
rithm. At least one recent approach has advocated such an
integrated approach for power management and scheduling
[32, 33]. Contrary to intuition, we show that it is indeed pos-
sible to implement such couplings between the scheduler and
the power manager using our application-level framework.
We demonstrate the feasibility of doing so by implementing
the GraceOS technique [32, 33] in our system. By carefully
exporting resource usage statistics from within the kernel and
using a flexible power management interface, we show how
the power management policy can be implemented in user-
space while retaining the ability to interact with the scheduler.

Chameleon, our application-level power management ap-
proach consists of three components: (i) a common OS inter-
face that can be used by power-aware applications to measure
their CPU usages and adjust their CPU speed settings, (ii)
a modified kernel CPU scheduler that supports per-process
CPU speed settings and ensures performance isolation among
processes (the terms applications and processes are used inter-
changeably in this paper), and (iii) a speed adapter that maps
these CPU speed settings to the nearest speed actually sup-
ported by the hardware.
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Figure 1: The Chameleon Architecture.

We consider three common classes of applications—soft
real-time, interactive, and batch—and show how soft-real time
applications such as movie players, interactive applications
such as word processors and web browsers, and batch appli-
cations such as “make” can each implement a different power
management strategy. We specifically demonstrate how these
applications can coexist concurrently and yet globally opti-
mize system-wide energy consumption.

We have implement a prototype of Chameleon in the Linux
kernel 2.4.20-9 and evaluates its effectiveness on a Sony
Vaio laptop equipped with Transmeta’s Crusoe TM5600-667
processor [28]. Our experiments compare Chameleon with
three existing OS-level DVFS approaches, namely PAST [29],
PEAK [16] and AV Gn [15] and with LongRun, a hardware-
based DVFS approach. Our experiments with individual
power-aware applications show that Chameleon can extract
up to a 32% energy savings when compared to LongRun
and up to 50% savings when compared to OS-based DVFS
approaches, without any performance degradation to time-
sensitive multimedia and interactive applications. Our exper-
iments with concurrent applications show that local power
management decisions in Chameleon yield 20-50% energy
savings over LongRun and OS approaches that use a single
power setting for all applications, thereby demonstrating the
benefits of allowing each application to use a custom power
setting that is most appropriate to its needs.

The rest of this paper is organized as follows. Section 2
presents an overview of the Chameleon architecture. Sections
3 and 4 present the user-level power management strategies
for various applications and the design of an user-level power
manager, respectively. Section 5 discusses implementation is-
sues. Section 6 presents our experimental results. Finally,
Sections 7 and 8 presents related work and our conclusions.

2 Chameleon Architecture

Chameleon consists of three key components (see Figure 1).
First, Chameleon consists of an OS interface that enables ap-
plications to query the kernel for resource usage statistics and
to convey their desired power settings to the kernel. The de-
tails of the interface are presented in Section 5. In general,
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a user-level power management strategy will combine OS-
level resource usage statistics with application domain knowl-
edge to determine a desirable CPU power setting. This can
be achieved in one of two ways. An application can use
the Chameleon interface to directly modify its own power
settings. Alternatively, an application can delegate the task
of power management to a user-level power manager. Such
a power manager can use resource usage statistics and any
application-supplied information to adjust the application’s
power settings on its behalf.

Second, Chameleon implements a modified CPU scheduler
that supports per-process CPU power settings and application
isolation. The scheduler maintains the current power settings
for each process and conveys these settings to the underly-
ing processor whenever the process is scheduled for execution
(i.e., at context switch time). The application’s power settings
can be modified at any time via system calls, either by the
application itself or by a user-level power manager acting on
its behalf. An application’s power settings take effect only
when it is scheduled, and further, applications get the same
share of the CPU regardless of their power settings. Conse-
quently, applications are isolated from one another and from
the settings used by malicious or misbehaving applications.
Kernel support for per-process power settings and applica-
tion isolation does not require any direct modifications to the
CPU scheduling algorithm itself, and as a result, Chameleon
is compatible with any scheduling algorithm. We experi-
mentally demonstrate Chameleon with Linux time sharing—a
best-effort scheduler and with start time fair queuing—a QoS-
aware proportional-share scheduler.

Third, Chameleon implements a speed adapter that maps
application-specified power settings to the nearest CPU speed
actually supported by the hardware. In particular, an appli-
cation specifies the desired CPU speed as a fraction fi of the
maximum processor speed. The speed adapter maps this frac-
tion to the nearest supported CPU speed; since different hard-
ware processors support different discrete speeds, such an ap-
proach ensures portability across hardware.

3 Application-level Power Management

Regardless of the actual application, our user-level power
management policies consist of three key steps. (i) Estimate
processor demand: In this step, a combination of application
domain knowledge and past CPU usage statistics is used to es-
timate processor demand in the near future. (ii) Estimate pro-
cessor availability: This step explicitly accounts for the im-
pact of other concurrent applications. In this step, the amount
of CPU time that will be available to the application in the
presence of other applications is estimated. (iii) Determine
processor speed setting: The third step chooses an speed set-
ting that attempts to “match” the processor demand to the pro-
cessor availability. For instance, if the actual demand is only
half of the available CPU time, then the application can run
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Figure 2: Three scenarios for task execution in a soft real-
time application.

the processor at half speed and spread its CPU demand over
the available time. In contrast, if the processor demand and
the processor availability are roughly equal, the application
may choose to run the processor at full speed.

In the rest of this section, we show how these ideas can be
instantiated for four specific applications that belong to three
different application classes—soft real-time, interactive best-
effort, and batch.

3.1 MPEG Video Decoder

An MPEG video decoder is an example of a soft real-time ap-
plication. Many multimedia applications such as DVD play-
back, audio players, music synthesizers, video capture and ed-
itors belong to this category. A common characteristic of these
applications is that data needs to be processed with timeliness
constraints. For instance in a video decoder frames need to be
decoded and rendered at the playback rate—in a 30 frames/s
video, a frame needs to be decoded once every 33ms. The in-
ability to meet timeliness constraints impacts application cor-
rectness; playback glitches will be observed in a video de-
coder, for example.

A soft real-time application can use the following general
strategy for user-level power management. Assume that the
application executes a sequence of tasks; the decoding of a
single frame is an example of a task. Let c denote the amount
of CPU time needed to execute this task at full processor
speed. Let d denote the deadline of this task and let t denote
the task begin time. Further, let e denote the amount of CPU
time that will actually be allocated to the application for this
task before its deadline. The parameter c captures processor
demand, while e captures processor availability by accounting
for the presence of other concurrent tasks in the system. In a
time sharing scheduler, for instance, the larger the number of
runnable tasks, the smaller the value of e. In a QoS-aware
scheduler that allows a fixed fraction of the CPU to be re-
served for an application, the value of e will be independent
of other tasks in the system.

Given the processor demand c, processor availability e and
deadline d, the processor speed can be chosen as follows.

Case 1. If t + c > d then it is impossible to meet the task
deadline (see Figure 2(a)). Essentially, the task started “too
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late,” and neither the CPU scheduler not the power manage-
ment strategy can rectify the situation. In such a scenario, the
appropriate policy is to choose the full processor speed for this
task.

