
1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Modeling and Analyzing Waiting Policies for
Cloud-Enabled Schedulers

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy
University of Massachusetts Amherst

Abstract—Cloud platforms have popularized the Infrastructure-as-a-Service (IaaS) purchasing model, which enables users to rent
computing resources on demand to execute their jobs. However, buying fixed resources is still much cheaper than renting if their
resource utilization is high. Thus, to optimize cost, users must decide how many fixed resources to provision versus rent “on demand”
based on their workload. In this paper, we introduce the concept of a waiting policy for cloud-enabled schedulers and show that the
optimal cost depends on it. The waiting policy explicitly controls how long jobs wait for resources, as jobs never need to wait, since
cloud platforms provide the illusion of infinite scalability. A waiting policy is the dual of a scheduling policy: while a scheduling policy
determines which jobs should run when fixed resources are available, a waiting policy determines which jobs should wait when fixed
resources are not available. We define multiple waiting policies and develop simple and general analytical models to reveal their
tradeoff between fixed resource provisioning, cost, and job waiting time. We evaluate the impact of different waiting policies on a real
year-long batch workload consisting of 14M jobs run on a 14.3k-core cluster. We show that a compound waiting policy, which forces
jobs with long running times or short waiting times to wait for fixed resources, offers the best tradeoff. The policy decreases both the
cost (by 5%) and mean job waiting time (by 7×) compared to the current cluster, and also decreases the cost (by 43%) compared to
renting on-demand resources for a modest increase in mean job waiting time (at 1.74 hours).

F

1 INTRODUCTION

Cloud platforms have popularized the Infrastructure-as-a-Service
(IaaS) purchasing model by enabling users to programmatically
rent computing resources on demand, in the form of virtual
machines (VMs), to execute their jobs.1 Many large enterprises
are now partially or completely migrating their private computing
infrastructure to cloud platforms. For example, Netflix shut down
its last private data center in 2016 after entirely migrating its video
streaming service to Amazon Web Services (AWS) [13]. Cloud-
enabled infrastructure uses similar software systems as private
clusters to manage resources at large scales, typically consisting of
a centralized job scheduler, such as Slurm [4] or Kubernetes [2].
Users submit jobs, with specified resource requirements, to these
schedulers, which either allocate idle resources to execute them or
force them to wait for idle resources to become available. Since
private clusters manage a fixed number of computing resources
typically sized for peak demands, they often have low average
utilization (<30%), but may periodically experience large bursts
in job arrivals, e.g., due to deadlines, product releases, or seasonal
variations, that result in long job waiting times.

As job schedulers migrate to the cloud, they have many options
for optimizing cost and reducing job waiting times. For example,
schedulers may provision cloud VMs on demand to service jobs,
requiring them to only pay for resources when jobs need them. In
this case, the cloud’s operating costs are often much lower than the
capital cost of an under-utilized fixed-size cluster, since the latter
must effectively “pay” when resources are idle. In addition, since
the cloud provides the illusion of infinite scalability, jobs never
need to wait for resources, as schedulers can always acquire cloud
resources to service them immediately. Most schedulers are now

1. This is an expanded and revised version of a preliminary paper that
appeared at Supercomputing 2020 [12].

cloud-enabled and support such “auto-scaling,” which acquires
cloud VMs to service jobs, and releases them when done [1], [3].

Importantly, however, buying fixed resources (or reserving
them for long periods) is significantly cheaper than renting re-
sources on demand if the fixed resources are highly utilized. Cloud
pricing models make this clear, as reserving a VM for 1-3 years
costs 40-60% less per-hour than renting an equivalent on-demand
VM over the same period. For example, reserving a m5.large
VM from AWS, which includes 2 cores and 8GB RAM, for 3 years
currently costs $988, while renting it on demand costs $0.096/hour
or $2,522.88 over the same period. Of course, fixed resources are
only cost-effective if they are highly utilized: if jobs only execute
on the m5.large for less than a third of the time, the on-demand
option is cheaper (at a cost of $840.96). The cost advantage of
buying versus renting is even greater for specialized hardware
with a recent analysis estimating that purchasing a GPU-based
deep learning cluster costs 90% less than renting one on demand
from AWS [14]. Thus, a mixed infrastructure that satisfies some
baseload with highly-utilized fixed resources, and satisfies load
bursts using on-demand resources can decrease cost. Notably,
hybrid clouds, which combine fixed private resources with cloud
bursting, use this approach [5], [21], [28], as do many companies,
which both buy reserved VMs and dynamically rent on-demand
VMs [22]. As we discuss in §7, physical infrastructure is also
becoming networked and programmatically driven, which has the
potential to spread the cloud model to other sectors, such as
transportation and energy, where schedulers may choose between
buying fixed resources or renting them to service various “jobs.”

To address the problem, in this paper, we introduce the concept
of a waiting policy for cloud-enabled schedulers, and show that
provisioning fixed resources to optimize cost is dependent on it.
The waiting policy explicitly controls whether and how long jobs
wait for fixed resources before deciding to run them on on-demand
resources. A waiting policy is the dual of a scheduling policy:

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

while a scheduling policy determines which jobs run when fixed
resources are available, a waiting policy determines which jobs
wait for fixed resources when they are not available (rather than
run immediately on on-demand resources). While there has been
decades of work on job scheduling policies, we know of no prior
work that defines or analyzes waiting policies, which are distinct
from scheduling policies in that cloud-enabled schedulers define
both independently of each other. For cloud-enabled schedulers,
the waiting policy is just as important as the scheduling policy,
since it dictates the tradeoff between job performance and cost.
Waiting policies also differ from auto-scaling policies currently
used by cloud-enabled schedulers, which immediately acquire
resources to satisfy queued jobs without any waiting [6].

Clearly, the longer jobs are willing to wait for fixed resources,
the higher their utilization, and the lower their overall cost.
However, as we show, the relationship and tradeoff between the
number of fixed resources, the waiting policy, and the optimal
cost is non-intuitive. To better understand these tradeoffs, we
define multiple fundamental non-selective and selective waiting
policies and develop simple analytical queueing models for them.
Non-selective waiting policies apply the same policy to all jobs,
while selective waiting policies apply the policy to only selected
jobs based on system or job characteristics. While we focus
on waiting policies for cloud-enabled job schedulers, such as
Slurm [4] and Kubernetes [2], our analytical models are general
and thus may also be applicable to schedulers for other resources,
as we discuss in §7. As we show, while these analytical models
are not predictive, since their scheduling policy and workload
assumptions do not always hold in practice, they enable users to
better understand and reason about the impact of waiting policies
by understanding how a system’s characteristics differ from the
models’ assumptions. Our hypothesis is that, by optimizing their
waiting policy, cloud-enabled schedulers can reduce job waiting
times, while mitigating the impact on cost, or vice versa. In
evaluating our hypothesis, we make the following contributions.
Introduce a Waiting Policy. We introduce the concept of a
waiting policy for cloud-enabled schedulers, and present multiple
fundamental non-selective and selective waiting policies. Our non-
selective waiting policies include All Jobs Wait (AJW), No Jobs
Wait (NJW), and All Jobs Wait Threshold (AJW-T), while our
selective policies include Short Waits Wait (SWW) and Long Jobs
Wait (LJW). Since waiting policies are not mutually exclusive, we
also present a compound policy that concurrently applies AJW-T,
SWW, and LJW to gain the benefits of all three.
Waiting Policy Models and Analysis. We show how to analyze
waiting policies for cloud-enabled schedulers in general using a
simple queuing model to understand their tradeoff between fixed
resource provisioning, cost, and job waiting time. Our approach
extends classic marginal analysis by combining it with a number
of different queuing results and analyses to model cost under
job waiting. We then apply this approach to model, analyze, and
empirically validate each waiting policy above to demonstrate the
importance of explicitly defining a waiting policy to optimize
cost for cloud-enabled schedulers. Our modeling and analysis
also provides the necessary formal foundation for conducting any
future work on waiting policies for cloud-enabled schedulers.
Modeling and Analysis Under Uncertainty. As with many
scheduling policies, our waiting policies require a priori knowl-
edge of job running times and waiting times, which is not always
available. Since predictions of job running times and waiting times
may be inaccurate, we extend our models and analyses above

Purchasing Option Raw Effective 3-year Normalized
(utilization%) Price Price Cost Price
On-demand (100%) 9.6¢/hr 9.6¢/hr $2523 ∼ 1.0
On-demand (60%) 9.6¢/hr 9.6¢/hr $1514 ∼ 1.0
On-demand (40%) 9.6¢/hr 9.6¢/hr $1009 ∼1.0
Fixed Reserved (100%) 3.8¢/hr 3.8¢/hr $988 ∼ 0.4
Fixed Reserved (60%) 3.8¢/hr 6.3¢/hr $988 ∼ 0.7
Fixed Reserved (40%) 3.8¢/hr 9.5¢/hr $988 ∼1.0

TABLE 1
Raw price, effective price per unit time of utilized resources, 3-year

cost, and normalized price for different utilizations of a fixed reserved
and on-demand VM from AWS.

to quantify the effect of inaccurate predictions on our waiting
policies. Our analysis reveals an interesting asymmetry in that our
waiting policies are highly sensitive to over-predictions of waiting
time, but not to under-predictions.
Implementation and Evaluation. We implement our waiting
policies in a trace-driven job simulator, and evaluate their impact
on a real year-long batch computing workload consisting of 14
million (M) jobs run on a 14k-core cluster. The results show
that our compound policy offers the best tradeoff: it decreases
the cost (by 5%) and mean job waiting time (by 7×) compared
to the current cluster using AJW, and decreases the cost (by
43%) compared to only renting on-demand resources for a modest
increase in mean job waiting time (at 1.74 hours).

2 BACKGROUND AND INTUITION

We provide background on cloud pricing of fixed and on-demand
VMs, and applying marginal analysis to optimize cost.
Pricing Dynamics. We focus on applying waiting policies using
the pricing dynamics of existing cloud platforms. As we discuss in
§7, these pricing dynamics are both fundamental and general, and
thus may apply to other resources where a similar buy versus rent
option is available. We assume a cloud platform that offers two
types of resources: on-demand and fixed. Users may acquire and
release on-demand resources any time, and pay only for the time
they use them without any commitment. In contrast, users must
commit to paying for fixed resources over a long period, e.g., one
or more years. Importantly, however, fixed resources are cheaper
than on-demand resources if they are highly utilized.

Table 1 shows the pricing dynamics of an on-demand and fixed
(3-year reserved) m5.large cloud VM on AWS in the U.S. East
region. The table includes the raw price per unit time, the effective
price of utilized resources, 3-year cost, and normalized price, i.e.,
the effective price relative to the raw on-demand price, for each
scenario. As mentioned in §1, the on-demand VM’s 3-year cost
is much higher than the fixed VM’s cost at 100% utilization.
However, the fixed VM’s cost is constant and independent of
its utilization due to the long-term commitment, while the on-
demand VM’s cost changes with utilization, since users release
it when not in use. Here, utilization simply denotes the fraction
of non-idle periods over time. Since the fixed VM’s resources are
wasted during idle periods, its effective price for utilized resources
increases with decreasing utilization. In this case, if the fixed VM
is utilized >40% of the time, its effective price and 3-year cost
are less than the on-demand VM, thereby making it the cheaper
option. We call this the break even point.

The cost dynamics above are fundamental to the economics of
any platform that rents resources, since the platform must always
recoup its own costs for buying fixed resources, in addition to any
operating costs and profit, by renting them to users. By serving
a large pool of users with different resource requirements, these

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

Time

Re
so

ur
ce

 D
em

an
d

Fixed

On-demand

Utilization = 40%

U
tilization

Fig. 1. Illustration of utilization for each unit of stacked resource demand
and the break even point at 40% utilization.

platforms are able to operate their fixed resources at a much higher
resource utilization than any single user, which results in a much
lower effective price. Volume discounts and higher operational
efficiency at large scales, i.e., “economies of scale,” can also
contribute to lowering these platforms’ effective price for fixed
resources. Even so, as our example illustrates, highly utilized
fixed resources are still much cheaper, since they eliminate the
platform’s primary cost advantage.
Marginal Analysis. In economics, marginal analysis examines
the additional benefits of some activity compared to the additional
costs incurred by that activity. Determining the optimal mix
of fixed and on-demand resources to execute a workload on a
cloud platform to minimize cost is a classic marginal analysis
problem [25]. Given a workload and some fixed resources capable
of servicing a fraction of it, the marginal analysis problem is to
determine whether the additional benefit of acquiring one more
fixed resource to serve (a portion of) the remaining workload
outweighs its cost, i.e., the savings from renting an on-demand
resource to service the same portion.

