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Many energy optimizations require fine-grained, load-level energy data collected in real time, most typically

by a plug-level energy meter. Online load tracking is the problem of monitoring an individual electrical load’s

energy usage in software by analyzing the building’s aggregate smart meter data. Load tracking differs from

the well-studied problem of load disaggregation in that it emphasizes per-load accuracy and efficient, online

operation rather than accurate disaggregation of every building load via offline analysis. In essence, tracking

a particular load creates a virtual power meter for it, which mimics having a networked-connected power me-

ter attached to the load, but notably does not require tracking every other load as well. We propose PowerPlay,

a model-driven system for performing accurate, high-performance online load tracking. Our results from ap-

plying the system to real-world energy data demonstrate that PowerPlay (i) enables efficient online tracking

on low-power embedded platforms, (ii) scales to thousands of loads (across many buildings) on server plat-

forms, and (iii) improves per-load accuracy by more than a factor of two compared to a state-of-the-art load

disaggregation algorithm. Our results point to the potential of replacing physical energy meters by “virtual”

power meters using a system like PowerPlay.
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1 INTRODUCTION

Collectively, buildings consume significantly more energy (41%) than society’s other broad sec-
tors of consumption—industry (30%) and transportation (29%) (Kelso 2012). As a result, the de-
sign of “smart” buildings that are capable of automatically regulating their energy usage has be-
come an important research area. However, one continuing impediment to improved building
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energy-efficiency is that, despite much prior research (Hnat et al. 2011), accurate online monitoring
of individual electrical loads1 remains problematic at scale. In particular, deploying and maintain-
ing large numbers of embedded networked sensors in every building is prohibitively expensive,
invasive, and unreliable. Unfortunately, timely and accurate knowledge of per-load energy us-
age is a prerequisite for implementing many energy optimization techniques (Barker et al. 2012b;
Carpenter et al. 2012; Taneja et al. 2010).

Rather than relying on expensive instrumentation via embedded sensors to monitor loads, an
alternative approach is to analyze electricity data from smart meters to infer a load’s energy usage.
This approach is becoming increasingly attractive due to the wide deployment of smart meters
that monitor an entire building’s energy usage at small intervals (e.g., minutes to seconds). Such
meters are being widely deployed by electrical utilities and consumers (EIA 2017). In this article, we
propose a new analysis technique, which we call online load tracking, that monitors the operation
of individual building loads (i.e., when they turn on or off and their fine-grained energy usage) by
analyzing smart meter data. In essence, “tracking” a particular load creates a virtual power meter

for it, which mimics a network-connected energy meter attached to the load without needing any
actual hardware beyond the building-wide smart meter.

Tracking loads online (i.e., in real time as a smart meter generates new data) is critical, since
many higher-level energy optimization techniques require such real-time data. For example, an
automated load scheduling policy that reduces a building’s peak power demand by deferring one or
more background loads must know the energy usage of each background load to determine which
of them to defer and for how long (Barker et al. 2012b). As another example, a recommendation
engine may monitor the energy usage of a building’s interactive loads to push energy-efficiency
recommendations to occupants’ smartphones in real-time, directing them to take an immediate
action to better optimize their energy usage, e.g., such as turning off an idle coffee pot (Banerjee
et al. 2011). Essentially, online load tracking is useful for any application that requires attaching a
power meter to a load that transmits its average power usage every pre-specified time interval in
real time.

Our work builds on prior work, which has already developed a variety of analysis techniques for
smart meter data, including load disaggregation (Armel et al. 2013; Hart 1992; Kolter and Johnson
2011; Zeifman and Roth 2011) and occupancy detection (Chen et al. 2013). Many startup companies
are now combining such energy-based analytics with cloud-based, “big data” platforms (Bidgely
2018) to mine building smart meter data en masse. However, we argue that online load tracking
differs from the well-studied problem of complete load disaggregation, often termed Non-Intrusive
Load Monitoring (NILM) (Armel et al. 2013; Hart 1992; Kolter and Johnson 2011; Zeifman and Roth
2011), in two important respects:

Simplicity. Online load tracking is a simpler problem than complete load disaggregation—load
tracking targets individual loads, while complete load disaggregation focuses on disaggregating
an entire building by apportioning its total energy usage across every load. Clearly, if complete,
accurate, and inexpensive disaggregation was feasible, it would subsume the problem of online load
tracking. However, techniques for complete disaggregation continue to suffer from inaccuracy,
especially when disaggregating small loads or scaling up to large numbers of loads (Armel et al.
2013). Thus, load tracking is better suited for scenarios where disaggregating all of a building’s
loads is either infeasible (due to the large number of loads) or simply not necessary.