The next two scenarios assume that case 1 is not true and
that it is possible to meet the task deadline.

Case 2: If e < c, then the processor demand exceeds pro-
cessor availability for this task (see Figure 2(b)). Although it
is feasible to meet the deadline by allocating sufficient CPU
time to the task, the CPU scheduler is unable to do so due to
presence of other concurrent applications. Since application
performance will suffer due to insufficient processor availabil-
ity, the power management strategy should not further worsen
the situation. Thus, the application should run at full proces-
sor speed for this task. Any other strategy would violate our
goal of isolation.

The final scenario assumes that neither cases 1 or 2 are true.
Case 3: If t + c < d then task can finish before its dead-

line at full processor speed (see Figure 2(c)). In this case, the
policy should slow down the CPU such that the demand c is
spread over the amount of time the task will execute on the
CPU, while still meeting the deadline. The CPU frequency f
should be chosen as

f =
c

min(e, d − t)
· fmax

where fmax is the maximum processor speed (frequency).
This strategy is applicable to a variety of soft real-time ap-

plications, so long as the notion of a task is defined appropri-
ately. In a video decoder, (i) decoding of each frame repre-
sents a task, (ii) c denotes the time to decode the next frame
at full speed, (ii) e denotes the estimated duration for which
the decoder will scheduled on the CPU until the frame dead-
line, and (iii) d denotes the playback instant of the frame (as
determined by the playback rate of the video).

While d is known, parameters c and e need to be estimated
for each frame.

Estimating processor demand: Processor demand is de-
termined by estimating frame decode times. We consider
MPlayer an open-source video decoder that supports both
MPEG-2 and MPEG-4 playback. Note that, MPEG-2 is
widely used for DVD playback, while MPEG-4 is used by
commercial streaming systems such as QuickTime and Win-
dows Media; mplayer is representative of these applica-
tions. Using mplayer, we encoded a number of MPEG-2 and
MPEG-4 video clips at different bit rates and different spa-
tial resolutions. These video clips were decoded by an instru-
mented mplayer that measured and logged the decode time of
each frame at full processor speed. We analyzed the result-
ing traces by studying the first order and second order statis-
tics of the decode times and frame sizes for each frame type
(i.e., I , P , B). Our analysis, the details of which may be
found in the appendix section, showed a piece-wise linear re-
lationship between the decode times and the frame sizes for

each frame type. These results corroborate the findings of a
prior study on MPEG-2 where an approximate linear relation-
ship between frame size and decode times was observed [1].
Using these insights, we constructed a predictor that uses the
type and size of each frame to compute its decode time. A
key feature of our predictor is that the prediction model is pa-
rameterized at run-time to determine the slope and intercept
of the piece-wise linear function. To do so, the video decoder
stores the observed decode times of the previous n frames,
scales these values to the full-speed decode time (since the
observed decode times may be at slower CPU speeds), and
uses these values to periodically recompute the slopes and the
intercepts of the piece-wise linear predictor. This not only
enables the predictor to account for differences across video
clips (e.g., different bit rates require different linear predic-
tors), it also accounts for variations within a video (e.g., slow
moving scenes versus fast moving scenes in a video). The pa-
rameterized predictor is then used to estimate the decode time
of each frame at full processor speed. Additional details of our
predictor including its experimental validation may be found
in the appendix section.

Estimating processor availability: Using the Chameleon
interface, the application can obtain the start times and the
end times of the previous k instances where the application
was scheduled on the CPU. This history of quantum durations
and the start times of the quanta provide an estimate of how
much CPU time was allocated to the application in the recent
past. An exponential moving average of these values can be
used to determine the amount of CPU time that is likely to be
allocated to the application per unit time, and this yields the
processor availability over the next d − t time units.

Determining processor speed: Given an estimate ĉ of the
frame decode time and ê of the processor availability, the ac-
tual CPU frequency f is chosen in mplayer as follows:

f =







fmax if t + ĉ > d

fmax if ê < ĉ

min( ĉ·fmax

min(ê,d−t)+β
, fmax) otherwise

(1)

where β is a correction factor that is used to account for past
errors in frame decode times. It the actual decode times are
consistently overestimated or underestimated by the predictor,
the factor β can be used to correct this error. The Chameleon
speed adapter then maps the computed f to the closest sup-
ported CPU speed that is no less than the requested speed.

Implementation: We modified mplayer to implement the
frame decoding time predictor and the speed setting strategy.
Our modifications were primarily restricted to the beginning
and end of frame decoding method in mplayer. We used
gettimeofday to measure the frame decoding time and
the Chameleon interface to estimate the processor availability.
Other modifications involved using the Chameleon interface
to set the CPU speed using Equation 1. In all, the implemen-
tation of frame decoding time predictor involved 221 lines of
C code, and the implementation of speed setting strategy in-
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volved 18 lines of C code. This indicates that user-level power
management strategy can be implemented at relatively modest
effort.

3.2 Word Processor

A word processor from an Office suite is an example of an
interactive best-effort application. Many applications such as
editors, shell terminals, web browsers and games fall into this
category. We consider AbiWord, a popular open-source word
processor from the Gnome Office suite. AbiWord is an event-
driven application that works as follows. Upon an event such
as a mouse click or key stroke, the word processor needs to
do some work to process the event. For example, when the
user clicks on a menu item, the application must display a
drop-down menu of choices. When the user types a sentence,
each character representing a keystroke needs to be displayed
on the screen. The window needs to redrawn when the draw
event arrives. The speed at which these events are processed
by the word processor greatly impacts the user’s experience.

Studies have shown that there exists a human percep-
tion threshold under which events appear to happen instan-
taneously [3]. Thus, completing these events any faster would
not have any perceptible impact on the user. While the ex-
act value of the perception threshold is dependent on the user
and the type of task being accomplished, a value of 50ms is
commonly used [3, 8, 9, 17, 18]. We also use this perception
threshold in our work.

An event-driven interactive application should choose CPU
speed settings such that each event is processed no later that
the human perception threshold. One possible strategy to do
so is to (i) estimate the processor demand of an event, (ii)
estimate the processor availability in the next 50 ms, and
(iii) choose a speed such that the demand is spread over the
available CPU time while still meeting the 50 ms percep-
tion threshold. Since an event-based application may pro-
cess many different types of events, estimating processor de-
mand for each event will require the approach to be explicitly
aware of different event types and their computational needs.
Such a strategy can be quite complex for applications such as
browsers or a word processors that support a large number of
event types.

Instead we propose a different technique that can meet the
human perception threshold without requiring explicit knowl-
edge of various events types. Our technique referred to as
gradual processor acceleration (GPA) accounts for the pro-
cessor demand and the processor availability implicitly.

Upon the arrival of any event, the word processor is con-
figured to run under at a low CPU speed, and a timer is set
(the timer value is less that the perception threshold). If the
processing of the event finishes before the timer expires, then
the application simply waits for the next event. Otherwise,
it increases the CPU speed by some amount and sets another
timer. If the event processing continues beyond the timer expi-
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Figure 3: Event processing in a word processor

ration, the CPU speed is increased yet again and a new timer
is set. Thus, the processor is gradually accelerated until ei-
ther the event processing is complete or the maximum CPU
speed is reached. In order to ensure adequate interactive per-
formance, the maximum CPU speed is always used when the
event processing time exceeds the perception threshold.