Figure 1 illustrates marginal analysis pictorially for an exam-
ple workload where time is on the x-axis and resource demand is
on the y-axis. We assume the fixed and on-demand resources have
the same prices as in Table 1. To determine the optimal mix of
fixed and on-demand resources using marginal analysis, we simply
add fixed resources, one at a time, to satisfy each unit of stacked
resource demand in order (starting from 0 on the y-axis) up to the
point where the utilization of the fixed resource equals our break
even point on the y-axis, which is 40% (in dark grey). When the
instantaneous demand exceeds the fixed resource capacity at the
horizontal line (in light grey), dynamically acquiring and releasing
on-demand resources to satisfy the remaining workload is cheaper.

More formally, let pf and po denote the price per unit time for
a fixed resource (at 100% utilization) and on-demand resource,
respectively, let d denote the discount factor for a fixed resource,
such that pf=d×po and 0≤d≤1, and let T denote the workload’s
duration. The cost of adding one more fixed resource s over the
workload’s duration T is pf × T . Now suppose this sth resource
operates at utilization ρs when servicing the remaining workload.
Since the scheduler can acquire and release on-demand resources
at any time, the cost of servicing the remaining workload using an
on-demand resource is ρs × T × po, as the scheduler can acquire
the on-demand resource in ρs × T time slots and release it when
idle. Thus, using a fixed resource is only cheaper if pf × T <
ρs × T × po. By substituting pf=d × po, we observe that only
when d<ρs, or the discount factor is less than the utilization of
the last fixed resource we added, is acquiring an additional fixed
resource cheaper than using on-demand resources. Similarly, the
cost of provisioning an additional fixed or on-demand resource is
equal when ρs=d, or the discount factor equals the utilization of

the last fixed resource. Beyond this break even point, there is no
marginal cost savings from acquiring more fixed resources.

The marginal analysis problem above is straightforward to
solve in the context of a traditional queuing model using clas-
sic results by Erlang, assuming arriving jobs never wait for
resources [19], [31], [35]. Variants of this classic problem have
been addressed in prior work both generally, and in the context of
cloud computing, which we discuss in §8.
Marginal Analysis under Waiting. The classic marginal analysis
above implicitly assumes jobs never wait for resources, and always
immediately execute on either a fixed or on-demand resource.
A key insight of our work is that cloud-enabled schedulers can
explicitly control whether (and how long) jobs wait for fixed
resources if they are busy, and that this waiting policy affects
the optimal provisioning of fixed resources that minimizes cost.
In general, the longer the permissible waiting time, the higher
the fixed resource utilization, and the lower the overall cost. As
we show, cloud-enabled schedulers can implement a wide variety
of waiting policies that offer different tradeoffs between fixed
resource provisioning, cost, and job waiting time. Despite the
importance of the waiting policy in optimizing cost when using
cloud platforms, we know of no work that explicitly defines and
analyzes such waiting policies for cloud-enabled schedulers by
applying marginal analysis.

3 NON-SELECTIVE WAITING POLICIES

We develop a simple queuing model for cloud-enabled schedulers
to understand the relationship between the waiting policy, fixed
resource provisioning, job waiting time, and cost. While our
implementation and evaluation in §5 and §6 focus on cloud
platforms, our queuing model and analysis are general and may
apply to similar schedulers for other resources, as we discuss in
§7. We first analyze basic non-selective waiting policies—All Jobs
Wait (AJW), No Jobs Wait (NJW), and All Jobs Wait Threshold
(AJW-T)—which apply the same policy to all jobs. In §4, we
analyze selective waiting policies that only force selected jobs to
wait based on their characteristics.

Our analysis extends a M/M/s/∞ queuing model using
s fixed resources with first-come-first-serve (FCFS) scheduling,
mean job arrival rate λ, and mean job service time 1/µ, where
job arrivals follow a Poisson process, job service times are
independent and identically distributed (i.i.d.). and exponentially
distributed, and each resource executes one job at a time. The
offered load is a=λ/µ, and the offered load (and mean utilization)
per fixed resource is ρ=a/s=λ/(s×µ). Our analysis only applies
in steady-state. For reference, Table 2 lists each variable our anal-
ysis uses. We use a standard queuing model because it permits a
closed-form analysis to understand the basic tradeoffs in designing
waiting policies. We then show how better understanding these
tradeoffs can enable users to reason about the effects of waiting
policies on systems that do not conform to this model, e.g., by
having different scheduling policy or workload characteristics.

3.1 All Jobs Wait

Model Analysis. All Jobs Wait (AJW) is a baseline policy that
requires all jobs to wait for fixed resources, and never rents
on-demand resources. We present it as a foundation for our
subsequent analysis. AJW’s analysis is equivalent to that of an
M/M/s/∞ queue. The effective price P for each fixed resource

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

Variable Description Units
s Number of Resources -
λ Mean Job Arrival Rate jobs/time
µ Mean Service Rate time/job
a Offered Load - λ/µ %
ρ Fixed Resource Utilization - a/s = λ/(s× µ) %
P Amortized Price of Utilized Resources $/time
pf Fixed Resource Price at 100% Utilization $/time

C(s, a) Erlang’s C (or delay) formula time
w Mean Wait Time time
po On-demand Resource Price $/time
d Discount Factor - pf/po %

B(s, a) Erlang’s B (or loss) formula %
ρs Utilization of sth Resource %
r Fraction of Jobs using On-demand Resources %
T Workload Duration time
C Workload Cost over T $
S Cost Savings versus On-demand Resources $
b Maximum Waiting Time Threshold time
rs r from above when using s fixed resources %
rs−1 r from above when using s− 1 fixed resources %
funder Fraction of Jobs Under-predicting Wait or Run Time %
fover Fraction of Jobs Over-predicting Wait or Run Time %
µlong Mean Service Rate of Long Jobs in LJW time/job
µshort Mean Service Rate of Short Jobs in LJW time/job
Plong Amortized price of long jobs in LJW $/time
Pshort Amortized price of short jobs in LJW $/time
wlong Waiting time of long jobs in LJW time
t Long/short Job Threshold time

λlong Mean arrival rate of long jobs jobs/time
ρlong Fixed resource utilization when running long jobs %
rshort Fraction of short jobs %
rsww Fraction of long jobs with short waits %

TABLE 2
Listing of symbol, description, and units for each variable we use in our

analysis roughly in order of introduction.

is simply a function of the mean resource utilization ρ and fixed
resource price pf at full utilization, as shown below.

P = pf/ρ (1)

Thus, as mean utilization ρ increases, the effective price de-
creases up to 100% utilization. Of course, as utilization increases,
the mean waiting time w in the queue also increases. The mean
waiting time w for fixed resources under AJW is a well-known
function, shown below, of s, λ, and µ, where C(s, a)=[(s ×
as)/(s!× (s− a))]/[

∑s−1
i=0 a

i/i! + (s× as)/(s!× (s− a))] is
Erlang’s delay (or C) formula.

w =
C(s, a)

s× µ− λ
(2)

Empirical Validation. We empirically validate the effective price
P and mean waiting time w for all models we present in §3 and
§4 for the same baseline example. In our baseline example, we
set λ=0.2 (or 1 job every 5 seconds on average), µ=0.002 (or
an average job service time of 500 seconds), po=9.6¢/hour, and
pf=3.84¢/hour. Thus, in this case, the discount factor d for fixed
resources at 100% utilization is pf/po=0.4. As in our example in
§2, we set po and pf based on the on-demand and 3-year reserved
VM prices in AWS, and set λ and µ such that the mean utilization
ρ of the fixed resources is 100% when s=100 resources. We plot
both the continuous function from our model, as well as average
empirical values from 20 trials of our job simulator from §5. Each
trial simulates the model on a synthetically generated job trace
with 2 million jobs using exponentially distributed inter-arrival
and service times based on the baseline parameters, as well as
any model-specific parameters. To capture steady states, we do
not include the first and last 10% of jobs when computing P and
w. All graphs include error bars representing the maximum and
minimum across all trials, although, with 2 million jobs, there is
almost no deviation from the average on each trial.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 105 110 115 120
 0

 100

 200

 300

 400

 500

 600

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

Normalized Price (model)
Mean Wait Time (model)

Normalized Price (empirical)
Mean Wait Time (empirical)

Fig. 2. Normalized price P (left y-axis) and mean wait time w (right
y-axis) as a function of fixed resources s under AJW. Mean wait time
w→∞ as fixed resources s→100, and mean wait time w→0 as fixed
resources s→∞.

For AJW, Figure 2 plots the effective price P (left y-axis),
obtained from our model and from simulations, as a function of the
fixed resources s. Here, as in all subsequent graphs, we normalize
the effective price P by the price of on-demand resources po.
Thus, the left y-axis represents how much using fixed resources
lowers or raises the price relative to using on-demand resources;
smaller numbers (lower prices) are better. The minimum value
on the left y-axis is P=pf=0.4, since this represents the lowest
possible price (using only fixed resources at 100% utilization). The
right y-axis shows the mean waiting time w for fixed resources.

Figure 2 shows that our model’s predictions closely match
the empirical results, both for the normalized price and the
mean waiting time. Also, as expected, the graph shows that as
s increases the effective price P increases linearly due to the
decrease in mean utilization ρ. In contrast, the mean waiting time
decreases super-linearly with increasing s. Thus, AJW offers a
risky tradeoff betweenw and P , since provisioning fixed resources
for high utilization, i.e., a low s, to reduce the price may cause high
waiting times. As a result, AJW encourages over-provisioning to
ensure waiting times near 0 that are outside the region where they
increase super-linearly.

The effective price P equals the on-demand price po when the
mean utilization of fixed resources ρ equals the discount factor
d=0.4, which occurs at s=250 (not shown). Thus, provisioning
any fixed resources s<250 is cheaper than solely using on-demand
resources. Reducing s to 120 still yields a waiting time w ∼ 0 for
an effective price P that is 52% lower than s=250 and only 20%
higher than s=100 where w→∞.
Key Point. Since waiting time increases super-linearly as uti-
lization ρ→100%, AJW encourages over-provisioning to ensure a
utilization below 100% with waiting times near 0.

3.2 No Jobs Wait
Model Analysis. The No Jobs Wait (NJW) waiting policy is
similar to existing auto-scaling policies for cloud-enabled sched-
ulers that execute jobs on fixed resources when available, and
dynamically acquire on-demand resources to execute jobs when all
fixed resources are busy. Recall from §2 that, given a workload,
there is an optimal number of fixed resources s for NJW that
minimizes cost, and this value occurs when the sth resource has a
utilization equal to the fixed resource’s discount factor d. Thus,
to optimize s under NJW, we need an expression for the sth

resource’s utilization, denoted as ρs.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140
 0

 0.2

 0.4

 0.6

 0.8

 1
N

o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

s
th

 R
e
s
o
u
rc

e
 L

o
a
d

Number of Resources (s)

Normalized Price (model)
sth Resource Load (model)

Normalized Price (empirical)
sth Resource Load (empirical)

Fig. 3. Normalized price P (left y-axis) and mean utilization of the sth
resource ρs (right y-axis) as a function of fixed resources s under NJW.
Minimum price occurs when the fixed resources’ discount factor d=ρs.

We find ρs using marginal analysis by applying Erlang’s loss
(or B) formula, which assumes a M/M/s/0 queue. Since the
queue size is zero, any job that arrives and observes all resources
as busy must exit the system. Erlang’s loss formula gives the
blocking probability that an arriving job exits the system, or
equivalently that there are s jobs in the system and all resources
are busy. To compute the utilization of the sth resource, we
first compute the difference between the blocking probability
when using s − 1 and when using s resources. This difference
represents the percentage of jobs an additional resource serves.
Multiplying this percentage by the offered load a=λ/µ gives the
mean utilization of the sth resource ρs, as shown below, where
B(s, a)=(as/s!)/(

∑s
i=0(a

i/i!)) is Erlang’s loss (or B) formula.