Efficiency. Prior disaggregation techniques implicitly assume offline analysis and are often
computationally expensive. In contrast, load tracking explicitly targets online monitoring in near
real time. This leads us to focus on performance issues not addressed in prior research, such as

1We use the term electrical load, or simply load, to refer to any distinct appliance or device that consumes electricity.
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enabling tracking to either (i) run on the low-power embedded platforms used in smart meters or
(ii) scale to thousands of loads on server platforms.

To enable high performance, we take a model-driven approach to load tracking, which focuses
on detecting a small number of identifiable load features in smart meter data. These features derive
from a parameterized model of a load’s energy usage profile over time, which is based on a small
number of fundamental electrical characteristics, i.e., whether a load is resistive, inductive, non-
linear, or cyclical. A detailed description of these load types, and their corresponding models, is
described in prior work (Barker et al. 2013). We select a compact set of identifiable load features
from the models and then design efficient online methods for tracking loads by detecting one or
more of these features in smart meter data. In doing so, we make the following contributions:

Feature Selection. We describe a compact set of features that loads may exhibit, including
power steps, spikes, growths, decays, oscillations, and cycles. We extract a load’s features from
its model and then choose a small set of identifiable features for tracking. Using only identifiable
features to track loads increases efficiency, compared to using every feature, while maintaining
accuracy.

Online Load Tracking. For each feature, we design efficient online methods to detect that
feature in smart meter data. Since a load may exhibit multiple features, tracking a load may require
using multiple feature detectors. Hence, we present an online tracking algorithm that combines
multiple feature detectors to efficiently detect and track loads.

Implementation and Evaluation. We implement our load tracking system, called PowerPlay,
and evaluate it “live” using a 1Hz power meter. We show that our approach enables efficient, online
load tracking: on a 2.4GHz, single-core server, PowerPlay is able to track loads in smart meter data
comprised of nearly 100 loads in real time each second—the same resolution of the building’s
power meter. We also show that PowerPlay improves per-load accuracy by more than a factor of
two compared to a state-of-the-art disaggregation algorithm (based on Factorial Hidden Markov
Models (FHMMs) (Kim et al. 2011; Kolter and Johnson 2011)) designed for offline analysis.

Section 2 formally defines the load tracking problem and the related (but distinct) NILM prob-
lem, and briefly surveys prior work to distinguish PowerPlay’s approach. Section 3 describes the
offline components of PowerPlay—namely, modeling an electrical load and extracting its most
identifiable features to track. Section 4 describes the online components of PowerPlay—i.e., the
core load tracking algorithm and the methods to detect the features detailed in Section 3. Section 5
details our prototype “live” implementation of PowerPlay within a real-world home. Section 6 eval-
uates the system’s accuracy, scalability, and sensitivity, and compares its tracking performance to
a FHMM-based NILM technique. Finally, Section 7 concludes.

2 BACKGROUND AND APPROACH

PowerPlay assumes a building equipped with a networked power meter that monitors its aggre-
gate electricity usage over time. We refer to this building power meter as a smart meter. We as-
sume smart homes employ automated energy management techniques, which require real-time
operational knowledge of particular loads’ energy usage, e.g., air conditioners (A/Cs), furnaces,
or other appliances amenable to automated energy management. Rather than directly monitoring
such loads using sensors, our goal is to provide a virtual power meter abstraction that tracks a
load’s energy usage and when it turns on and off from the home’s smart meter data. Load tracking
is useful in scheduling home loads or pushing alerts to users (e.g., to indicate that a laundry cycle
is complete), or when exercising control over “large” loads (such as A/Cs) across many homes to
smooth grid demand.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 23. Publication date: February 2019.
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2.1 Problem Statement