To understand how to instantiate this policy in practice,
suppose that the event arrives at time t and the application
is actually scheduled on the CPU at time t′ (although the ap-
plication becomes runnable as soon as the event arrives, other
concurrent applications can delay the scheduling of this appli-
cation). From the perspective of the user, a response is desir-
able from the application no later than t + 50 ms. Since the
application actually starts executing at time t′, it needs to pro-
cess the event within the remaining 50−β ms, where β = t′−t
(see Figure 3). To do so, we choose n timers, which have val-
ues t1, t2, ..., tn, and

∑n
i=1

ti = 50 − β. After the expiration
of the ith timer, the processor speed is increased to fi, where
fi denotes a fraction of the maximum speed. The values of
fi are chosen such that the processor speed increases progres-
sively and fn = fmax = 1. Thus, the application runs at
full processor speed if the event processing continues beyond
50 − β ms. Observe that, rather than explicitly estimating the
processor demand of the event, the GPA technique monitors
the progress of the event processing and adjusts the processor
speed accordingly. Further, β implicitly captures the impact
of other concurrent applications in the system.

Analysis: It is possible to bound the maximum slowdown
incurred by an application in the GPA technique by carefully
choosing timer values and CPU speeds. To see how, observe
that if the processor were running at full speed, the amount
of work done in the interval [t′, t′ +

∑n
i=1

ti] will take only
∑n

i=1
fiti at full processor speed. If the actual full-speed pro-

cessing time of the event is smaller than this value, then event
finishes before the 50−β ms perception threshold in the GPA
technique, and thus the user does not perceive any perfor-
mance degradation. For any event requiring more than this
amount of full speed execution time, the maximum possible
performance degradation under our strategy is given by:

degrade = 50 − β −
n

∑

i=1

fi · ti (2)

since the processor will run at full speed once the execution
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time exceeds the perception threshold.
To illustrate, suppose that an event in the GPA technique

should not take more than 20ms longer than it would take at
full processor speed. Let β = 0 for simplicity. If we chose five
timers with values 30ms, 5ms, 5ms, 5ms, and 5ms, and the
processor speeds during these timer intervals as 45%, 60%,
80%, 90%, and 100%, respectively, then, from Equation 2, the
maximum possible user-perceived degradation for any event
is 20ms. This is the maximum slowdown for any event that
requires more than 50ms of processing time.

Implementation: We implemented GPA into AbiWord, a
sophisticated word processor with a code base of hundreds of
thousands lines of C code. Our implementation was straight-
forward. We added code at the beginning of the AbiWord
event handler to implement the GPA technique. The X11-
server assigns a time-stamp to each new user event such as
mouse click or key-stroke. We extracted this time-stamp t and
used gettimeofday to determine the execution start time
t′. The parameter β is computed as the difference between t′

and t. This took only 17 lines of C code. The rest of the mod-
ifications involved setting timers and invoking the Chameleon
interface to modify the CPU speed when each timer expires,
which took 23 lines of C code. In all, the implementation of
GPA took only 40 lines of C code—a fairly modest change.

3.3 Web Browser

A web browser is another example of an event-driven interac-
tive application that needs to process various events such as
a mouse click or a keystroke. When the user types a URL or
data into a web form, the keystrokes need to be displayed on
the screen. When the user clicks on a java-script menu on a
web page, the menu needs to be expanded. When the mouse
is positioned over a hyperlink, visual feedback needs to be
provided by changing the shape of the mouse cursor. When
the user clicks on a link, the browser needs to construct and
send out a HTTP request; when data arrives from the remote
server, it needs to parse and display the incoming data. Al-
though the network delay is beyond the control of the browser,
all other “local” events should be processed within the human
perception threshold for good interactive performance. The
GPA technique can be directly used for power management in
such a browser.

We considered Dillo, a compact, portable open-source
browser that runs on desktops, laptops and PDAs and imple-
mented the GPA technique into this browser. Like in the case
of the word processor, our modifications were restricted to the
event handler in Dillo. First, we extracted the event arrival
time and the execution start time in the event handler to com-
pute β. We then added code to set timers and increase the
processor speed upon timer expiration. In all, the implemen-
tation of GPA into Dillo involved 46 lines of C code, again
demonstrating the modest nature of our modifications.

3.4 Batch Compilations

Compilations using a utility such as make is an example of a
batch application. Unlike interactive applications where the
response time is important, the completion time (or through-
put) is important for batch applications. Typically, make
spawns a sequence of compilation tasks, one for each source
code file. One possible user-level power management strategy
is to estimate the processor demand for each compilation task
and to choose an appropriate speed setting. However, since
each compilation task is a separate process that is relatively
short-lived, gathering CPU usage statistics in order to make
reasonable decisions for each process is difficult. Instead, we
believe the correct strategy is to allow the end-user to specify
the desired speed setting. System defaults can be used when
the user does not specify a setting.

Most Unix-like operating systems support a the nice util-
ity, which allows the end-user to specify a CPU scheduling
priority prior for a new process. For instance, the user can in-
voke the command nice -n N make to specify that make
should run at priority N . A low priority enables the batch
application to run in the background without interfering with
foreground interactive applications. A high priority can also
be chosen if the new application is more important than cur-
rent applications.

A similar strategy can be used for choosing CPU speed
settings. We implemented a utility called pnice that enables
the end-user to specify a particular CPU speed setting for a
new process. For instance, the user can invoke the command
pnice -n N make to specify that make and all compila-
tions spawned by its should run at a fixed CPU speed setting
N . A lower speed setting enables energy savings at the ex-
pense of increasing the completion time, whereas a higher
lowers the completion time at the expense of higher energy
consumption.

Implementation of pnice was straightforward. The pnice
process first changes its own speed setting to the specified
value N using the Chameleon interface. Next, it invokes exec
to run the specified command. This ensures that the appli-
cation inherits the speed setting of the pnice process. The
Chameleon kernel implementation ensures that any process
forked by a parent process inherits the CPU speed setting of
the parent. Since DVFS-enabled processors support a small
number of discrete speed settings, the parameter N specifies
which of the N discrete speed settings to use for the appli-
cation. The pnice utility was implemented in 125 lines of C
code, again demonstrating that implementation of user-level
power management policies take modest effort.

4 A User-level Power Manager

The previous section demonstrated how many commonly used
applications can implement their own power management
strategy. However, implementing a user-level power manage-
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ment strategy requires modification to the source code, which
may not be feasible for legacy applications. Such applica-
tions can delegate the task of power management to a user-
level power manager. The power manager can use CPU usage
statistics and any application-supplied knowledge to modify
CPU speed settings on behalf of the applications. A simple
user-level power manager may choose a single speed setting
for all applications based on current utilization; the speed set-
ting is varied with observed changes in system utilization. A
more complex strategy is to choose a different speed setting
for each individual application based on its observed behav-
ior; doing so requires usage statistics to be maintained for each
application. Multiple user-level power managers can coexist
in the system, so long as each manages a mutually exclusive
subset of the applications. Thus, it is feasible to implement a
different power manager for each class of application.