ρs = a× [B(s− 1, a)−B(s, a)] (3)

Under a No Jobs Wait (NJW) waiting policy, rather than
actually exit the system, the scheduler acquires on-demand re-
sources to immediately service blocking jobs without waiting. To
determine the optimal number of fixed resources s that minimizes
cost, we set the discount factor d equal to ρs in Equation (3) and
solve for s. Since Erlang’s loss formula includes a factorial and
summation, there is no closed-form expression for s, requiring us
to solve for it numerically. Since ρs is monotonically decreasing
as s increases, we can use a binary search to determine the optimal
s. After solving for s, we compute the minimum effective price P
per resource per unit time for the s fixed resources and additional
on-demand resources necessary to satisfy the offered load.

P = (1− r)× pf
ρf

+ r × po (4)

Here, we use r to represent the fraction of the workload
that executes on on-demand resources. The first additive term
normalizes the price of the s fixed resources pf at 100% utilization
by their mean utilization ρf , which is (1 − r) × ρ, since the
mean arrival rate to the s fixed resources is only (1 − r) × λ.
We then multiply this normalized price by the fraction of load
(1 − r) serviced at this price. The second additive term simply
multiplies the price of on-demand resources po by the remaining
fraction of the workload r. For NJW, r=B(s, a), as this represents
the probability that a job blocks and then runs on on-demand
resources. Since jobs block uniformly at random, the mean service
time of blocking and non-blocking jobs both equal the mean
service time 1/µ. As a result, we need not weight each additive
term in Equation (4) by its fraction of the mean service time.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 105 110 115 120

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Number of Resources (s)

AJW-T, b=60
AJW-T,b=300

AJW-T, b=900
AJW, b=∞

NJW, b=0

Fig. 4. Normalized price P as a function of fixed resources s under AJW-
T for different threshold waiting times b.

The total cost C (in dollars) to execute a workload over time
T , i.e., the fixed resources’ lifetime, is then shown below.

C = P × (
1

µ
)× (λT) = s× pf × T + r × λ

µ
× po × T (5)

The total cost C is the product of the effective price per unit
time P , the mean service time per job (1/µ), and the total number
of jobs, which in-turn is the product of the job arrival rate λ
and the total time T . We can also represent the total cost in a
different, but equivalent, way on the right side by expanding P
using Equation (4). Here, the first additive term is the cost for the
s fixed resources over time T , and the second term is the cost
of renting on-demand resources. The first term is independent of
the offered load, since users must pay for the s fixed resources
regardless of their utilization. Of course, Equation (5) for C only
applies to the system in steady state over the interval T . As noted
earlier, our simulations capture steady state by not considering the
first and last 10% of jobs when computing C, P , or w.
Empirical Validation. We empirically validate NJW using the
same baseline example from §3.1. Figure 3 shows the effective
price P (left y-axis) as a function of fixed resources s under NJW,
where we again normalize P by the price of on-demand resources
po. The right y-axis shows the mean utilization of the sth resource
ρs, as the waiting time w is always zero under NJW. As expected,
the graph shows the model closely matches the empirical results.
As s increases, the effective price decreases to the optimal s=108
where ρs equals the 0.4 discount factor, after which, the effective
price increases. Plugging the optimal s value and our baseline
parameters into Equation (3) verifies that ρs=0.4.

At the optimal s=108, NJW has an effective price
P=0.467×0.096=$0.044832/hour, while AJW’s price is ∼7.5%
less at P=0.432×0.096=$0.041472/hour. However, under NJW,
jobs never incur waiting time, while AJW incurs a mean waiting
time of 20s, with some jobs waiting much longer. Thus, for
7.5% higher cost, NJW guarantees jobs never wait. In this case,
r=0.035, i.e., 3.5% of jobs run on on-demand resources, which
results in a minimum cost (in dollars) over a 3-year period of
C=$117,818. By contrast, solely using on-demand resources costs
100(0.096)(26280)=$252,288, which is over twice as expensive
as the optimal cost under NJW.
Key Point. While NJW’s cost is higher than AJW’s for the same
fixed resources, it guarantees no waiting time. NJW encourages
optimal provisioning, since its cost increases as fixed resource
provisioning deviates from the optimal.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0

 120

 240

 360

 480

 600

 100 105 110 115

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

AJW-T, b=60
AJW-T,b=300

AJW-T, b=900
AJW, b=∞

NJW, b=0

Fig. 5. Mean waiting time w as a function of fixed resources s under
AJW-T for different threshold waiting times b.

3.3 All Jobs Wait - Threshold
Model Analysis. AJW and NJW define two extremes: AJW yields
a low price but with a potentially high waiting time, while NJW
yields a higher price but zero waiting time. The All Jobs Wait-
Threshold (AJW-T) waiting policy defines a continuous tradeoff
between these two extremes by requiring all jobs to wait up to
some threshold time b, at which point the scheduler acquires an
on-demand resource to service them. At b=0, AJW-T is equivalent
to NJW, and as b→∞, AJW-T approaches AJW. To model AJW-
T, we must derive r from Equation (4), or the fraction of jobs
that run on on-demand resources after waiting b time. Given r, we
can compute the effective price P from Equation (4) as before. In
queuing literature, AJW-T is equivalent to a queuing model with
reneging jobs that exit the queue after waiting a threshold period.
The reneging probability r is given by the following lemma, which
follows from an analysis by Liu and Kulkarni [27].
Lemma 3.1. The reneging probability r in a M/M/s/∞ system

is computed as follows.

r =
α · β · e−δ·b

s · µ
(6)

where
δ = (sµ− λ) (7)

β =
sµp

1− p
(8)

p =
(λ/µ)s

s!
∑s
i=0

(λ/µ)i

i!

(9)

α =

{
[β(1δ − e

δ·b · λ
δ·sµ) + 1]−1 ρ 6= 1

λ
λ+β·(λ·b+1) ρ = 1

(10)

When expanded, r is solely a function of s, b, λ, and µ.
As before, we need an expression for the mean utilization of
the sth resource, as in Equation (3), to solve for the optimal s
that minimizes cost. However, in this case, we replace Erlang’s
B formula with r above when using s − 1 and s resources, as
shown below, since r represents the reneging probability under
AJW-T, which is akin to the blocking probability under AJW. We
can again solve for the optimal s that minimizes price numerically
using a binary search, as ρs is still monotonically decreasing as s
increases, where a=λ/µ.

ρs = a× [rs−1 − rs] (11)

After determining the optimal s and r for a given threshold
waiting time b, we compute the mean waiting time of jobs.

 0

 120

 240

 360

 480

 600

 720

 840

 960

 50 60 70 80 90 100 110 120

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

SWW, b=900 AJW-T, b=900

Fig. 6. Mean waiting time as a function of fixed resources under SWW
and AJW-T where b=900s=15m.

Liu and Kulkarni give the mean waiting time under reneging as
follows [27]. The first additive term represents the mean waiting
time for the jobs that execute on fixed resources, while the second
additive term represents the mean waiting time for jobs that
execute on on-demand resources, which is simply r×b as they
all wait the maximum time b.

w =

{
(1− r)× (α×β(1−δbe

−δ×b−e−δ×b)
(1−r)×δ2) + r × b ρ 6= 1

(1− r)× (α×β×b
2

(1−r)×2) + r × b ρ = 1
(12)

Empirical Validation. We again validate our model using our
baseline parameters. Figure 4 shows the effective price P as a
function of fixed resources s under AJW-T for different threshold
maximum waiting times b, as well as the price under AJW and
NJW. Once again, the model’s predictions closely match the
empirical results. As expected, as b increases, the price approaches
AJW, and as it decrease the price approaches NJW. The graph
also shows that as b increases, the optimal fixed resources s that
minimizes price decreases. Similarly, Figure 5 shows the mean
waiting time w on the y-axis as a function of the fixed resources s.
Here, as b increases, the mean waiting time increases more sharply
as s→100. Thus, unlike AJW and NJW, AJW-T is configurable,
enabling users to set their tradeoff between price and waiting time.
Key Point. AJW-T offers a configurable tradeoff between price
and waiting time by enabling users to set the maximum waiting
time threshold b, unlike NJW, which offers no tradeoff, and AJW,
which offers a risky tradeoff.

4 SELECTIVE WAITING POLICIES

Unlike non-selective waiting policies, selective waiting policies
do not apply to all jobs, but only to selected jobs based on
system or job characteristics. We define and analyze two selective
policies: Short Waits Wait (SWW) and Long Jobs Wait (LJW).
Since waiting policies are not mutually exclusive, we also analyze
a compound waiting policy that combines SWW, LJW, and the
threshold waiting time from AJW-T.

4.1 Short Waits Wait
Model Analysis. Unlike AJW-T where jobs wait up to a threshold
value before they are scheduled on on-demand resources, in the
Short Waits Wait (SWW) waiting policy, incoming jobs estimate
their waiting time upon arrival (based on the jobs running and
ahead of it in the queue) and only wait if the estimated wait time

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 90 95 100 105 110 115 120

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Number of Resources (s)

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

Fig. 7. Price P as a function of fixed resources s under SWW for different
over-prediction errors fover and NJW.

is short, i.e., less than a threshold value. If the estimated wait
time is long, i.e, exceeds the threshold, then they immediately run
on on-demand resources without waiting. In queuing literature,
this behavior is equivalent to a queuing system with balking
jobs, which immediately exit the system if the waiting time will
exceed a maximum threshold value denoted by b. Importantly, as
prior work shows, the same set of jobs that renege under AJW-
T, and in our case run on on-demand resources, will also balk
under SWW [27]. Thus, the fraction of jobs r that run on on-
demand resources under SWW is the same as under AJW-T (from
Lemma 3.1), and thus the effective price for resources is the same
under AJW-T and SWW for the same b.

The only change with SWW relative to AJW-T is the mean
waiting time w, since under SWW jobs exit the system immedi-
ately and run on on-demand resources if their waiting time would
exceed the threshold waiting time b. In this case, the mean waiting
time w shown below is the same as in Equation (12) except that
we remove the r×b term, since the r fraction of jobs that run on
on-demand resources incur no waiting time rather than incurring
b waiting time, as in AJW-T.

w =

{
(1− r)× (α×β(1−δbe

−δ×b−e−δ×b)
(1−r)×δ2) ρ 6= 1

(1− r)× (α×β×b
2

(1−r)×2) ρ = 1
(13)

Empirical Validation. Figure 6 plots the mean waiting time w
for SWW and AJW-T as a function of the fixed resources s, and
a threshold waiting time b=900s=15m. The mean waiting time
for SWW approaches zero as s decreases (and load increases)
rather than b for AJW-T, as increasingly more jobs exit the
system without waiting and run on on-demand resources. Note
that SWW’s mean waiting time reaches its maximum at s=93, and
is always less than that of AJW-T.
Key Point. SWW with accurate predictions of job waiting time is
strictly better than AJW-T for the same threshold b, yielding the
same price at a lower mean waiting time.

4.1.1 Prediction Accuracy
The SWW analysis above assumes that arriving jobs are able to
perfectly predict their waiting time w. Doing so requires perfectly
predicting the running time of every job currently running and
ahead of them in the queue. There is significant prior work
on predicting queue waiting times using statistical analyses and
machine learning classifiers, which we discuss in §8. This prior
work demonstrates that accurately predicting queue waiting times
can be challenging. As a result, we also model and analyze SWW

 0

 120

 240

 360

 480

 600

 720

 840

 90 95 100 105 110

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

Fig. 8. Mean waiting time as a function of s under SWW for different
over-prediction errors fover and NJW.

under inaccurate predictions of job waiting time. Our analysis
provides a basis for understanding how accurate machine learning
(ML) classifiers and other methods that predict job waiting time
developed in prior work must be to achieve specific job waiting
time or cost targets. Importantly, the goal of our work is not to
develop a better waiting time predictor, but to understand both
how inaccurate predictions can affect waiting policies, and how to
reason about the effectiveness of prediction methods.