Formally, we define the problem of online tracking for load pi as inferring its average power usage
pi (t ) from a home’s total power usage P (t ) recorded by its smart meter over the period (t − τ , t].
Due to its online nature, computing each pi (t ) must complete within t + ϵ for some value of ϵ .
Observe that tracking a load’s power usage pi (t ) also indirectly reveals when it turns on and off.
Load tracking targets individual loads and does not attempt a full disaggregation, as is common
with NILM techniques, which try to infer pi (t ) for all n building loads, such that

∑
n

i=0 pi (t ) = P (t ).
Further, to the best of our knowledge, no prior NILM technique addresses online operation with a
timing constraint.

Of course, perfectly tracking all n loads would be equivalent to a complete and accurate dis-
aggregation. Since load tracking values system performance, as well as the accuracy of a load’s
inferred power readings, its goal is to both minimize ϵ and maximize accuracy. In this case, we
measure accuracy based on a load’s tracking error factor δ , which is simply the error between a
load’s actual and inferred power usage, normalized by its total energy usage. If p̃i (t ) denotes load
pi ’s actual power usage at time t and pi (t ) denotes its inferred power usage from load tracking at
time t , then we define the tracking error factor over T intervals as

δ =

∑
T

t=1 |p̃i (t ) − pi (t ) |
∑

T

t=1 p̃i (t )
. (1)

Here, the numerator is the sum of the absolute errors at each data point, and the denominator is
the load’s total energy usage overT . Lower values of δ are better; an error factor of zero indicates
perfect tracking. While there is no upper bound on the tracking error factor, an error factor of
one indicates that the reading-to-reading errors are equal to the load’s energy usage. In general, a
tracking error factor near one is not considered good, since simply inferring a load’s energy usage
to be zero at each time t results in δ = 1. Note that this metric is a load-specific variant of the “total
energy correctly assigned” metric from prior work (Kolter and Johnson 2011).

We denote the meter’s data resolution using the sampling time interval τ . A coarser (or longer)
sampling interval “averages out” features in P (t ), eliminating identifiable attributes, while a
finer (or shorter) interval reveals more attributes but also more data to process, as well as more
noise. Our work specifically targets consumer-grade power meters, such as the TED (TED 2018),
eGauge (Egauge 2018), and BrulTech (2018), which commonly provide a sampling resolution of
one reading per second, e.g., τ = 1s. While today’s utility-grade smart meters provide, at most,
minute-level sampling, e.g., a reading once every 5–15min is common, there are indications the
next generation of meters will provide second-level sampling. For example, a U.K. subcommit-
tee defining future smart meter specifications recently released a report advocating a 5s sampling
resolution (UK-Smart 2011).

2.2 Prior Work

Our focus on tracking individual loads, rather than complete disaggregation, stems from a recog-
nition that (i) accurate disaggregation continues to be an elusive goal despite two decades of re-
search, and (ii) the simpler load tracking problem is sufficient for many sensor-based applications
and can be more efficient and accurate. Prior disaggregation approaches differ widely based on τ ’s
value, which ranges from >100,000,000 samples per second (Patel et al. 2007) to one sample per
hour (Kolter and Ng 2010). Interestingly, a recent survey (Armel et al. 2013) points out that, despite
τ ’s importance, prior work often does not report it.

In addition, despite the plethora of prior work on disaggregation, the same survey (Armel
et al. 2013) highlights the lack of research that targets second-level sampling. To the best of our
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Fig. 1. PowerPlay uses offline modeling and feature extraction for online load tracking.

knowledge, only Hart’s original work (Hart 1992) and two recent papers (Kim et al. 2011; Kolter
and Johnson 2011), which both use an approach based on Factorial Hidden Markov Models (FH-
MMs), target data with second-level sampling resolution, albeit for full disaggregation. Since there
is no prior work on online load tracking, we use a FHMM technique modified for online operation
as a baseline for comparing PowerPlay’s performance and accuracy, as described in Section 6.