The Chameleon interface enables the entire range of these
possibilities. To demonstrate the flexibility of our approach,
we take a recently proposed DVFS approach—GraceOS[32,
33]—and show how the proposed technique can be imple-
mented as a user-level power manager using Chameleon. Our
objective is two-fold. First, we show that many recently pro-
posed approaches such as GraceOS that employ an in-kernel
implementation can be implemented as user-level power man-
agers in our approach. Second, GraceOS advocates a coopera-
tive application-OS approach, where applications periodically
supply information to the OS and the OS chooses the proces-
sor speed setting based on this information and usage statis-
tics. We show that such interactions between the application
and the CPU scheduler are feasible using Chameleon.

Implementation: We begin with a brief overview of the
GraceOS [32]. GraceOS is designed for periodic multimedia
applications that belong to the soft real-time class. GraceOS
treats such applications differently from traditional best-effort
applications. Whereas best-effort applications are scheduled
using the Linux time-sharing scheduler and do not benefit
from DVFS, soft real-time applications are scheduled using
a QoS-aware soft real-time scheduler and benefit from DVFS.

To handle soft real-time applications, GraceOS employs
two key components: (i) a real-time scheduler and (ii) a DVFS
algorithm. The CPU scheduler is vanilla earliest deadline first
(EDF); standard EDF theory is used to perform admission
control of soft real-time tasks based on their worst case CPU
demands. Admitted soft real-time tasks have strict priority
over best-effort tasks. Deadlines derived from the application-
specified periods are used for EDF scheduling of these tasks.
Three system calls—EnterSRT, ExitSRT, and FinishJob—are
used to convey start and finish time of tasks (e.g., frame de-
code) to the scheduler.

The DVFS algorithm maintains a histogram of CPU usage
and derives a probability distribution of processor demand.
The processor demand and the application-specified periods
are used in a dynamic programming algorithm to derive a
list of speed scaling points. Each point (x, y) specifies that

a job should runs at the speed y when it has used x cycles.
The DVFS algorithm monitors the cycle usage of the task.
If the usage increases beyond x, the next speed setting y is
chosen. Observe that this technique has similarities with our
GPA technique where the progress of a task is monitored and
the speed is increased gradually. The key difference is that
the durations x and speeds y are computed at run-time using
dynamic programming, whereas in GPA, they are statically
chosen.

To implement GraceOS as a user-level power manager, we
must distinguish between the DVFS component and the CPU
scheduler. The DVFS algorithm is fully implemented in user
space and uses the Chameleon interface to query usage statis-
tics and monitor progress. The CPU scheduler and any in-
teractions between the application and the scheduler must be
implemented separately from Chameleon. Since Chameleon
does not make any specific assumptions about the underly-
ing scheduler, it is compatible with any CPU scheduling algo-
rithm, including EDF.

Consequently, our implementation of the GraceOS in-
cludes three components: (i) a user-level daemon to calculate
the soft real-time task’s demand distribution, cycle budget,
and speed schedule using dynamic programming (300 lines of
C code); (ii) use of Chameleon’s /dev/syscpu interface driver
to query the actual usage of each soft real-time task (109 lines
of C code); and (iii) three system calls EnterSRT, ExitSRT,
and FinishJob that allow an application to convey the begin-
ning and end of each soft real-time task (23 lines of C code).
Observe that the first two components relate to the DFVS al-
gorithm, while the third component is used by the CPU sched-
uler in GraceOS. The GraceOS user-level power manager runs
at the highest CPU priority in our system. All soft real-time
applications run at the next highest CPU priority, and best ef-
fort jobs run at lower priorities. EDF scheduling is emulated
by manipulating priorities of tasks; the task with the earliest
deadline is elevated in priority (analogous to the implementa-
tion of EDF in GraceOS).

5 Implementation of Chameleon

Our prototype of Chameleon is implemented as a set of mod-
ules and patches in the Linux kernel 2.4.20-9. Our prototype
includes the following components:

1. New system calls. We added four new system calls to
implement the Chameleon OS interface: (i) get-speed,
which returns the current CPU speed of the specified
process or process group; (ii) set-speed, which sets the
CPU speed of the specified process or process group;
(iii) get-speed-schedule, which returns processor budget
and speed schedule of the specified process, and (iv)
set-speed-schedule, which sets the processor budget and
speed schedule of the specified task. The latter two sys-
tem calls enable sophisticated speed setting strategies,
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where an application can specify an a priori schedule for
changing the speed as it executes.

2. Chameleon-enhanced /proc interface: The /proc inter-
face in Linux enables applications to dynamically query
a variety of kernel-level statistics. We enhanced this in-
terface by adding a /proc/Chameleon sub-tree. This di-
rectory holds one file for each Chameleon-driven process
and allows applications to query for their CPU quantum
allocations in the recent past.

3. Chameleon /dev interfaces: To support user-level
power managers, we added two new /dev interfaces:
/dev/sysdvfs and /dev/syscpu. The system-wide utiliza-
tion is reported via /dev/sysdvfs, whereas the CPU cycles
consumed by individual tasks is reported via /dev/syscpu.

4. Process control block enhancements: In order to allow
Chameleon to implement techniques such as PACE [17,
18] and GraceOS [32, 33] as user-level power managers,
we borrowed several process control block attributes
from the GraceOS implementation: (i) cycle counter,
which measures the CPU cycles used by a task, (ii) cycle
budget, which stores the number of allocated cycles, and
(iii) speed schedule, which stores a list and schedule of
speed scaling points. Whereas these three attributes are
meaningful only for Chameleon processes managed by
user-level power managers, we also added three more at-
tributes that are applicable to all processes in the system:
(i) Chameleon-driven-flag, which indicates if the pro-
cess is directly modifying its speed settings; (ii) current-
speed, which specifies the current CPU speed setting of
the process; (iii) inheritable-flag, which indicates if the
speed setting is inheritable by its children.

5. DVS kernel module: The DVS kernel module is actu-
ally responsible for interfacing with the hardware in or-
der to modify the processor speed. This is done by writ-
ing the frequency and voltage to two machine special reg-
isters (MSR) [32, 33]. Chameleon can be applied to any
DVFS-enabled processor by implementing a DVS kernel
module specific to that processor.

6. Linux scheduler enhancements: We modified the stan-
dard scheduler to add per-process speed settings and
cycle charging. Similar to our process control block
enhancements, cycle charging is only necessary to im-
plement other techniques as user-level power managers,
and is directly inspired by the GraceOS implementa-
tion [32, 33]. Whenever the schedule() function is in-
voked, the modified scheduler will do the following: (i)
in the case of no context switch, it may change the speed
of the current task according to its speed schedule; (ii) in
the case of a context switch, the scheduler performs some
book-keeping only for the previous task with a speed

schedule (e.g., update its cycle counter, decrement cy-
cle budget, advance speed schedule, etc.); (iii) then the
scheduler sets the CPU speed for the new task based on
its current-speed attribute.