Given a threshold waiting time b, there are two misprediction
cases to consider: the scheduler either i) over-predicts a job’s
waiting time and thus runs it on on-demand resources when it
should have waited for fixed resources, or ii) under-predicts a
job’s waiting time and thus forces it to wait for fixed resources
when it should have run immediately on on-demand resources.
We consider each case separately based on the fraction of jobs
fover and funder that over- and under-predict their waiting time,
respectively. Note that our analyses for over- and under-predicting
waiting time can be applied independently to the same model. Of
course, by definition, the set of jobs in fover and funder must be
disjoint and fover + funder ≤ 1.
Over-predicting Waiting Time. As the fraction of jobs that
over-predict waiting time approaches 100%, SWW approaches
the behavior of using all on-demand resources (plus the cost of
the fixed resources), as jobs always immediately exit the system
(due to their high predicted waiting time) and run on on-demand
resources. For simplicity, our analysis here is not work-conserving,
such that over-predictions redirect jobs to on-demand resources
even when fixed resources are available. We can model over-
predictions by simply reducing the arrival rate λ of jobs to the s
fixed resources by fover, since this fraction of jobs always exit the
system due to over-prediction and run on on-demand resources.
Thus, the effective arrival rate becomes (1− fover)× λ. We can
then solve for the optimal s as before using Equation (11) but
substituting this new effective arrival rate for λ. We must also
account for the increased fover fraction of jobs that run on on-
demand resources when computing the effective price P . To do
so, we adjust Equation (4) as shown below.

P = (1− r)× pf
ρf

+ (1− fover)× r × po + fover × po (14)

The first term is the same as in Equation (4). The second term
represents the fraction of offered load that runs on on-demand
resources after correct predictions, while the third term represents
the fraction that runs on on-demand resources after incorrect over-
predictions. We similarly adjust the waiting time in Equation (13)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0

 120

 240

 360

 480

 600

 720

 840

 960

 50 60 70 80 90 100 110

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

SWW, funder=10%
SWW, funder=50%

AJW-T, b=900
SWW, funder=0%

Fig. 9. Mean waiting time as a function of fixed resources s under SWW
for different under prediction rates funder .

by substituting (1 − r) with (1 − fover)×(1 − r) as fewer jobs
wait for fixed resources.

Figure 7 shows the effective price P (normalized by the on-
demand price as before) on the y-axis as a function of s. In this
case, we use the same baseline parameters as before, while setting
b=900, and plot different lines for different values of fover, as
well as NJW. As the graph shows, as fover increases to one, the
optimal value of s changes, and approaches that under NJW. Note
that the price of a work-conserving variant would be bounded
by NJW as s increases, rather than exceeding it, since it would
utilize any idle fixed resources. However, the behavior would be
the same as in the graph as s decreases, since there are fewer idle
fixed resources. Similarly, Figure 8 shows the mean waiting time
w as a function of s. As expected, as fover increases, the mean
waiting time decreases (as fewer jobs wait). As before, we include
both continuous functions from our model and empirical results
from our job simulator.
Key Point. SWW is sensitive to over-predictions, as 3-5% over-
predictions significantly alters the price and mean waiting time.
Under-predicting Waiting Time. As the fraction of jobs funder
that under-predict their waiting time approaches 100%, SWW
approaches the behavior of AJW-T, since jobs always wait for
fixed resources up to threshold b before running on on-demand
resources. We model this case by using the fact that the set of
reneging jobs under AJW-T and balking jobs under SWW are the
same [27], and thus do not affect the waiting time of other jobs.
The funder fraction of jobs that should balk and run immediately
on on-demand resources due to a long wait time, but instead wait
due to an under-prediction, will always eventually renege and
run on on-demand resources. Since these jobs never run on fixed
resources, they do not affect the waiting times of the jobs that do.

The effective price under SWW with under-predictions is the
same as that with AJW-T and SWW with perfect predictions, as
the same set of jobs run on on-demand resources in all cases. The
only difference is the job waiting times. To compute the waiting
time in this case, we simply need to substitute (1−funder)×r for
r in Equation (12) for the waiting time under AJW-T to account
for the fraction of jobs funder that incur a waiting time of b due to
the under-prediction. Figure 9 shows the mean waiting time w as
a function of s using our baseline parameters for different values
of funder, as well as for AJW-T with b=900s. As expected, as
funder increases, the mean waiting time increases until it matches
that of AJW-T. Notably, SWW is much less sensitive to under-
predictions, since they do not affect price and only affect the mean
waiting time when fixed resources are highly under-provisioned.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 120 240 360 480
 0

 100

 200

 300

 400

 500

AJW Waiting Time

AJW Price

NJW Optimal Price

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Short Job Threshold (t)

Normalized Price (model)
Mean Wait Time (model)

Normalized Price (empirical)
Mean Wait Time (empirical)

Fig. 10. Normalized price P and mean wait time w as a function of the
short job threshold t (in seconds) for s=101 under an LJW waiting policy.

Further, even when under-provisioned, the under-prediction rate
must be high, at>50% in the graph, to cause a significant increase
in mean wait time.
Key Point. SWW is not highly sensitive to under-predictions, as
they do not affect the effective price and only affect the mean
waiting time when fixed resources are under-provisioned.

Our results are important in assessing and contextualizing the
accuracy of new and existing methods for predicting queue waiting
times. Specifically, for cloud-enabled schedulers, these prediction
techniques should focus on minimizing over-predictions, and they
should be evaluated separately for over- and under-predictions.

4.2 Long Jobs Wait
Model Analysis. Long Jobs Wait’s (LJW) intuition is that longer
running jobs should be willing to wait longer for fixed resources,
since longer waiting times are a smaller percentage of their overall
running time compared to shorter jobs. For LJW, we introduce
a running time threshold t such that jobs shorter than t run
immediately on on-demand resources, while others wait for fixed
resources. For simplicity, our LJW policy is not work-conserving
in that it runs short jobs on on-demand resources even if fixed
resources are available. This non-work-conserving variant will
behave similarly to a work-conserving one in the optimal case
when fixed resources are not over-provisioned (and thus rarely
idle). For LJW, we separate the analysis for short jobs and long
jobs. As shown below, the effective price P is the weighted
average of the price to run short and long jobs. As before, r
represents the fraction of jobs that run on on-demand resources,
while Pshort and Plong represent the price to run short and long
jobs, and µshort and µlong represent the mean service rate of short
and long jobs.

P = (1− r)× µ

µlong
× Plong + r × µ

µshort
× Pshort (15)

Thus, first and second additive terms represent the relative cost
to execute long and short jobs, respectively, based on their fraction
of the total jobs, their proportion of the service time, and their
price. Note that, µlong > µ > µshort for any t > 0. Similarly,
the mean waiting time w is the weighted average of the waiting
time to run short and long jobs. Since, by definition, short jobs
do not wait, w is only dependent on the fraction of long jobs and
their mean waiting time.

w = (1− r)× wlong (16)

Short Jobs. All short jobs (with running times <t) run on on-
demand resources at price po without any waiting time. Thus,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

Pshort=po, while r is the fraction of jobs with running times
less than t, which is equivalent to the CDF of the exponential
distribution for service times at x=t, as shown below.

r = 1− e−µt (17)

Long Jobs. Since long jobs always wait for fixed resources, the
policy is similar to AJW in §3.1 but applied to long jobs. The
mean arrival rate for long jobs λlong is the product of the overall
job arrival rate λ and the fraction of long jobs (1− r).

λlong = λ× (1− r) = λ× e−µt (18)

Similarly, we compute the mean service rate µlong for long
jobs using its service time PDF f(x, µ), as below. The PDF for
long jobs is an exponential distribution shifted by t units.

f(x, µ) = µe−µ(x−t), x ≥ t (19)

We find the expected value of the long jobs service time PDF to
derive its mean service time 1

µlong
by integrating from x=t→∞.

1

µlong
=

∫ ∞
t

xµe−µ(x−t)dx = t+
1

µ
(20)

Note that we can derive µshort from µlong , r, and µ, since the
mean service time of the original distribution 1/µ is the weighted
average of the mean service time of short jobs 1/µshort and long
jobs 1/µlong . Thus, we compute µshort by simply solving the
expression below.

1

µ
= r × 1

µshort
+ (1− r)× 1

µlong
(21)

The effective price Plong of running long jobs on fixed
resources is simply the price of fixed resources pf at full uti-
lization divided by the actual utilization ρlong , where ρlong =
λlong/(s×µlong).

Plong =
pf
ρf

=
pf × s× µlong

λlong
(22)

Importantly, however, the distribution of jobs with service
times greater than t is not exponentially distributed. As a result, we
cannot apply the same model as for AJW to compute the waiting
time. Instead, we use the well-known approximation below for the
waiting time of an M/G/s queue, where CV is the distribution’s
coefficient of variation, i.e., the standard deviation divided by
the mean. In this case, the standard deviation of the long jobs’
service time distribution is 1/µ, and the mean is 1/µlong , so
CV =µlong/µ.

w ∼ CV 2 + 1

2
× C(s, a)

s× µlong − λlong
(23)

Empirical Validation. Figure 10 shows the normalized price (left
y-axis) and waiting time (right y-axis) under LJW as a function
of t for s=101, as well as AJW and NJW, using our baseline
parameters. As before, the graph shows that the empirical values
closely match the model’s waiting time approximation above. The
graph shows that as t increases the normalized price increases,
as fewer jobs wait for resources. However, LJW also significantly
decreases the mean waiting time relative to AJW as t increases,
since the exponential service time distribution is weighted towards
short jobs, which experience no waiting time under LJW. In
addition, since long jobs still comprise a high fraction of the
overall service time (and thus cost), the effective price under LJW,
especially for small values of t, increases at a much lower rate than
the waiting time decreases. For example, at a threshold t=180, the
mean wait time is near 0 under LJW compared to a mean waiting

time of 450s under AJW, for a normalized price that is only∼10%
higher, but slightly lower than NJW.

By immediately running short jobs, LJW acts as the dual of
shortest job first scheduling that minimizes waiting time, and is
thus beneficial when fixed resources are under-provisioned.
Key Point. LJW offers a nice tradeoff: as t increases, price
increases modestly, while waiting time decreases significantly.

4.2.1 Prediction Accuracy
Our LJW analysis above assumes that arriving jobs perfectly
predict their running time, which may not always be possible.
As with predictions of queue waiting time, there is significant
prior work on predicting job running time, which we discuss in
§8, since it is an important input for many common scheduling
policies, such as SJF. As in 4.1.1, our analysis provides a basis for
contextualizing this prior work, and understanding how inaccuracy
can affect waiting policies. Since an imperfect prediction analysis
for LJW is more challenging than for SWW, we empirically
quantify the effect of inaccurate predictions of job running time
in our model. At a high level, similar to SWW’s analysis, as
fover—the fraction of short jobs that are predicted to be long
(with running times >t)—approaches one, LJW approaches the
behavior of AJW, since all jobs wait. In contrast, as funder—the
fraction of long jobs that are predicted to be short—approaches
one, LJW approaches using all on-demand resources (plus the
cost of fixed resources).

To understand how sensitive LJW is to over- and under-
predictions of job running time, we plot the normalized price and
mean waiting time as a function of funder and fover for s=101
and t=180. We only plot empirical results from our job simulator,
since we have no analytical model. Figure 11(a) shows that as
the over-prediction rate increases, the effective price decreases,
but, since LJW’s price in this case is already near the optimal
price pf , the decrease is minimal. In contrast, as the under-
prediction rate increases, the effective price increases significantly.
Figure 11(b) shows the opposite effect: as the over-prediction rate
increases, the mean waiting time increases significantly, while
as the under-prediction rate increases the mean waiting time
decreases, although since LJW’s mean wait time is already near
zero, the decrease is not significant.

To clarify the tradeoff between over- and under-prediction, we
define a new metric, called the opportunity cost of waiting, which
values a job’s waiting time equal to its running time. The mean
opportunity cost P×w is in dollars. Since lower values of P and
w are better, a lower opportunity cost is better. Figure 11(c) shows
the opportunity cost of LJW as a function of the rate of over- and
under-prediction. The graph shows that LJW is more robust to
under-prediction, since a high under-prediction error rate causes
more jobs to run on on-demand resources. While this increases
the price, it drops the waiting time (and thus opportunity cost) to
zero once the error rate exceeds 10%. In contrast, over-predictions
decrease the price only linearly, as shown in (a), but increases
the waiting time super-linearly, as shown in (b). Over-predictions
cause more jobs to wait on fixed resources, which significantly
increases the queue length and waiting time, for only a modest
cost savings. The result is a super-linear increase in opportunity
cost, as the super-linear increase in waiting time dominates the
linear decrease in price.
Key Point. LJW’s effective price is robust to over-predictions
and sensitive to under-predictions, while its mean waiting time is
robust to under-predictions and sensitive to over-predictions. LJW

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60

LJW PriceN
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Error (%)

Normalized Price (Over) Normalized Price (Under)

 0

 120

 240

 360

 480

 0 20 40 60 80 100

LJW Waiting TimeM
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Error (%)

Mean Wait Time (Over) Mean Wait Time (Under)

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Error (%)

Opportunity Cost (Over) Opportunity Cost (Under)

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 11. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with incorrect over- and
under-predictions (%) of job running time for s=101 and t=180 under an LJW waiting policy.