2.3 Basic Approach

PowerPlay employs a model-driven approach for load tracking, which ensures accuracy and com-
putational efficiency by decomposing tracking into multiple distinct subproblems. Note that prior
work on complete load disaggregation typically conflates these subproblems. The subproblems
include (i) empirically modeling a load, (ii) extracting features from the model, (iii) selecting the
most identifiable features, and, finally, (iv) detecting and tracking a load based on these features.
Figure 1 depicts the basic workflow of each subproblem, which we, in turn, outline briefly below.

1. Empirical Modeling. We first empirically model each load’s energy usage based on prop-
erties of the four basic types of electrical loads, i.e., resistive, inductive, capacitive, and non-linear.
Prior work describes how to derive such models and shows that such empirical models accurately
capture the behavior of nearly every common household load (Barker et al. 2013). We assume a
load’s model accurately describes its energy usage when on.

2. Feature Extraction. After empirically modeling a load, we decompose it into a set of features.
Each feature captures a subset of the load’s pattern of energy usage within the model: The set of
features collectively represents a concise description of how the load’s operation manifests itself in
power data. Intuitively, a load tracking algorithm must “search” for these features within a home’s
aggregate smart meter data to detect the presence of the load and track it.

3. Identifiable Feature Selection. PowerPlay optimizes load tracking efficiency by distilling
a load’s full feature set into a subset of its most identifiable features. Identifiable features are a
load’s most prominent (and unique) features, such that a tracking algorithm need only search for
these identifiable features, rather than the full feature set, to detect and track a load with high
confidence. Clearly, the smaller the set of identifiable features, the more efficient online detection.

4. Online Load Tracking. The final step is to design a tracking algorithm that detects a load’s
identifiable features in the smart meter data in an online fashion.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 23. Publication date: February 2019.
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The first three steps above, namely empirical modeling, feature extraction, and identifiable fea-
ture selection, are one-time tasks performed offline, while PowerPlay’s final detection and tracking
step is continuous and online.

PowerPlay’s model-based, feature-driven tracking differs from low-level time-series match-
ing (Kelly 2011). In essence, the time-series approach takes either a trace or model of a load’s
raw power usage when on and “matches” it against a recent (sliding) window of time-series data
from a smart meter to determine whether it is “embedded” in the data. Matching typically in-
volves computing a time-series distance function, such as Euclidean distance or Dynamic Time
Warping (Keogh and Pazzani 2001), between the load’s raw power usage and the most recent set
of smart meter readings of equal size; a match then occurs when the distance is less than a pre-
defined threshold. Low-level time-series matching is more expensive and less robust than using
higher-level features for load tracking.

3 OFFLINE FEATURE IDENTIFICATION AND SELECTION

We first describe the three offline steps in PowerPlay’s approach, namely modeling a load, extract-
ing a load’s features, and then selecting a subset of identifiable features to track. As this process
is a one-time step, we envision manufacturers profiling each load and supplying its model and
features as part of its technical user manual. The information could also be crowd-sourced, such
as in The Power Consumption Database, which already provides crowd-sourced information on
maximum and idle power for a wide range of loads, indexed by type, manufacturer, and model
number (TPCDB 2018).

3.1 Modeling and Feature Extraction

Electrical loads in an alternating current (AC) system fall into one of four basic types—resistive,
inductive, capacitive, or non-linear. Informally, resistive loads include heating elements, such as
a toaster; inductive loads include AC motors, such as fans or compressors; and non-linear loads
include any type of electronic device, such as TVs or computers. Loads behaves differently based on
their load type, but devices of the same type exhibit many common behaviors. Complex appliances
that operate multiple internal loads, e.g., a refrigerator with a motor-based compressor and interior
light bulb, exhibit a composition of these behaviors. Further details of how the four basic types map
to real-world devices are provided in Barker et al. (2013). Below, we enumerate the identifiable
features that PowerPlay tracks.

Stable Power Steps. The simplest feature is a discrete change in average power from one stable
value to another stable value. Most disaggregation algorithms that analyze real power data, e.g.,
at sampling resolutions coarser than 60Hz in the U.S., consider stable power steps as the only

identifiable feature. In reality, only a few low-power resistive loads, such as incandescent lights,
exhibit only these simple steps when on.