Our implementation of Chameleon runs on a Sony Vaio
PCG-V1CPK laptop with Transmeta Crusoe TM5600-667
processor [28]. The Transmeta TM5600 processor supports
five discrete frequency and voltage levels (see Table 1) and im-
plements the LongRun [10] technology in hardware to dynam-
ically vary the CPU frequency based on the observed system-
wide CPU utilization. LongRun varies the CPU frequency be-
tween a user-specified maximum and minimum values—these
values can be set by users by writing to two machine special
registers (MSR). By default, these values are set to 300 MHZ
and 677 MHz, enabling the full range of voltage scaling. Lon-
gRun can be disabled by setting the minimum and maximum
register values to the same frequency (e.g., setting both to 533
MHz does not allow any leeway in changing the CPU fre-
quency, effectively disabling LongRun). This feature can be
used to implement voltage scaling in software—the power-
aware application can determine the desired frequency and set
the two registers to this value.

Freq. (MHz) Voltage (V) Power (W)
300 1.2 1.30
400 1.225 1.90
533 1.35 3.00
600 1.5 4.20
667 1.6 5.30

Table 1: Characteristics of the TM5600-667 processor

6 Experimental Evaluation

We evaluated Chameleon on a Sony Vaio PCG-V1CPK lap-
top equipped with a Transmeta Crusoe processor and 128MB
RAM. The operating system is Red Hat Linux 9.0 with a
modified version of Linux kernel 2.4.20-9. To compare
Chameleon with other DVFS approaches, we implemented
three OS-based DVFS techniques proposed in the literature:
(i) PAST [29], (ii) PEAK [16], and (iii) AV Gn [15], all
of which are interval-based system-wide DVFS techniques.
Our experiments involve running applications under six dif-
ferent configurations: (i) with DVFS disabled—the CPU al-
ways runs at the maximum speed (denoted as FULL), (ii)
using the hardwired LongRun technology, (iii) using PAST,
(iv) using PEAK, (v) using AV Gn, and (vi) using Chameleon
(where LongRun is disabled for power-aware applications but
enabled for legacy applications).

The energy consumption of the processor during an inter-
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val T is computed as

energy =
n

∑

i=1

piti (3)

where n is the number of available frequency/voltage combi-
nations on the processor, pi denotes the power consumption
of the processor when running at the ith frequency/voltage
combination, and ti represents the time spent at the ith fre-
quency/voltage combination during the interval T . We mod-
ify the Linux kernel to record the energy consumption of the
TM5600 processor using Equation 3 and Table 1. Given the
energy consumption of the processor during an interval T , the
average power consumption of the processor during this inter-
val is computed as

poweravg =
energy

T
(4)

In our experiments, we observed that PEAK always con-
sumed the least processor energy among all the DVFS tech-
niques. However, it trades its energy savings with an un-
acceptably high performance degradation for time-sensitive
multimedia and interactive applications. For example, video
decoding of a 30 minutes clip took an extra 16.6 minutes, re-
sulting in poor performance. Therefore, we omit the results of
PEAK in the rest of this paper and refer the readers to [31] for
these results.

6.1 Chameleon-aware Applications

We first demonstrate the effectiveness of our four Chameleon-
aware applications. Our experiments assume a lightly-loaded
system that runs a single application with the typical back-
ground system processes.

6.1.1 Video Decoder

We encoded several DVD movies at different bit-rates and res-
olutions using Divx MPEG2/MPEG4 video codec and MP3
audio codec The characteristics of six such movies are listed
in Table 2. The bit-rates are depicted in the form (a+ b)Kbps,
where a is the video and b is the audio bit-rate. We recorded
the energy consumed by the processor during playback of
these movies at full speed, with LongRun, with Chameleon,
with PAST, and with AV Gn.

Res. Length Frames Bit-Rate(Kbps)
Movie 1 640x272 3360s 80387 1290.9 + 179.2
Movie 2 640x272 612s 14577 757.2 + 128.0
Movie 3 640x352 7168s 179168 679.7 + 128.0
Movie 4 640x352 602s 15003 861.9 + 128.0
Movie 5 640x352 1755s 42040 2456.9 + 192.0
Movie 6 640x480 2394s 57355 1674.6 + 384.0

Table 2: Characteristics of MPEG 4 Videos

Our experiments show that all five configurations handle
movie playback very well. The same playback quality is
observed under these five configurations: identical execu-
tion times which equal the length of the movies, identical
frame rates, no dropped frames, and no user-noticeable delays.
However, the average CPU power consumption differs signifi-
cantly across the various configurations (see Figure 4(a)). Fig-
ure 4(a) shows that: (i) neither PAST nor AV Gn can outper-
form LongRun; (ii) LongRun can achieve significant energy
savings (from 27.36% to 57.26%) when compared to FULL;
(iii) the Chameleon-aware mplayer can achieve an additional
20.52% to 31.99% energy savings when compared to Lon-
gRun.

Although there are no user-perceived playback problems
(in terms of dropped frames or playback freezes) under the
five configurations, we do observe jitter in the playback qual-
ity at the frame-level. Such small inter-frame jitter is in-
evitable in a time-sharing CPU scheduler, although its effects
are not perceptible at the user-level. mplayer provides statisti-
cal measurements of late frames—the number of frames that
are behind their deadline by more than 20% of the frame in-
terval. As shown in Figure 4(b), the number of late frames
in Chameleon is mostly comparable to PAST and AV Gn and
typically better than LongRun (while consuming the least en-
ergy). FULL has the least—although not zero—late frames at
the expense of the highest energy consumption. The number
of late frames is small (0.2 − 2.3%) in all configurations.

6.1.2 Web Browser and Word Processor

We ran the web browser and the word processor and measured
their average power consumption, the average response time,
and the percentage of late events (where event processing time
exceeds the 50ms threshold).

To eliminate the impact of variable network delays, our ex-
periments with the web browser consisted of a client request-
ing a sequence of web pages from a web server on a local area
network; the requested web pages consist of actual web con-
tent that was saved from a variety of popular web sites. Each
experiment consists of a sequence of requests to these web
pages with a uniformly distributed “think-time” between suc-
cessive requests. The experiments differ in the requested web
pages and the chosen think times; each experiment is repeated
under the five configurations, and we measure the mean for
each experiment.

The workload for the word processor emulates a user edit-
ing a sequence of documents. Each experiment contains a
script that makes a sequence of editing requests to these docu-
ments with a uniformly distributed “think-time” between suc-
cessive requests. The experiments differ in the edited docu-
ments and the chosen think times; each experiment is repeated
under the five configurations, and we measure the mean for
each experiment.

Our results, depicted in Figure 5(a), show that LongRun

9



Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie 6
0

2

4

6

8

Movies

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n 

in
 W

at
ts

Average Power Consumption of Movie Playback

1.
65

2.
27

3.
37 3.

64
5.

30

1.
51

1.
90

3.
16 3.
26

5.
30

1.
70

2.
51

3.
52 3.

86
5.

30

1.
95

2.
86

3.
75

4.
24

5.
30

2.
31

3.
38

4.
01

4.
62

5.
30

2.
71

3.
85

4.
28

4.
79

5.
30

Chameleon
LongRun
PAST
AVGn
FULL

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie 6
0

1%

2%

3%

4%

Movies

P
er

ce
nt

ag
e 

of
 L

at
e 

F
ra

m
es

Performance of Movie Playback

0.
45

%
0.

49
%

0.
30

%
0.

31
%

0.
15

%

0.
27

%
0.

28
%

0.
21

%
0.