 0.4

 0.44

 0.48

 0.52

 85 90 95 100 105 110
 0

 120

 240

 360

 480

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

M
e
a
n
 W

a
it
 T

im
e
 (

s
e
c
)

Number of Resources (s)

Normalized Price (Compound)
Mean Wait Time (Compund)

Normalized Price (LJW)
Mean Wait Time (LJW)

Fig. 12. Normalized price P and wait time w as a function of fixed re-
sources s for our compound policy (b=900 and t=180) and LJW (t=180).

is more sensitive to over-predictions, since they cause a super-
linear increase in waiting time for only a linear decrease in price.

Similar to SWW’s uncertainty analysis in §4.1.1, our results
above are important in assessing and contextualizing the accuracy
of new and existing methods for predicting job running times.
Specifically, for cloud-enabled schedulers, these prediction tech-
niques should focus on minimizing over-predictions, and they
should be evaluated separately for over- and under-predictions.

4.3 Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies,
are not mutually exclusive. That is, we can concurrently apply
multiple waiting policies that select jobs to wait based on different
characteristics. Thus, we analyze a compound waiting policy that
combines the advantages of AJW-T, SWW, and LJW. In analyzing
this policy, we first apply LJW’s analysis from §4.2, since its
waiting decisions are based on job running time, and are thus
load insensitive and not affected by other waiting policies. Our
LJW analysis yields a fraction r of short jobs that always run
on on-demand resources, which we label rshort. The remaining
(1−rshort) long jobs run on fixed or on-demand resources de-
pending on their waiting time.

We next apply SWW’s analysis from §4.1 solely to the
remaining long jobs. In particular, we compute the fraction rsww
of the remaining long jobs that run on on-demand resources (due
to long wait times) by applying Lemma 3.1 using λlong and µlong
from §4.2 for a given value of s and b. This is an approximation,
since Lemma 3.1 assumes exponentially distributed service times,
and the long jobs’ service time distribution is an exponential
distribution truncated at t. This approximation becomes more
accurate as t→0 and the distribution approaches an exponential.

Given rsww, the effective price for our compound waiting policy
is as follows.

P = (1− rshort)× (1− rsww)×
µ

µlong
× pf
ρf

+(1− rshort)× rsww ×
µ

µlong
× po+ rshort×

µ

µshort
× po

(24)

The last additive term is the product of the fraction of short
jobs that run on on-demand resources, their fraction of the mean
service time, and the on-demand price. The second term is the
same, but applies only to the fraction of long jobs with high wait
times that run on on-demand resources. The first additive term is
the remaining long jobs with short waiting times that run on fixed
resources. Here, ρf , shown below, is the mean utilization of the
fixed resources, which is simply the adjusted arrival rate of jobs
to the fixed resources divided by their mean service rate, and then
normalized by s.

ρf =
(1− rshort)× (1− rsww)× λ

s× µlong
(25)

We use the same approach as in LJW to approximate the com-
pound policy’s mean waiting time, but replace the waiting time
under AJW with the waiting time under SWW from Equation (13)
as below, again using λlong and µlong as the input. The coefficient
of variation CV is the same as in LJW.

w ∼

{
CV 2+1

2 × (1− rsww)× (α×β(1−δbe
−δ×b−e−δ×b)

(1−rsww)×δ2) ρ < 1
CV 2+1

2 × (1− rsww)× (α×β×b2
(1−rsww)×2) ρ = 1

(26)
Empirical Validation. Figure 12 compares our compound waiting
policy with LJW using our baseline parameters with b=900 and
t=180. The primary advantage of the compound policy over LJW
is that it strictly lowers the overall waiting time, since long jobs do
not wait indefinitely, which is especially important when resources
are under-provisioned, for nearly the same effective price. As
shown, the compound policy’s mean waiting is less than or equal
to that of the LJW policy.
Key Point. Our compound policy combines the advantages of
AJW-T, SWW, and LJW, and thus offers the best tradeoff.

4.4 Model Results Summary
Our analyses show that waiting policies offer a complex tradeoff
between fixed resource provisioning, cost, and waiting time. To
summarize these tradeoffs, we again use the opportunity cost
of waiting. Recall from §4.1.1 that the mean opportunity cost
equals P×w and is in dollars, where lower values of P and
w are better. Figure 13 shows the mean opportunity cost of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0

 90

 180

 270

 360

 450

 85 90 95 100 105 110

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of Resources (s)

AJW, b=∞

AJW-T,b=900
SWW, b=900

LJW, t=180 b=∞

Compund, b=900, t=180

Fig. 13. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using FCFS scheduling.

 0

 15

 30

 45

 60

 85 90 95 100 105 110

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of m5.16xlarge VMs

AJW, b=∞

AJW-T, b=900
SWW, b=900

LJW, t=180 b=∞

Compund, b=900, t=180

Fig. 14. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using SJF scheduling.

waiting for AJW, AJW-T (for b=900), SWW (for b=900), LJW
(for t=180), and our compound policy (for b=900 and t=180)
using our baseline parameters. Since the effective price P is
bounded (by pf) and waiting time is not, the opportunity cost
for all policies approaches zero as s increases. Just as with a
scheduling policy, a waiting policy’s importance increases with
resource constraint. We exclude NJW, as its opportunity cost is
always zero, since its waiting time is zero. For the remaining
policies where a price-waiting time tradeoff exists, our compound
policy yields the lowest opportunity cost.

While the inter-arrival and service time distributions affect the
absolute differences in price and waiting time between waiting
policies, many aspects of our analysis are generalizable, and hold
regardless of the job inter-arrival and service time distributions.
As a result, our models and analysis are most useful in enabling
users to better understand and reason about the effect of different
waiting policies by understanding how their system and workload
characteristics differ from the models’ assumptions. Specifically,
SWW always results in a shorter mean waiting time than AJW-T;
higher values of the waiting time threshold b always increase fixed
resource utilization, decrease price, and increase waiting time;
increasing the short job threshold t always increases price and
decreases waiting time; and the compound policy always combines
the advantages of AJW-T, SWW, and LJW. Our evaluation in §6
echoes this point by empirically showing the relative price, waiting
time, and opportunity cost between the waiting policies of a real
workload precisely follows our analysis.

In addition, the general insights above also hold for different
scheduling policies. While the waiting policy is distinct from the
scheduling policy, and both can be defined independently, there
is some interaction between them. Figure 14 shows the same
experiment as Figure 13, but with shortest job first (SJF) as the
scheduling policy instead of FCFS. Note that Figure 14 only

plots data from simulations of the same synthetic workloads as in
Figure 13, since there is no similar closed-form analytical queuing
models for SJF scheduling. In addition, predictions of queue
waiting time under SWW are much more difficult under SJF,
since the ordering of jobs in the queue changes based on newly
arriving jobs. Thus, waiting time predictions under SJF require
future knowledge. The graph shows that the relative ordering of
waiting policies is the same when using SJF and FCFS, and also
that the trends are the same. Of course, the absolute opportunity
cost when using SJF is significantly less because SJF substantially
decreases the waiting time for jobs that wait for fixed resources.

As we show in §6.2, the price when using SJF is similar to
using FCFS. Using SJF has no effect on LJW, since it determines
whether a job waits based on its own characteristics. SJF does
affect SWW: since short jobs wait less than long jobs under SJF,
SWW in this case prioritizes short jobs to wait for fixed resources.
However, in isolation, prioritizing short jobs does not substantially
increase the price, since most jobs are short anyway (both in the
synthetic workloads here and our real workload in §6), a similar
set of jobs run on on-demand VMs. When SWW is used in
conjunction with LJW under SJF scheduling, LJW cancels out this
implicit short job prioritization of SWW under SJF, because LJW
automatically sends short jobs to run on on-demand resources. We
discuss the inter-play between the waiting policy and scheduling
policy in the context of SJF more in §6.2.

5 IMPLEMENTATION

We implemented a waiting policy model analyzer based on our
analysis, as well as a trace-driven job simulator, in python.
Model Analyzer. Our model analyzer implements the analytical
queuing model for all the waiting policies we analyze. The
analyzer enables what-if analyses to compare and understand a
workload’s expected cost and job waiting times under different
policies and parameter values. The analyzer takes as input a
policy’s name and λ, µ, s, pf , and po, as well as b for AJW-
T, SWW, and the compound policy, and t for LJW and the
compound policy. Users may also enter a workload duration T .
The analyzer’s output is the policy’s mean waiting time w, the
effective price P , the fraction of jobs that run on on-demand
resources r, and, if T is specified, the total cost C. If s is
unspecified, the analyzer finds the optimal s that minimizes price
P and outputs the values above at the optimal. We plan to publicly
release our model analyzer, which can be used to re-produce our
model graphs in §3 and §4.
Job Simulator. We implemented a trace-driven job simulator in
python that mimics a cloud-enabled job scheduler, which can
acquire VMs on-demand to service jobs. The simulator uses a
FCFS scheduling policy, and also implements each of our waiting
policies. The simulator takes as input a trace of jobs, s, pf , the
name of a waiting policy, and the same waiting policy-specific
parameters as above. Users must also specify the number of cores
and memory allotment for each fixed resource s. Since cloud
platforms offer VMs in different sizes, the simulator includes a
table of available on-demand VM options that specify their cores,
memory, and price. In our evaluation, we consider only the 8 VM
types in the m5 family of general-purpose VMs on AWS. While
VMs in the m5 family have different resources, they all offer the
same price per unit of resource. The simulator’s output is the mean
waiting time w, the effective price P , the fraction of jobs that run
on on-demand resources r, and the total cost C.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0-1 1-15 15-30 30-180 180-182694

P
ro

b
a

b
ili

ty

Job Inter-arrival Time (seconds)

Production Job Trace
Exponential (λ = 0.4527)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0-0.05 0.05-1 1-3 3-6 6-728

P
ro

b
a

b
ili

ty

Job Service Time (hours)

Production Job Trace
Exponential (µ = 0.0001606)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8
 0

 20

 40

 60

 80

 100

J
o

b
 F

ra
c
ti
o

n
 (

%
)

M
e

m
o

ry
-C

P
U

-H
o

u
rs

 (
%

)

Short Job Threshold t (hours)

Short Jobs Memory/CPU
Short Jobs Fraction

Long Jobs Memory/CPU
Long Jobs Fraction

0 5 10 15 20 25 30

CPU Cores

0

25

50

75

100

125

M
em

or
y

(G
B

)

(a) Job Interarrival Times (b) Job Service Times (c) Job Resource Requirements (d) Long and Short Job Mix

Fig. 15. Histograms of job inter-arrival times (a) and service times (b) for our real production batch workload along with an exponential distribution
using the same mean, as well as the mix of long and short jobs (c) and a scatterplot of job resource requirements (d).

Each job in the input trace has a service time based on its re-
source, e.g., core and memory, requirements. For fixed resources,
we use only m5.16xlarge VMs—the largest in the m5 family—
to mitigate the impact of imperfect packing of jobs to VMs. Our
job simulator packs jobs onto fixed resources using a simple best-
fit heuristic. When selecting an on-demand VM for a job, our
simulator selects the smallest (and cheapest) VM from among
the 8 types within the m5 family to run the job that satisfies the
job’s resource requirements. Note that our analytical model of
LJW in §4.2 is not work-conserving. For consistency, our LJW
results in §6 are also not work-conserving, although our simulator
can also be configured to be work-conserving. Our job simulator
also does not include some system characteristics that may be
important in practice, such as startup overheads and additional
external constraints on which VMs each job may use, since our
goal is not to precisely replicate the behavior of a real system, but
to isolate and understand the impact of different waiting policies
on price and waiting time. The effect of these additional system
characteristics are orthogonal to the waiting policy, and including
them would serve to obscure, rather than reveal, the effects of the
waiting policy. We have publicly released our job simulator at the
UMass Trace Repository [7], [9].
Real-world Data. In §6, we use our job simulator to quantify
the impact of different waiting policies on a real year-long job
trace that includes 14M jobs from a production high-performance
computing cluster consisting of 14.3k cores. The cluster is the
University of Massachusetts (UMass) System Shared Cluster, and
is available for general use to researchers from all five campuses
in the UMass system [8]. Thus, the workload is a representative
sample of job types across the entire scientific, engineering,
and medical research communities. The cluster is housed in
the Massachusetts Green High Performance Computing Center
(MGHPCC), a 15MW data center in Holyoke, Massachusetts that
also hosts infrastructure Boston University, Harvard, MIT, and
Northeastern. The cluster runs the LSF job scheduler, and we use
its log from the year 2016 to drive our simulations. Each job
entry in the log includes its submission time, user ID, maximum
running time limit, requested number of cores and memory, and
running time. Note that the maximum running time limit is not an
effective predictor of job running time, since it is typically many
orders of magnitude greater than jobs’ actual running time. As a
result, using the maximum running time as a predictor results in
nearly 100% of jobs having their running time under-predicted.
We modify the raw trace to conform to our job simulator’s input
format. We have publicly released this job trace [7], [10].