Power Growth, Decay, and Spikes. Many loads experience smooth increases or decreases in
power when turned on (e.g., due to decreasing resistance as a heating element warms), or abrupt
and sudden spikes in power (e.g., when starting an induction motor). We consider power growths,
decays, and spikes as distinct features: spikes capture an initial power surge, while logarithmic
growths and exponential decays capture gradual increases or decreases in power.

Bounded Power Oscillations. Many non-linear devices based on electronic controllers (e.g.,
microwaves) draw a seemingly random amount of power within a fixed range when on. We con-
sider bounded power oscillations between maximum and minimum power thresholds as a distinct
feature resembling a random walk between thresholds.

Stable Power Oscillations. Some non-linear loads only have either an upper threshold or a
lower threshold, resulting in oscillations from a stable power state (e.g., due to the variable draw
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Fig. 2. Annotated features from representative loads.

of a switched mode power supply). Stable power oscillations are a combination of the stable power
feature and power spike feature that captures frequent positive or negative random fluctuations
from a stable power level.

Power Cycles. Many loads include timers that operate them periodically in a repeating pattern,
e.g., a dehumidifier may include a timer that turns it on for two hours out of every 4h. A cyclic
feature captures the interval and conditions at which the features repeat, and potentially their
duration, e.g., the length of a stable power level.

Since essentially every electrical load is either an induction motor, heating element, non-linear
electronics, or some combination thereof, every load exhibits one or more of the above features.
Since the feature set is small, we only require a small set of detection techniques to identify these
features in smart meter data, as described in Section 4. Note that the features above are parame-
terized for each specific load (e.g., the magnitude of a step or the rate of a decay), and may differ
across two loads of the same type, e.g., two A/Cs from different manufacturers may require differ-
ent features and parameters. Thus, PowerPlay’s offline component not only extracts the features
of a load but also determines the parameters for each feature. Figure 2 includes annotated features
in power usage data for a variety of common loads.

3.2 Selecting Identifiable Features

Since basic loads only include a few features, an online load tracking algorithm can use all of their
features to detect their presence. However, complex loads, such as a washing machine, may ex-
hibit an excessively large number of features. Fortunately, searching for every feature is generally
not necessary for accurate detection; it is often sufficient to select a subset of prominent features
to uniquely identify the load. PowerPlay leverages this insight to only search for a small set of
identifiable features to match complex loads, which improves both efficiency and scale.

Selecting identifiable features for a load is a one-time offline task, and presents a tradeoff be-
tween accuracy and performance. A smaller set of identifiable features improves the efficiency of
detection, but decreases tracking’s accuracy. At present, we construct a complex load’s set of iden-
tifiable features experimentally by iteratively adding the next highest magnitude features, e.g., that

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 23. Publication date: February 2019.
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include the largest changes in power, to the feature set and then executing our tracking algorithm
on historical data until the tracking error factor is below a pre-defined threshold.

3.3 Automatic Feature Generation

The current version of PowerPlay relies on pre-generated (and parameterized) features to track
a given device. This requirement may add significant manual overhead, particularly on complex
devices requiring multiple features. While a public feature database such as proposed previously
would largely solve this problem, without such a database, using PowerPlay to track any specific
device requires first designing and tuning its model. The simplest approach is to design the features
by hand, which is tedious and prone to human error.

Notably, however, there is no requirement that the feature generation process be manual. Recent
work such as (Iyengar et al. 2016) proposes methods to computationally generate and parameterize
feature-based models like those used in PowerPlay. With such techniques, the process of construct-
ing the features may be largely automated, vastly simplifying the process of tracking new devices.
The automated models generated in Iyengar et al. (2016) are reported to differ from manually con-
structed models detailed in Barker et al. (2014) by less than 1%, which is well within the margin of
error needed for accurate tracking by PowerPlay.

4 ONLINE LOAD TRACKING

In this section, we first describe PowerPlay’s online tracking algorithm and then describe the var-
ious feature detection techniques the algorithm uses to detect the features from Section 3. The
right side of Figure 1 depicts this process.