29
%

0.
14

% 0.
39

%
1.

30
%

0.
28

% 0.
48

%
0.

15
% 0.

48
%

1.
13

%
0.

33
% 0.

56
%

0.
29

%

1.
20

%
1.

56
%

0.
97

%
2.

29
%

0.
70

%

1.
55

%
1.

40
%

1.
37

%
1.

19
%

1.
11

%

Chameleon
LongRun
PAST
AVGn
FULL

(a) Average CPU Power Consumption (Watts) (b) % of Late Frames

Figure 4: Average CPU power consumption and percentage of frames that are late by more than 6.6ms (20% of the 33ms
deadline).

consumes a factor of three less power than FULL. Chameleon
are able to extract an additional 10.27% energy savings when
compared to LongRun, while PAST is worse than LongRun.
We also note that the average power consumption under
Chameleon is only 0.03W and 0.06W higher than the power
consumption at the slowest CPU speed (300MHz) for the
browser and the word processor, respectively. Further, most
events finish in Chameleon without any performance degrada-
tion. The percentage of late events is only 0.24% and 0.22%
in the word processor and the browser, respectively, and is
comparable to other approaches. Finally, the increase in pro-
cessing times of late events is no more than 20ms (obtained
by substituting the chosen timer values and CPU speeds in
Equation 2).

6.1.3 Batch Compilations

We compiled a portion of the ns-2 network simulator using
make and our pnice utility. We chose different values of the
CPU speed in pnice and measured the power consumption and
completion times of make. As expected, our results, depicted
in Table 3, show that the power consumption can be traded for
completion time by appropriately choosing a speed setting.
Faster speeds lower completion times at the expense of higher
energy.

Freq. Completion Mean Power
(MHz) Time Consumed

300 1376s 1.38W
400 1066s 1.96W
533 910s 3.00W
600 812s 4.14W
667 776s 5.15W

Table 3: Completion times and mean CPU power consump-
tion for batch compilations.

6.2 Isolation in Chameleon

We claim that Chameleon isolates an application from the
power settings of other applications. To demonstrate the ef-
fects of such isolation, we ran mplayer with a misbehaving
background application. The background application rapidly
switches its CPU speeds from one setting to another every
few milliseconds. We ran mplayer with this application when
it was well-behaved (it used a fixed CPU speed throughout)
and then with the misbehaving version of the application. We
measured its impact on the progress of the mplayer. As shown
in Figure 6, the progress made by mplayer is unaffected by the
rapid changes of CPU speed by the misbehaving application—
any change to the CPU speed by an application only impacts
its own progress and has no impact on the CPU shares re-
ceived by other applications.

6.3 Impact of Concurrent Workloads

To demonstrate that applications can make locally- and
globally-optimal power management decisions in the pres-
ence of concurrent applications, we considered four applica-
tion mixes: (i) video decoder and web browser (mix M1), (ii)
video decoder and word processor (mix M2), (iii) video de-
coder and batch compilations (mix M3), and (iv) batch compi-
lations and word processor (mix M4). Note that, from the per-
spective of the video decoder, the background load increases
progressively from mix M1 to M3.

Table 4 and Figure 7 show the average power consump-
tion and the performance of these applications under various
power management strategies. Table 4 shows that Chameleon
always consumes the least energy among the five configura-
tions. The energy savings range from 19.81% to 31.19% when
compared to LongRun, which itself extracts up to 41.89% re-
duction when compared to FULL. The performance degrada-
tion, depicted in Figure 7(a), shows that iteractive application
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Figure 5: Average CPU power consumption and the percentage of late events.

performance in Chameleon is comparable to the other tech-
niques. For instance, the average event processing time of the
word processor under mix M2 increases from 4.4ms in Lon-
grun to 5.96ms in Chameleon and is well under the human
perception threshold of 50ms. A similar result is seen for the
web browser under mix M1. The percentage of late events
remains well under 1% under all mixes (see Figure 7(b)).

Figure 7(c) plots the percentage of late frames in the video
decoder for different mixes. The figure shows that the per-
centage of late frames in Chameleon is comparable to other
approaches. As the background load increases from mix 1 to
mix 3, we see that the percentage of late frames increases from
around 0.4% to more than 22%. For mix M3, all techniques,
including FULL, incur 22% deadline misses. Decoding of the
10 minutes clip takes an extra 20 seconds under all techniques,
resulting in poor performance. This is primarily due to in-
sufficient processor availability at higher loads, as opposed to
deficiencies in the power management technique. Due to the
background load imposed by the batch compilations in mix
M3, the time sharing scheduler is unable to allocate sufficient
CPU time to the video decoder.

Figure 8 shows the fraction of time spent by the video de-
coder at different CPU speed settings. In the absence of any
background load, the decoder is able to lower its speed set-
ting to the lowest speed for more than 90% of the time. As
the load increases, the fraction of time spent at higher speeds
increases. For mix M3, more than 80% of the time is spent at
the highest speed (recall that insufficient processor availabil-
ity causes the video decoder to run at full speed—Case 2 in
Section 3.1).

Under mix M3, the only possible solution is to use a QoS-
aware scheduler that guarantees a fixed fraction of the CPU
to the video decoder regardless of the background load. We
ran mix M3 with Chameleon on a proportional-share sched-
uler, namely Hierarchical Start Time Fair Queue (HSFQ) CPU
scheduler [14] In this experiment, we assigned 1/14 fraction
of CPU time to the batch compilations, 12/14 fraction of CPU
time to the video decoder and the X server, and the remaining
1/14 to the other tasks. As expected, the percentage of late
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Figure 6: Isolation from power settings of other applications.

frames in the video decoder fell to a very small value. Further,
since processor availability is guaranteed in HSFQ, as shown
in Figure 8, the video decoder was able to spend 73.73% of its
execution time at the lowest frequency (300MHz) (compared
to 7.74% under time-sharing CPU scheduler). This causes the
mean power consumption to fall to 2.1W, a 44.8% reduction
when compared to the time-sharing scheduler.

Chameleon LongRun PAST AV Gn FULL
Mix M1 2.25W 3.27W 3.98W 4.42W 5.3W
Mix M2 2.47W 3.08W 3.79W 3.83W 5.3W
Mix M3 3.81W 5.27W 5.26W 5.27W 5.3W
Mix M4 3.71W 5.22W 5.23W 5.23W 5.3W

Table 4: Average CPU Power Consumption for various
mixes.

6.4 User-level Power Manager Experiments

We modified mplayer to use the GraceOS system calls and
used it to decode the movies in Table 2. The GraceOS user-
level power manager was used to make power management
decisions on behalf of mplayer. We measure the energy con-
sumed by mplayer and plot it in Table 5. Our results show
that Grace-OS can achieve 3.50% to 18.44% energy savings
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Figure 7: Performance of concurrent applications: average response time of interactive applications and the percentage of late
events and frames.
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by mplayer

when compared to LongRun. However, Chameleon outper-
forms GraceOS by 9-41%. This is because the Chameleon-
enhanced mplayer is able to estimate decode times of indi-
vidual frames based on domain-knowledge, while GraceOS
relies on external observations of the CPU usage of mplayer.
This domain knowledge yields an extra 9-41% in Chameleon.
Finally, note that the GraceOS technique is applicable to pe-
riodic multimedia applications, and hence, it is not feasible to
compare it to other Chameleon applications.