6 EVALUATION

We do not intend our models to be predictive, but instead evaluate
their usefulness in analyzing a real year-long batch workload.

Specifically, we show that our models both 1) accurately predict
the relative price and waiting time between different waiting
policies in our real workload, and 2) enable reasoning about price
and waiting time by understanding the differences between our
model’s and the real workload.

6.1 Workload Characteristics

Figure 15 characterizes our real workload and our model’s ideal.
Figure 15(a) is a histogram of job inter-arrival times for our trace
and an exponential distribution with the same mean, which is
0.4527 jobs/sec. Note that the bin size is non-uniform, since our
trace much more bursty than our model assumes. In particular,
nearly 90% of job inter-arrival times are between 0 and 1 second
compared with less than 40% for an exponential distribution with
the same mean. An exponential distribution instead has more inter-
arrival times between 1 and 15 seconds. Both distributions have a
heavy tail with our job trace experiencing a few more extremely
long inter-arrival times, between 3 minutes and 50 hours.

Figure 15(b) is a similar histogram of job service times with
a mean service time 1/µ of 6225 seconds (or 1.73 hours) per
job. Again, the bin size is non-uniform due to our trace’s large
skew. In this case, over 60% of jobs are between 0 and 3 minutes,
while an exponential distribution with the same mean has only 3%
of its jobs in this range. Instead, the exponential distribution has
more jobs of mid-range length between 3 minutes and 6 hours.
However, our trace has a slightly higher fraction of extremely
long jobs, which account for a large fraction of the overall job
execution time and cost. Thus, overall, the job service times in our
trace have both a heavier head and tail compared to the exponential
distribution. To further illustrate, Figure 15(c) shows the fraction
of long and short jobs, and their resource usage (in memory×core
hours), as a function of the short job threshold t. The graph shows
that short jobs are a high fraction of jobs, even for large short job
thresholds, but account for only a small fraction of the resource
usage. As we show, since this skew is more extreme in our trace
than in our model, LJW’s ability to decrease mean waiting time
is much greater than our model, since there is a larger fraction of
short jobs that never wait.

Finally, Figure 15(d) shows a scatterplot of the core and
memory requirements for each job. Our model assumes job re-
source requirements are uniform and map directly to each VM’s
resources. However, our simulator only schedules a job on a VM
if it has enough available cores and memory to satisfy a job’s
requirements. Our simulations assume a large m5.16xlarge
VM with 64 cores and 256GB memory to mitigate imperfect
job packing on VMs. We contextualize our results by comparing
against the current fixed-size cluster, which consists of 14,376
cores and is equivalent to 225 m5.16xlarge VMs. Simulating
this cluster on our trace yields a mean waiting time of 13.3 hours

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 125 150 175 200 225 250

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Number of m5.16xlarge VMs

AJW
SWW, AJW-T, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
NJW

 0

 6

 12

 18

 24

 100 125 150 175 200 225 250

M
e
a
n
 W

a
it
 T

im
e
 (

H
o
u
rs

)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

 0

 4

 8

 12

 100 125 150 175 200 225 250

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 16. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real
production batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with FCFS scheduling policy.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 125 150 175 200 225 250

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Number of m5.16xlarge VMs

AJW
SWW, AJW-T, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
NJW

 0

 0.5

 1

 1.5

 2

 125 150 175 200 225 250

M
e
a
n
 W

a
it
 T

im
e
 (

H
o
u
rs

)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

 0

 0.2

 0.4

 0.6

 0.8

 125 150 175 200 225 250

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 17. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real
production batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with SJF scheduling policy.

and a cost of $2,421,965, or $276.48/hour. As before, we use a
discount factor d∼0.4 based on the m5.16xlarge’s on-demand
price of $3.072/hour and its 3-year reserved price of $16,046.

6.2 Real-world Workload Results
Figure 16 shows the normalized price (a), mean waiting time (b),
and opportunity cost (c) for each of our waiting policies with FCFS
scheduling policy. We select the maximum waiting time threshold
b=24 hours for SWW and AJW-T, or slightly less than double the
current cluster’s mean waiting time using AJW. We select the long
job cutoff t=3m where 60% of jobs are short and 40% are long.
Price. As expected, Figure 16(a) shows that AJW yields the
lowest price, since it requires all jobs to wait for fixed resources.
Interestingly, LJW yields nearly the same price even though it
executes 60% of the total jobs on on-demand VMs. Since these
60% of short jobs comprise only a small fraction of the overall
job execution time, executing them on on-demand VMs does not
substantially increase the normalized price. SWW, AJW-T, and
our compound policy yield nearly the same price for the same
reason. This price is greater than LJW because SWW and the
compound policy cut the tail off the job waiting time distribution
by preventing jobs that would have to wait longer than 24 hours
from ever waiting. Running these jobs, which may include long
jobs, on on-demand VMs increases the price. As fixed resources
decrease, the price reaches a minimum before increasing, as
an increasingly larger share of the jobs experience (or would
experience) long waiting times and thus instead run on on-demand
resources. NJW has a ∼26% higher price than SWW, since it
directs any job that must wait to on-demand resources.

When using AJW, our current cluster yields a normalized price
of 0.6 at x=225 fixed resources, while the minimum cost under
the compound policy is 0.571 at x=150, or 5% less. For our trace,
P=0.6 translates to an annual cost of $2,421,965, while 0.571
translates to $2,304,903, or over $100k lower. This cost advantage
for our compound policy is less than our model predicts, since
our burstier workload causes more jobs to run on on-demand
resources, which increases the price.

Waiting Time. As our model predicts, Figure 16(b) shows that
the mean job waiting time under AJW and LJW increases super-
linearly as fixed resources decrease. However, even though LJW’s
cost is nearly the same as AJW’s, its mean waiting time is
substantially less because the large fraction of short jobs never
wait. In contrast, the mean waiting time under AJW-T, SWW,
and the compound policy increases modestly as fixed resources
decrease. Even at x=100, the mean waiting time of these policies
is less than the 13.3 hour mean waiting time in our current fixed
size cluster (AJW at x=225). At x=150, the compound policy has
a mean waiting time of 1.74 hours, or 7× less than our current
cluster (for 5% less cost).

Our compound policy’s waiting time is much less than our
model predicts due to the burstier workload, where large bursts
of jobs cause long waiting times for a large fraction of short jobs
under AJW. Running these short jobs on on-demand VMs sig-
nificantly reduces waiting time at little cost. In addition, running
jobs with long waiting times on on-demand VMs only modestly
increases cost for large decreases in waiting time.
Opportunity Cost. Figure 16(c) graphs the mean opportunity
cost of waiting P×w for each policy, and shows that, as our
model predicts, the compound policy offers the best tradeoff by a
significant margin compared to the other policies. Note that, even
though our workload’s characteristics differ significantly from
those assumed by our model, the overall trends in opportunity
cost match those from our model in Figure 13.
Key Point. Our real workload’s burstier job arrivals and heavier
head/tail service time distribution makes the compound policy’s
waiting time advantage much greater than our model predicts.
Key Result. At the optimal, the compound policy decreases the
cost (by 5%) and mean job waiting time (by 7×) compared to
the current cluster using AJW, and decreases the cost (by 43%)
compared to renting on-demand resources for a comparatively
modest increase in mean job waiting time (at 1.74 hours).
SJF Scheduling. We next repeat the experiments above using the
same parameters but using the SJF scheduling policy instead of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.5

 0.6

 0.7

 0 6 12 18 24 30

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Short Job Threshold t (min)

b=6hrs b=12hrs b=24hrs b=48hrs

 0

 1

 2

 3

 4

 0 6 12 18 24 30

M
e
a
n
 W

a
it
 T

im
e
 (

H
o
u
rs

)

Short Job Threshold t (min)

b=6hrs b=12hrs b=24hrs b=48hrs

 0

 1

 2

 3

 0 6 12 18 24 30

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Short Job Threshold t (min)

b=6hrs b=12hrs b=24hrs b=48hrs

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 18. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job threshold (t) when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

 0

 1

 2

 0 2 4 6 8 10 12

M
e
a
n
 W

a
it
 T

im
e
 (

H
o
u
rs

)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

 0

 1

 2

 0 2 4 6 8 10 12

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 19. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job prediction error when executing our
real production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

FCFS scheduling. Figure 17 shows the results. As mentioned in
§4.4, Figure 17(a) shows nearly the same normalized price across
all the waiting policies as in Figure 16(a). In some cases, as with
AJW and LJW, the price is the same, since these waiting policies
are not sensitive to the scheduling policy. SWW is sensitive to the
scheduling policy, and prioritizes short jobs on fixed resources,
since these jobs have a lower waiting with SJF. However, since the
vast majority of jobs in our real-world trace are already short, this
only slightly increases the normalized price. Since the compound
policy includes SWW, there is a similar impact on the normalized
price. NJW’s price is also higher under SJF for the same reason.

Figure 17(b) shows that SJF significantly decreases the waiting
time across all waiting policies compared to Figure 16(b). Note
that LJW and AJW in this experiment require a minimum of 150
VMs to run all jobs within the year, and thus we do not extend their
results below 150 VMs. SJF is well-known to optimize for waiting
time, often at the expense of starving longer jobs. However, in
our case, long jobs never starve when using AJW-T, SWW, or
the Compound policy, since in this case, if jobs have to wait
longer than the waiting time threshold, the scheduler runs them
immediately on on-demand. Importantly, the trends and relative
ordering of the waiting policies under SJF is the same as under
FCFS based on our analysis from §4.4.

Finally, Figure 17(c) shows the opportunity cost of all waiting
policies under SJF. As with our model’s workload in §4.4, the
opportunity cost decreases compared to FCFS due to the substan-
tial decrease in waiting time. As when using FCFS, the relative
ordering of opportunity cost when using SFJ remains the same
with the compound policy yielding the lowest opportunity cost.

6.3 Sensitivity Analysis

We perform a sensitivity analysis that varies b, t, and errors in
estimating job waiting time and running time to understand their
effect on the results. We chose the values above for b=24h and
t=3m arbitrarily to be reasonable, as 24h is roughly twice the

mean waiting time under AJW and t=3m categorizes a large
fraction (60%) of jobs as short. We also assume accurate estimates
of job waiting and running time, e.g., using historical data. Our
sensitivity analysis assumes 150 m5.16xlarge’s when using
the compound policy, which as discussed in §6.2 and shown in
Figure 16(a) and Figure 17(a) is the number of fixed resources that
minimizes cost under both FCFS and SJF scheduling, respectively.

Parameter Sensitivity. Figure 18 plots price, waiting time, and
opportunity cost as a function of the short job threshold twith lines
for different values of the waiting time threshold b. We vary t from
3-30m and the waiting time threshold from 6h-48h. The price (a)
increases linearly with the short job threshold t, albeit with a small
slope, since this increases the fraction of short jobs that run on on-
demand VMs at a higher price. The price also decreases roughly
linearly for every doubling of the waiting time threshold b, as
longer waiting time thresholds force more jobs to wait for lower
cost fixed VMs. In contrast, the mean waiting time (b) decreases
as the short job threshold increases, at an increasingly slower rate,
as fewer jobs wait for fixed VMs. This non-linearity derives from
Figure 15(c). Similarly, the mean waiting time decreases as the
waiting time threshold decreases, also at an increasingly slower
rate. Finally, the opportunity cost (c) is dominated by the mean
waiting time, and thus exhibits a similar trend. As t increases,
the decrease in waiting time outweighs the increase in cost due
to Figure 15(c). As b→0, the compound policy approaches NJW
(for long jobs) where there is no tradeoff, and the waiting time and
opportunity cost are zero.