4.1 Tracking Algorithm

PowerPlay’s load tracking algorithm is shown in Algorithm 1 and detailed below.
The algorithm takes as static inputs a list of loads to track and a set of identifiable features for

each of these loads. During operation, these inputs are combined with a continuous stream of ag-
gregated data from a smart meter. Feature detectors for each load operate over a moving window
of data points of size W , starting from the most recent data point in the time-series of a home’s
power readings (i.e., a sliding window ending with the most recent reading). This window repre-
sents the minimum time period over which a feature manifests itself. The output of the tracking
algorithm acts as a set of virtual power meters providing device-level power data for each tracked
load.

PowerPlay orders the list of all identifiable features across all loads into three sets, from most to
least distinctive. The first set contains “noisy” features—specifically, all stable and bounded power
oscillation features across all loads in the tracking set. The second set contains the remaining
basic features: steps, spikes, and decay/growth features across all loads. The third and final set
contains any cycle features for loads in the tracking set. Given these ordered sets, the tracking
algorithm repeatedly executes its main loop (the first loop in Algorithm 1), which applies every
feature detector (from all loads) in order. The behavior of each feature detector is described in
Section 4.2.

The system buffers any smart meter data that arrives while executing the main loop, reading
and appending it to the home’s power data time-series on the loop’s next iteration. The time taken
to complete the main loop defines PowerPlay’s online performance, i.e., the minimum ϵ it can
support. For example, if the main loop takes 30s to complete, then the tracking algorithm can
only output each load’s inferred power usage every 30s. The exact value of ϵ depends on available
hardware resources, as well as the number of virtual power meters to simulate—i.e., twice as many
tracked loads will generally increase ϵ by roughly 2×, depending on the exact features involved.
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ALGORITHM 1: PowerPlay’s Load Tracking Algorithm

Inputs:

list of loads to track;

set of identifiable features per load;

unprocessed, aggregated smart meter data (continuously);

Preprocessing:

group all features based on “noise";

1st group: stable min-max and bound oscillations;

2nd group: spikes, growth/decays, and steps;

3rd group: cycles;

while true do

Read in new, unprocessed smart meter data from buffer;

Append new data to existing (filtered) power data time-series;

Execute every stable min-max and bounded oscillation feature detector on filtered data;

if Match then
Identify and label feature;

Filter feature from power data time-series;
end

Execute each spike, growth/decay, and step detector on filtered data;

if Match then
Identify and label feature;

Filter feature from power data time-series;
end

Execute each cycle detector across labeled features;

if Match then
Identify and label cycle;

end

for each load in the tracking set, ordered by load size do

if features present (in model-specified order) then
Identify load’s presence;

Reconstruct load’s inferred power time-series;

filtered load features and full model;
end

end

end

PowerPlay prioritizes detecting the “noisy” features (those containing significant power fluctu-
ations) to filter them before detecting less pronounced features. These noisy features are detected,
labeled, and filtered from the home’s power data as described in Section 4.2. Doing so enables
PowerPlay to more easily and accurately detect the remaining features, as the residual data has
less noise after filtering. Subsequently, PowerPlay applies the remaining basic feature detectors
(e.g., spikes, growth/decays, and steps) to identify and label those features in the data. Finally,
PowerPlay runs the cycle feature detector over the list of labeled features to identify repeating
patterns of features—the cycle feature detector is unique in that its input is a set of labeled fea-
tures rather than raw time-series data, and as such is run last.

For each desired virtual power meter (i.e., each load in the tracking set), PowerPlay then exam-
ines the list of labeled but unassigned features found in the recent past (over a windowW ). If the
identifiable features of the load are found in the window, then it assigns these features to the load
and declares a load match. Upon assigning features to a load, PowerPlay removes them from the
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Fig. 3. Detection of a stable oscillation feature.

list of unassigned features. For composite loads, the set of features (over window W ) may need
to occur in a certain order (or within a certain time interval) to infer a load’s presence. Finally,
whenever PowerPlay detects a load based on its features, it updates the load’s inferred power us-
age pi (t ) using the filtered feature data and the load’s model, which captures the load’s full power
usage behavior. The inferred power consumption constitutes the output from the load’s virtual
power meter.