Movies AVG. Power Eng. Sav. to LongRun to Chameleon
Movie 1 2.11W 7.05% −27.88%

Movie 2 1.64W 13.68% −9.33%

Movie 3 2.11W 15.94% −24.12%

Movie 4 2.76W 3.50% −41.54%

Movie 5 3.09W 8.58% −33.77%

Movie 6 3.14W 18.44% −13.69%

Table 5: Average CPU power consumption of movie play-
back under GraceOS

Video decoder 2738

GPA technique 1149

pnice 127

Table 6: Overhead of application-level power management
(in CPU cycles).

6.5 Implementation Overheads

We measured the overhead imposed by our application-level
power management strategies. We report cost in CPU cycles,
rather than time, since the elapsed time for an operation (e.g.,
an invocation of frame decode time estimator) depends on the
CPU speed, while the number of consumed cycles does not
change with the speed. We obtained the number of CPU cy-
cles by reading the special time-stamp register of the proces-
sor before and after a specific operation, and taking the differ-
ence of the two values.

Table 6 reports the overheads of the video decoder, GPA
and pnice strategies. As shown, the overhead ranges from
127-2738 CPU cycles, which is in the order of a few micro-
seconds.

Finally, we measure the cost of voltage and frequency scal-
ing. To do this, we adjusted the processor from one frequency
to another frequency, and measure the number of cycles for
each change. The results in Table 7 show that the CPU can
change speed within 1125 cycles (about 3.75 µs under 300
MHz and 1.69 µs under 667 MHz). This implies voltage and
frequency scaling incurs a tiny overhead.

7 Related Work

Recently, power management techniques for mobile devices
have received increasing research attention. The proposed
techniques either use dynamic voltage and frequency scaling
(DVFS) [4, 19, 20, 23, 26, 32, 33] or application/middleware-
based adaptation [11, 12, 25, 27] for energy savings. DVFS
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to frequency (MHz)
300 400 533 600 667

300 1101 1099 1086 1066
from 400 1125 1095 1086 1066

frequency 533 1117 1104 1073 1066
(MHz) 600 1125 1101 1092 1066

667 1117 1101 1088 1077

Table 7: Cost of Voltage and Frequency Scaling (in CPU
cycles).

approaches extract energy savings by varying the processor
speed; the techniques do not affect the amount of process-
ing performed by the application—the processing is merely
spread over longer time periods by lowering CPU speeds. In
contrast, middleware-based adaptation approaches vary qual-
ity or data fidelity and thus, the amount of processing per-
formed by the application to extract energy savings. We re-
view related work in both categories.

Application or middleware-based adaptation techniques
trade the computational overhead for application quality; en-
ergy savings are extracted by reducing video quality [25, 27],
document quality [11] or data fidelity [12], and thus, the
processing overheads. Proxy-based adaptation for reducing
streaming video quality has been explored in [25, 27]. Pup-
peteer adapts document quality (i.e. picture resolution, color
depth, animation) for energy savings of office applications
[5, 11]. The impact of adapting the data fidelity on energy
savings of several applications has also been demonstrated in
the Odyssey system [12, 22].

In contrast, DVFS techniques do not reduce the amount of
processing overhead imposed by an application; instead they
vary the CPU speed to match the CPU load and extract en-
ergy savings [4, 19, 20, 23, 26, 32, 33]. DVFS techniques
fall into four categories: hardware-based, OS-based, coop-
erative application-OS-based, and application-directed meth-
ods. Hardware-based approaches such as Longrun [10] mea-
sure system utilization in hardware and choose a system-wide
speed setting based on the current utilization. An online hard-
ware approach for voltage and frequency control in multi-
ple clock domain microprocessors has been proposed in [30].
OS-based approaches determine a system-wide CPU setting
based on the processor demands of the currently active tasks
[8, 9, 17, 18, 24]. In this approach, individual applications
do not have any direct control over the CPU power settings. A
single system-wide CPU setting is determined, typically based
on the needs of the most resource-hungry application, even
when a mix of applications is executing on the processor. Fur-
thermore, the operating system needs to infer the processing
needs of the applications using online measurements and can
incur estimation errors.

In cooperative application-OS approaches, the applica-
tion provides some domain-specific information to the kernel.

The OS kernel and the CPU scheduler use this information
for CPU speed setting and/or scheduling. The GRACE-OS
project [32, 33] proposes a cooperative application/OS ap-
proach to save energy for periodic multimedia applications. It
uses probability distributions of CPU usage of periodic appli-
cations and knowledge of application periods (which is sup-
plied by the application) for choosing CPU speeds. Aperiodic
or non-real-time applications are currently not handled by the
approach.

Similarly, the Milly Watt project [6] explores the design of
a power-based API that allows a partnership between applica-
tions and the system in setting energy use policy. In the con-
text of this project, a Currentcy model that unifies energy ac-
counting over diverse hardware components and enables fair
allocation of available energy among applications [34], and a
prototype energy-centric operating system, ECOSystem, that
implements explicit energy management techniques from the
system point of view have been proposed [35]. Their goal is
to extend battery lifetime by limiting the average discharge
rate and to share this limited resource among competing tasks
according to user preferences.

An cooperative power management approach was pro-
posed in [21] to unify low level architectural optimizations
(CPU, memory, register), OS power-saving mechanisms (Dy-
namic Voltage and Frequency Scaling) and adaptive middle
techniques (admission control, optimal transcoding, network
traffic regulation). In this technique, interaction parameters
between the different levels are identified and optimized to
significantly reduce power consumption.

Rather than a partnership between the OS and the applica-
tions, our Chameleon approach exports the entire burden of
power management to the user level.

Finally, there has been some work on application-level
power management. Researchers have proposed several dif-
ferent application-controlled DVFS techniques for video de-
coding [4, 19, 20, 23, 26]. While some require offline estima-
tion of CPU demands for decoding [20], other can estimate
the CPU demands online [4, 19, 23, 26]. However, all of these
techniques implicitly assume only a single application is ex-
ecuting on the CPU and grant complete control of the pro-
cessor settings to the video decoder. Unlike in Chameleon,
other applications are not considered—the issue of concurrent
applications that might use a different speed setting is not con-
sidered in these efforts, nor is the issue of providing isolation
across applications considered explicitly.

8 Conclusions

This paper proposed Chameleon, a new approach for power
management in mobile processors. We argued that applica-
tion know best what their energy needs are and proposed an
approach that puts the entire burden of power management on
individual applications. The operating system only enforces
protection and isolates applications from the power settings
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of other applications.
Our implementations of application-level power manage-

ment policies into four applications demonstrated that such
policies impose a modest cost of tens of lines of code. Our
results showed that Chameleon can extract up to 32% en-
ergy savings when compared to LongRun and up to 50% sav-
ings when compared to recently proposed OS-based DVFS
techniques, while delivering comparable performance to time-
sensitive and interactive applications. Chameleon imposes
negligible overheads and is very effective at scheduling con-
current applications with diverse energy needs. More broadly,
our results demonstrate the feasibility and benefits of power
management at the application level.
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Appendix

In this appendix, we present the details of our MPEG-
2/4 frame decoding time predictor includeing its experimental
validation.