Error Sensitivity. Figure 19 plots price, waiting time, and op-
portunity cost as a function of the short/long job prediction error,
which is both the percentage of long jobs we mispredict as short,
and short jobs we mispredict as long. Similarly, each line captures
the waiting time threshold error, which is both the percentage of
jobs that should wait but do not, and that do not but should. The
graph shows price (a) is directly proportional to the short/long
job prediction error, such that a 1% increase in error causes a 1%

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 125 150 175 200 225 250

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of m5.16xlarge VMs

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

 0

 6

 12

 100 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

(a) Normalized Price (b) Mean Job Waiting Time

Fig. 20. Normalized price (a) and mean job waiting time (b) as a function of fixed resources s when executing our real production batch workload
under SWW for different over-prediction errors fover and NJW.

 0

 4

 8

 12

 16

 20

 24

 25 50 75 100 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

SWW, funder=0%
SWW, funder=10%

SWW, funder=50%
AJW-T

Fig. 21. Mean waiting time as a function of fixed resources s when
executing our real production batch workload under SWW for different
over-prediction errors funder .

increase in price. In contrast, waiting time threshold errors are
non-linear, with progressively lower price increases for each 10%
increase in error. The graph still shows large savings compared to
using on-demand even under high error rates. The mean waiting
time (b) is much less affected by the short/long job prediction
error, since a similar number of jobs must still wait (it is just
the long jobs not waiting that increases the price). Higher values
of errorb actually decrease mean waiting time: while a larger
percentage of (long) jobs that do not wait but should increases
price, it decreases waiting time. As above, the waiting time trend
dominates the opportunity cost (c), and thus shows a similar trend.

6.4 Effect of Prediction Accuracy
To understand the effect of prediction accuracy for our waiting
policies, we vary the errors in estimating job waiting time and
running time in terms of their over- and under-predictions as in
our analysis from §4.1.1 and §4.2.1. We use the baseline values
of b=24h for the waiting time threshold and t=3m for the long
job threshold. As in our model analysis, we consider the case of
over predictions and under predictions separately based on the
fraction of jobs fover and funder that over- and under-predict
their job waiting time and job running time for SWW and LJW,
respectively. In particular, we simulating each waiting policy using
our job trace, we explicitly control the percentage of jobs that over-
and under-predict waiting times and running times. For example,
if we set fover for the waiting time threshold to N%, this means
that N% of the jobs that would have waited (due to having a short
waiting time) will now run on on-demand resources due to an over-
prediction of their waiting time. We emulate this over-prediction
by uniformly randomly sampling N% of jobs that should wait,
and instead run them on on-demand resources. Similarly, if we
set funder for the waiting time threshold to M%, this means that
M% of the jobs that should not have waited (due to having a long

waiting time) will now wait due to an under-prediction of their
waiting time. We again emulate this under-prediction by uniformly
randomly sampling M% of jobs that should not wait, and instead
force them to wait for fixed resources. We use the same approach
to simulate over- and under-prediction errors for job running time.
Over-predicting Waiting Time. Figure 20 plots the normalized
price P and mean job waiting time W as a function of fixed
resources s for different prediction errors fover under SWW,
where fover is fraction of the jobs over-predicting their waiting
time and thus runs it on on-demand resources when it should have
waited for fixed resources. As the graph shows, the normalized
price (a) increases with the over-prediction error. As fover in-
creases, the cost of running the workload under SWW increases
and approaches that of NJW. This graph mirrors Figure 7 from
§4.1.1 that uses our analytical model to quantify the effect of over-
predictions of waiting time on price. The only difference here is
that the scheduler is work-conserving, so NJW serves as a strict
upper-bound on price even when the fixed resources are over-
provisioned. Figure 20(b) shows that the mean job waiting time
decreases as fover increases and eventually approaches 0 (or the
behavior of NJW). Similar to above, this graph mirrors Figure 8
from §4.1.1 that uses our analytical model to quantify the effect
of over-predictions of waiting time on the mean wait time. As
in our model, the mean wait time is monotonically decreasing
and approaches 0 as the number of fixed resources increases.
Importantly, our empirical results on over-predictions reinforce the
key points from our models in §4.1.1: that SWW is highly sensitive
to over-predictions, such that 3-5% over-predictions significantly
alters both the normalized price and the mean waiting time.
Under-predicting Waiting Time. Figure 21 plots the mean job
waiting time w as a function of fixed resources s over different
prediction errors funder using SWW, where again funder is frac-
tion of the jobs that under-predict their waiting time. Thus, these
under-predicting jobs wait for fixed resources when they should
have run immediately on on-demand resources. As expected, the
mean waiting time w increases as funder increases, such that
the mean waiting time approaches 0 as funder increases. Since
the normalized price under SWW and AJW-T remains the same
regardless of the under-prediction error, we omit it here. The graph
exhibits the same trend as our model predicts from Figure 9 from
§4.1.1. In addition, our empirical results also emphasize the key
point from our model, which is that under-predicting the waiting
time does not have a significant affect on the results: it does not
alter the normalized price, and it only affects the mean waiting
time when the fixed resources are under-provisioned.
LJW Prediction Accuracy. Figure 22 plots the normalized price,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

 0.4

 0.8

 1.2

 1.6

 2

 0 20 40 60 80 100

LJW Price

N
o
rm

a
liz

e
d
 P

ri
c
e
 (

%
)

Error (%)

Normalized Price (Over) Normalized Price (Under)

 0

 4

 8

 12

 16

 20

 0 20 40 60 80 100

LJW Waiting Time

M
e
a
n
 W

a
it
 T

im
e
 (

h
rs

)

Error (%)

Mean Wait Time (Over) Mean Wait Time (Under)

 0

 4

 8

 12

 0 20 40 60 80 100

O
p
p
o
rt

u
n
it
y
 C

o
s
t
($

)

Error (%)

Opportunity Cost (Over) Opportunity Cost (Under)

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Fig. 22. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with over- and under-prediction
errors (%) in job running time for s=200 m5.16xlarge VMs and t=3 minutes when executing our real production batch workload under LJW.

mean waiting time, and opportunity cost under LJW policy as
a function of the fraction of jobs with inaccurate runtime predic-
tions. We plot the normalized price in (a) for both over-predictions
and under-predictions. In this case, our experiment assumes that
the number of fixed resources is 200 m5.16xlarge VMs and the
long job threshold is 3 minutes. For over-predictions, the x-axis
represents the fraction of jobs with runtime less than the long job
threshold t where we over-predict the running time to be greater
than t, while for under-predictions, the x-axis represents the
fraction of jobs with runtime greater than t where we under-predict
the running time to be less than t. The dotted line shows the price
(a) and mean waiting time (b) from LJW with perfect predictions
of job running time. As above, our empirical results match the
trends shown by our analytical models in Figures 11(a) and 11(b)
from §4.2.1. In particular, our results show that increasing under-
prediction errors has little-to-no effect on the normalized price, but
results in a linear increase in waiting time. In contrast, increasing
over-prediction errors result in a linear increase in price, but a
super-linear decrease in mean waiting time. Finally, Figure 22(c)
shows the opportunity cost for over- and under-prediction errors
as a function of the error rate. As in Figure 11(c) from §4.2.1, this
graph shows that for our real workload, LJW is more sensitive to
over-predictions of job running time than under-predictions, since
under-predictions cause waiting time to quickly drop to zero, while
over-predictions cause a significant increase in waiting time.

7 GENERALIZATION BEYOND CLOUDS

While we focus on cloud platforms in this paper, our queuing
models are general and can also apply to other resources. Just as
general queuing models have proven useful for decades in better
understanding scheduling policies in a variety of contexts, we
believe they will also prove useful in understanding waiting poli-
cies. As physical infrastructure becomes increasingly networked
and programmatically driven, the cloud IaaS model is starting
to spread to other sectors, such as transportation and energy,
where schedulers can similarly choose between using buying or
renting resources to service various types of “jobs.” Under this
emerging Anything-as-a-Service (XaaS) model, schedulers face
the same problem as in the cloud: they must determine how many
fixed resources to provision versus rent on demand based on their
expected workload to optimize their cost and job waiting times.
There are many emerging scenarios in other domains, including
transportation and energy, where waiting policies may apply, albeit
under slightly different circumstances. We discuss scenarios in
energy and transportation where waiting policies may apply, and
how they might differ from their use with cloud platforms. Of
course, fully adapting our models to other scenarios is future work,

since, similar to the cloud, each scenario presents its own specific
context, which might require adaptations to the models.
Transportation. Uber, Lyft, and others have enabled on-demand
transportation by connecting those needing rides with cars (and
drivers) willing to provide them. As a result, users can now choose
between buying their own car, or renting cars on-demand on a
per-ride basis. These services have now evolved to transporting,
not only people, but also packages within urban environments,
e.g., Uber Connect and Lyft Essential Deliveries. Thus, similar to
cloud schedulers, companies that schedule package deliveries now
have a choice between maintaining their own vehicle fleet (and
drivers) to deliver packages, or renting vehicles on-demand. As
with our cloud example, buying a vehicle is cheaper than renting
one if its utilization is high, and thus the optimal provisioning of
vehicles depends on how long the company, and its customers,
are willing to wait for their packages. In this case, the resource
is the vehicle, and the “job” is delivering the package, which
takes different lengths of time depending on the distance to the
destination. Unlike with computing, the distance and thus the job
length is well-known, although there may be some variation due
to traffic. With the emergence of autonomous vehicles, we expect
this scenario to become even more important.
Energy. A similar concept also occurs in the energy sector when
considering choosing between using locally generated solar energy
and grid energy. In this case, solar energy is fixed, since it requires
an initial capital expense, while grid energy is “rented” on-demand
since users can access it anytime and pay only for what they use.
Solar energy’s cost is lower than grid energy is most locations,
as long as it can be productively used. We assume here that
locally generated solar energy is not “grid-tied,” and thus cannot
be sold back to the grid. Such grid-tied solar is increasingly being
restricted as grid solar penetration increases, requiring users to
consume their excess solar energy locally or store it in a battery.
Waiting policies apply to this scenario, since there is a choice
between using locally generated solar energy and grid energy to
execute some “job.” For example, consider a solar-powered EV
charging station where each “job” is the task of fully charging
an EV. An EV charging scheduler must decide whether fixed
solar energy or on-demand grid power should charge each EV.
The optimal provisioning of solar capacity depends on how long
the charging station is willing to have users wait for solar energy
to become available. However, a key difference from the cloud
example is that the fixed solar resource’s capacity is variable in
addition to job durations and inter-arrival times. Thus, optimal
provisioning for solar requires extending our model to account for
stochasticity in the fixed resource capacity, which is part of future
work. Even so, waiting policies that which jobs wait, and for how
long, are fundamental to optimally provisioning these systems.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

8 RELATED WORK

Our work is related to, and builds on, a wide variety of prior work
in multiple different areas, which we summarize below.
Cloud Computing. While our queuing model is general and
applies to any XaaS scheduler, our primary motivating example
is from cloud platforms that present users with a choice of renting
cloud resources on demand at a higher price than purchasing them
(or reserving them for a long period). While prior work focuses
on optimizing the provisioning of reserved VMs in the cloud, it
makes simple workload assumptions. In particular, prior work
often assumes the workload is continuous and uniform, rather
than composed of discrete jobs, which leads to solutions based
on dynamic and integer programming [15], [23], [24], [30], [33],
[34]. The canonical application is a distributed web server with
a front-end load balancer that distributes requests. As a result,
this work does not explore the tradeoff between price and job
waiting time. These techniques do not map to cloud-enabled job
schedulers, such as Kubernetes and Slurm, that must schedule jobs
on on-demand and fixed resources.

Shen et al. focus on a similar problem in the context of a
job scheduler, but do not permit any queuing, and instead use
integer programming to determine the size of VMs to allocate
and how to efficiently pack jobs onto on-demand and reserved
VMs [30]. Our queuing models do not consider jobs with different
resource requirements, and how to bin pack them on resources.
Since providers typically offer VMs in fixed sizes, this results in
some model inaccuracy and cost inefficiency.
Queuing Theory and Marginal Analysis. Our work applies a
number of previously developed queuing theory results to gain
insights into key tradeoffs exposed by different waiting policies.
In particular, our work builds on classic marginal analysis and
queuing results by Erlang and others [19], [25], [31], [35]. The
emergence of cloud-enabled schedulers is increasing the impor-
tance of these results in optimizing cost. As we discuss, AJW’s
analysis is simply that of an M/M/s/∞ queue, and NJW’s
analysis applies classic marginal analysis where jobs never wait
for resources [25]. Our analysis for AJW-T and SWW combines
recent results on reneging and balking by Liu and Kulkarni [27]
with classic marginal analysis, and shows how a waiting time
threshold defines a spectrum between AJW and NJW. Our SWW
analysis also models inaccurate waiting time predictions.

In general, reneging and balking are examples of “customer
abandonment” policies from queuing theory, which model cus-
tomers, i.e., jobs, becoming impatient and leaving the queue. Many
of these models are probabilistic and assume an increasing fraction
of customers (or jobs) abandon the queue as their waiting time
increases based on diverse customer preferences. These customer-
centric models do not apply to our context, where the waiting
policy determines whether jobs abandon the queue (and run on
on-demand resources). Finally, our LJW analysis leverages a well-
known approximation for the waiting time of aM/G/s/∞ queue.
Finally, our compound policy analysis combines and extends
elements from each waiting policy.
Ski Rental Problems. Our problem is similar to the classic ski
rental problem in online algorithms [11]. However, the assumption
in online algorithms is that there is no (or limited) knowledge of
the future, whereas our queueing analysis leverages a workload
characterization to model the system. Ski rental problems also
typically focus on whether to buy or rent a single resource whereas
our problem focuses on provisioning, i.e., how many resources

to buy versus rent, and generally do not consider the cost and
waiting time tradeoff. Recent work examines improving online
algorithms, including the ski rental problem and job scheduling,
using ML predictions [26]. Our model accounts for inaccurate
predictions of waiting time made by ML classifiers, and thus offers
a benchmark accuracy that ML classifiers must satisfy to achieve
specific waiting time and cost targets.
Job Scheduling. Our work is orthogonal to prior work on job
scheduling for fixed resources. A waiting policy is the dual of
a scheduling policy: while a scheduling policy determines which
jobs should execute when fixed resources are available, a waiting
policy determines which jobs should wait when fixed resources
are not available. Given a cloud platform, where jobs never need
wait, the waiting time and cost to execute jobs is a function of the
waiting policy. The scheduling policy may also affect waiting time
and cost. Our simple models assume FCFS scheduling. Some our
waiting policies exhibit similar properties as scheduling policies.
For example, LJW is akin to shortest job first scheduling, and
reduces mean waiting time for a modest increase in cost.
Prediction Accuracy. The SWW, LJW, and compound waiting
policies require knowledge of job runtime and queue waiting
times, which, as we discuss, may not be available a priori. There is
significant prior work on methods for predicting both job running
time and queue waiting time [16], [17], [20], [29], [32]. For
example, [32] estimates job runtime by categorizing jobs using
their common attributes, such as user ID or resources requested,
and chooses the estimate from the category that has produced the
best estimates in the past. Similarly, [29] presents a simple job
runtime and waiting time prediction model for a fixed cluster (or
grid) system, while [17] develops a model to derive the upper
bound of a job’s duration based on both workload and cluster load
prediction errors. [18] also utilize runtime predictions to derive an
upper bound on the cost required to execute a workload, assuming
a particular margin in their prediction errors. Our goal in this
paper is not to improve upon this prior work, but to highlight the
asymmetry in over- and under-predictions with respect to waiting
policies, which can enable future work on prediction methods to
better contextualize their accuracy for cloud-enabled schedulers.

9 CONCLUSION

This paper introduces the concept of a waiting policy for cloud-
enabled schedulers, and defines, models, analyzes, and empirically
validates multiple fundamental waiting policies. Our analysis
reveals key tradeoffs in designing waiting policies under FCFS
and SJF scheduling, and also captures the impact of inaccurate
predictions of job running time and waiting time on the fixed
resource provisioning, price, and mean waiting time. A goal of
this paper is to provide a formal foundation for future work
on waiting policies both analytically and empirically, including
on more general distributions of job inter-arrival and service
times, different scheduling policies, and machine learning (ML)
classifiers to accurately estimate job waiting and running times.
In addition, waiting policies are important in understanding how
users value and provision fixed and on-demand resources. Under-
standing these user valuations is important for cloud providers in
determining how to set the price of fixed and on-demand resources
to maximize their revenue. Finally, while our paper focuses on
evaluating waiting policies in the context of cloud platforms, as
we discuss in §7, the concept is general and may also apply to
emerging XaaS-enabled schedulers for other resources.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3086270, IEEE
Transactions on Parallel and Distributed Systems

REFERENCES

[1] Kubernetes on AWS. https://kubernetes-incubator.github.io/kube-aws/,
Accessed May 2018.

[2] Google Kubernetes Engine. https://cloud.google.com/kubernetes-
engine/, Accessed October 2019.

[3] Slurm Elastic Computing (Cloud Bursting). https://slurm.schedmd.com/
elastic computing.html, Accessed October 2019.

[4] Slurm Workload Manager. https://slurm.schedmd.com/, Accessed Octo-
ber 2019.

[5] AWS OutPost. https://aws.amazon.com/outposts/, Accessed August
2020.

[6] AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.com/
parallelcluster/latest/ug/autoscaling.html, Accessed April 2020.

[7] UMass Trace Repository. http://traces.cs.umass.edu/, Accessed August
2020.

[8] University of Massachusetts Green High Performance Computing Clus-
ter. http://wiki.umassrc.org/wiki/index.php/Main Page, Accessed August
2020.

[9] Waiting Game Job Simulator. https://doi.org/10.5281/zenodo.3875634,
Accessed August 2020.

[10] Waiting Game Job Trace. https://doi.org/10.5281/zenodo.3872168, Ac-
cessed August 2020.

[11] L. Ai, X. Wu, L. Huang, L. Huang, P. Tang, and J. Li. The Multi-shop
Ski Rental Problem. In SIGMETRICS, June 2014.

[12] P. Ambati, N. Bashir, D. Irwin, and P. Shenoy. Waiting Game: Optimally
Provisioning Fixed Resources for Cloud-Enabled Schedulers. In SC,
November 2020.

[13] J. Brodkin. ArsTechnica, Netflix finishes its massive migration
to the Amazon cloud. https://arstechnica.com/information-
technology/2016/02/netflix-finishes-its-massive-migration-to-the-
amazon-cloud/, February 11th 2016.

[14] J. Chen. Medium, Why building your own Deep Learning Computer
is 10x cheaper than AWS. https://medium.com/the-mission/why-
building-your-own-deep-learning-computer-is-10x-cheaper-than-aws-
b1c91b55ce8c, September 24th 2018.

[15] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove. IaaS Reserved
Contract Procurement Optimisation with Load Prediction. Future Gen-
eration Computer Systems, 53, December 2015.

[16] S. Di, D. Kondo, and C. Wang. Optimization and Stabilization of
Composite Service Processing in a Cloud System. In 2013 IEEE/ACM
21st International Symposium on Quality of Service (IWQoS), June 2013.

[17] S. Di, C. Wang, and F. Cappello. Adaptive Algorithm for Minimizing
Cloud Task Length with Prediction Errors. IEEE Transactions on Cloud
Computing, 2(2):194–207, 2014.

[18] S. Di, C. Wang, D. Kondo, and G. Han. Towards Payment-Bound
Analysis in Cloud Systems with Task-Prediction Errors. In 2013 IEEE
Sixth International Conference on Cloud Computing, June 2013.

[19] A. K. Erlang. On the Rational Determination of the Number of Circuits
(1924). In Life and Works of A K. Erlang , E. Brockmeyer, H J. Halstrom
and A. Jensen, Danish Academy of Technical Science, 1948.

[20] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altru-
istic Scheduling in Multi-Resource Clusters. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, 2016.

[21] T. Guo, U. Sharma, S. Sahu, T. Wood, and P. Shenoy. Seagull: Intelligent
Cloud Bursting for Enterprise Applications. In USENIX ATC, June 2012.

[22] T. Hoff. High Scalability, The Eternal Cost Savings of Netflix’s Internal
Spot Market. http://highscalability.com/blog/2017/12/4/the-eternal-cost-
savings-of-netflixs-internal-spot-market.html, December 4th 2017.

[23] Y. Hong, J. Xue, and M. Thottethodi. Dynamic Server Provisioning to
Minimize Cost in an IaaS Cloud. In SIGMETRICS, June 2011.

[24] M. Hu, J. Luo, and B. Veeravalli. Optimal Provisioning for Scheduling
Divisible Loads with Reserved Cloud Resources. In ICON, December
2012.

[25] A. Jensen. Moe’s Principle: An Econometric Investigation Intended as an
Aid in Dimensioning and Managing Telephone Plant. The Copenhagen
Telephone Company, 1950.

[26] R. Kumar, M. Purohit, and Z. Svitkina. Improving Online Algorithms
via ML Predictions. In NIPS, December 2018.

[27] L. Liu and V. Kulkarni. Balking and Reneging in M/G/s Systems:
Exact Analysis and Approximations. Probability in the Engineering and
Informational Sciences, 22(3), July 2008.

[28] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen. Cost-effective Cloud HPC
Resource Provisioning by Building Semi-Elastic Virtual Clusters. In SC,
November 2013.

[29] S. Omer, N.Yigitbasi, A. Iosup, and D. Epema. Trace-based Evaluation
of Job Runtime and Queue Wait Time Predictions in Grids. In HPDC,
June 2009.

[30] S. Shen, K. Deng, A. Iosup, and D. Epema. Scheduling Jobs in the Cloud
using On-demand and Reserved Instances. In Euro-Par, August 2013.

[31] L. Takacs. Introduction to the Theory of Queues. Oxford University
Press, 1962.

[32] A. Tumanov, A. Jiang, J. Park, M. Kozuch, and G. Ganger. Jamaisvu: Ro-
bust Scheduling with Auto-Estimated Job Runtimes, Accessed Septem-
ber 2016.

[33] W. Wang, B. Li, and B. Liang. To Reserve or Not to Reserve: Optimal
Online Multi-Instance Aquisition in IaaS Clouds. In ICAC, June 2013.

[34] W. Wang, D. Niu, B. Li, and B. Liang. Dynamic Cloud Resource
Reservation via Cloud Brokerage. In ICDCS, July 2013.

[35] W. Whitt. Erlang B and C Formulas: Problems and Solutions.
http://www.columbia.edu/ ww2040/ErlangBandCFormulas.pdf, 2002.

Pradeep Ambati Pradeep Ambati is a Ph.D.
candidate in the Electrical and Computer En-
gineering department at the University of Mas-
sachusetts Amherst. He received his M.S. in
Electrical and Computer Engineering from the
University of Massachusetts Amherst in 2017,
and his B.E. in Electrical, Electronics, and Com-
munications Engineering at Chaitanya Bharathi
Institute of Technology in 2012. His research
interests are in optimizing the management of
cloud platforms.

Noman Bashir Noman Bashir is Ph.D. candi-
date in the Electrical and Computer Engineering
department at the University of Massachusetts
Amherst. He received his M.S. in Energy Sys-
tems Engineering from the National University
of Science and Technology, Islamabad in 2016,
and his B.S. in Electrical Engineering at the Uni-
versity of Engineering and Technology, Lahore in
2013. His research interests are in data-driven,
machine learning techniques to optimize the per-
formance of distributed systems.

David Irwin David Irwin is an Associate Profes-
sor in the Department of Electrical and Com-
puter Engineering at the University of Mas-
sachusetts Amherst. He received his Ph.D. and
M.S. in Computer Science from Duke University
in 2007 and 2005, respectively, and his B.S. in
Computer Science and Mathematics from Van-
derbilt University in 2001. His research interests
are broadly in experimental computing systems
with a particular emphasis on sustainability.

Prashant Shenoy Prashant Shenoy received
the B.Tech degree in Computer Science and
Engineering from the Indian Institute of Technol-
ogy, Bombay, in 1993, and the M.S and Ph.D.
degrees in Computer Science from the Univer-
sity of Texas, Austin, in 1994 and 1998, respec-
tively. He is currently a Distinguished Professor
of Computer Science at the University of Mas-
sachusetts. His current research focuses on dis-
tributed systems and networking. He is a fellow
of the ACM, the IEEE, and the AAAS.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 07,2021 at 16:29:28 UTC from IEEE Xplore. Restrictions apply.