We encoded a number of MPEG-2 and MPEG-4 video
clips at different bit rates and different spatial resolutions.
These video clips were decoded by an instrumented mplayer
that measured and logged the decode time of each frame at full
processor speed. We analyzed the resulting traces by studying
the first order and second order statistics of the decode times
and frame sizes for each frame type (i.e., I , P , B) as follows.

Let x and y be two random variables corresponding to the
frame size and the frame decoding time, respectively; and let
µx and σx be the mean and standard deviation of the frame
size, respectively; and also let µy and σy be the mean and
standard deviation of the frame decoding time, respectively.
Thus the theoretical correlation coefficient ρxy between x and
y is given by:

ρxy =
E[(x − µx)(y − µy)]

σxσy
(5)

Now assume we have obtained N pairs of x and y values.
The correlation coefficient ρxy may be estimated from the N
pairs data by:

rxy =
ΣN

i=1(xi − x)(yi − y)

[ΣN
i=1

(xi − x)2ΣN
i=1

(yi − y)2]1/2
(6)

For a particular function of rxy given by:

w =
1

2
[
1 + rxy

1 − rxy
] (7)

From [2], the random variable w has an approximately nor-
mal distribution with a mean and variance of

µw =
1

2
[
1 + ρxy

1 − ρxy
] (8)

σ2
w =

1

N − 3
(9)

As shown in [2], the sampling distribution of w given
ρxy = 0 is normal with a mean of µw = 0 and a variance
of σ2

w = 1

N−3
. Hence the acceptance region of the hypothesis

of zero correlation at the 0.02 level of significance is given by:

−2.33 ≤
√

N − 3

2
ln[

1 + rxy

1 − rxy
] < 2.33 (10)

If
√

N − 3w falls outside the acceptance region of zero corre-
lation, hence, there is reason to believe that significant corre-
lation exists between x and y.

Our correlation coefficient results of the above correlation
analysis in Table 8 and 9 show that there is a piece-wise lin-
ear relationship between the decode times and the frame sizes
for each frame type. These results corroborate the findings of
a prior study on MPEG-2 where an approximate linear rela-
tionship between frame size and decode times was observed
[1].

Resolution Frame Type Bit-Rate(kbps) rxy

√

N − 3w

352x288 I 1120.0 0.8956 111.7280
352x288 P 1120.0 0.3443 47.7959
352x288 B 1120.0 0.1808 39.7774

Table 8: Correlation Coefficients of MPEG 1/2 Standard
Videos

Resolution Frame Type Bit-Rate(kbps) rxy

√

N − 3w

352x240 I 630.5 0.9045 42.0324
352x240 P 630.5 0.7664 492.1438
512x288 I 705.5 0.8201 40.9122
512x288 P 705.5 0.8084 455.9816
576x256 I 775.4 0.9162 88.7301
576x256 P 775.4 0.7667 389.0298
640x272 I 1290.9 0.8824 48.3261
640x272 P 1290.9 0.6464 216.6028
640x352 I 679.7 0.6861 50.9520
640x352 P 679.7 0.8217 486.8483

Table 9: Correlation Coefficients of MPEG 4 Standard
Videos

Using these insights, we constructed a predictor that uses
the type and size of each frame to compute its decode time.
A key feature of our predictor is that the prediction model is
parameterized at run-time to determine the slope and intercept
of the piece-wise linear function. To do so, the video decoder
stores the observed decode times of the previous n frames,
scales these values to the full-speed decode time (since the
observed decode times may be at slower CPU speeds), and
uses these values to periodically recompute the slopes and the
intercepts of the piece-wise linear predictor by using linear
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regression method. This not only enables the predictor to ac-
count for differences across video clips (e.g., different bit rates
require different linear predictors), it also accounts for vari-
ations within a video (e.g., slow moving scenes versus fast
moving scenes in a video). The parameterized predictor is
then used to estimate the decode time of each frame at full
processor speed.

For instance, given window size n, suppose we have the
last n I frame’s size and decoding time, then we start to decode
a new I frame and we already know the size of this new frame.
Let si and di denote the frame size and the full-speed decod-
ing time of the ith frame, respectively, sn+1 denote the frame
size of the new I frame and d̂n+1 denote the predicted full-
speed decoding time of it. Thus the d̂n+1 is given by Equation
11:

s̄ =

∑n
i=1

si

n

d̄ =

∑n
i=1

di

n

b =

∑n
i=1

(si − s̄)di
∑n

i=1
(si − s̄)2

(11)

a = d̄ − bs̄

d̂n+1 = a + bsn+1

In the predictor shown in Equation 11, the window size
n has great impact on the performance of the predictor, thus
choosing an appropriate n is important issue in the design of
such an linear regression predictor. To do this, we applied the
linear regression predictor to our collected traces by varying
the window size n from 5 to 50, and then measured the accu-
racy of the linear regression predictor with different window
sizes. The accuracy of the linear regression predictor (Equa-
tion 11) is evaluated by the Cumulative Distribution Function
(CDF) of its absolute error and the CDF of its relative error.
Under the same error level, the larger the CDF, the more ac-
curate the predictor. As shown in Figure 9 to 13, the linear
regression predictor achieves the best accuracy in most cases
when the window size n is less than 10, and the accuracy level
has small variation in that area. Therefore, we choose the win-
dow size 8 for our predictor since the division operations of
Equation 11 can then transformed to the shift operations to
reduce the cost.

Figure 14, 15, 16, 17 and 18 present the accuracy of our
predictors for all three different frame types (i.e, I, P, B) with
window size 8. Our experiments show that our MPEG frame
decode times predictor can achieve very good prediction ac-
curacy for all frame types. Figure 14 measures the accuracy of
our predictor for MPEG 1/2 movie, and Figure 15 to 18 mea-
sure the accuracy of our predictor for MPEG 4 movies. Since
MPEG 4 standard only has two frame types (I and P), Figure
15 to 18 does not have the results for B type frame present.
Our results show that: (i) for the decode time of I type frame,
the absolute error of over 95% prediction is less than 1ms ex-

cept that the absolute error of 95% prediction under resolution
640x352 is less than 2ms, and the relative error of over 92%
prediction is less than 5%; (ii) for the decode time of P type
frame, the absolute error of over 92% prediction is less than
1ms, and the relative error of over 90% prediction is less than
10%; (iii) for the decode time of B type frame, the absolute
error of over 95% prediction is less than 1ms, and the relative
error of over 88% prediction is less than 10%.
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Figure 9: Variation of the Accuracy of MPEG 1/2 Frame Decode Times Predictor under Resolution 352x288 with the Window
Size
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Figure 10: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 352x240 with the Window
Size
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Figure 11: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 512x288 with the Window
Size
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Figure 12: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x272 with the Window
Size
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Figure 13: Variation of the Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x352 with the Window
Size
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Figure 14: The Accuracy of MPEG 1/2 Frame Decode Times Predictor under Resolution 352x288
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Figure 15: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 352x240
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Figure 16: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 512x288
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Figure 17: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x272
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Figure 18: The Accuracy of MPEG 4 Frame Decode Times Predictor under Resolution 640x352
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