Load Ordering. All loads are tracked using a single (i.e., shared) pool of features, and a detected
load results in the removal of its features from the pool. As a result, the specific order in which
loads are detected can have a impact on the performance of tracking other loads—either positive (if
the removal of a load’s features disambiguates other loads) or negative (if another load’s feature
is prematurely and incorrectly assigned). PowerPlay tracks devices in order according to their
expected usage over a typical (e.g., 1 day) interval. For example, a dryer (which uses a large amount
of energy on a day in which it is active) will be tracked before a toaster (which uses a much smaller
amount of energy). This approach will tend to prioritize devices with longer active periods, larger
energy steps, and more rapid cycles—all of which will generally correspond to more “recognizable”
devices.

4.2 Feature Detection

PowerPlay’s tracking algorithm relies on individual feature detectors to identify the features de-
scribed in Section 3, including power steps, spikes, growth/decay, bounded oscillations, and stable
min-max oscillations. As with other similar types of analyses, feature detectors first transform raw
power readings into a series of changes in power, or power deltas, e.g., +50W, −30W, +25W, and so
on, before processing them. PowerPlay associates each power delta with one and only one feature
from a single load, removing it from further consideration by other feature detectors. We detail
each of our feature detectors below.

Stable Oscillation Detector. This detector examines data for frequent power oscillations from
a stable minimum or maximum power level, such that for every negative power delta (i.e., a power
drop) there is a corresponding positive power delta in the near future. More formally, it identifies
a stable power oscillation feature by scanning a recent window of data, while maintaining a stable
power level p, which it updates only if power deviates from p by at least T watts for at least
D seconds. The parameters T and D are specific to a particular device that exhibits this feature.
Power changes that update p are considered background activity, which are excluded from the
stable power oscillation feature, while any other oscillations within the window are flagged for
consideration in the feature. Finally, we cluster nearby groups of labeled points to result in the
time range (and flagged deltas) comprising the feature.

To filter the feature from the raw data, we remove from the data any oscillations that do not
result in an update to p, and then use them to reconstruct the feature’s second-to-second energy
usage due to its stable oscillation behavior, as illustrated in Figure 3. In determining the D param-
eter for each load, the goal is to set it long enough to ensure changes in power are not random
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Fig. 4. Example of bounded oscillation detector.

oscillations due to some other load, but short enough to prevent filtering short-lived loads. For T ,
the goal is to select a value large enough to capture the expected oscillations without attributing
the power usage of unrelated background loads to the feature.

Bounded Oscillation Detector. The bounded oscillation detector examines data for groups
of deltas within a certain range that reverse themselves—change from positive to negative—
frequently within a given minimum window size (e.g., 60s). In particular, the detector looks for
a minimum proportion of reversals within the window (e.g., 50%), extending the window size until
the minimum proportion is not met or several seconds have passed without a reversal (i.e., power
use has stabilized, indicating the device is off). Within the resulting window, power deltas exceed-
ing the bounded power range are filtered out, as these changes are presumably caused by other
devices. As an example, we might parameterize a bounded oscillation feature for a particular mi-
crowave by dictating that at least 50% of reversals over its time window are within a 30W range.
Thus, over an initial 15s window, there must be at least eight reversals to detect the feature, at
which point the detector extends the window until (i) the minimum reversal percentage no longer
holds, or (ii) a short period passes, e.g., 10s, without any reversals. This approach serves to ex-
tend the window as long as necessary without overly lengthening the window for long-running
loads. To extract the feature, we pair active windows of reversals with matching on and off power
steps of the approximate expected size for the feature (e.g., 1000W for a particular microwave), as
illustrated in Figure 4.

Growth/Decay Detector. To detect a decay or growth feature, we identify positive steps near
a feature’s expected magnitude, representing possible “on” events. Since the expected decay or
growth rate specifies a maximum per-second negative step (for a decay) or positive step (for a
growth), the detector then scans forward, discarding all changes that exceed the expected maxi-
mum. The result of this process is a filtered time-series that, assuming the data actually represents
a growth or decay, should approximately fit an exponential or logarithmic curve. The detector
then performs the standard Levenberg-Marquardt Algorithm (LMA) (Levenberg 1944) to perform
curve fitting. If the fit fails, or the derived decay/growth parameter is far from the expected value,
then the detector moves on to the next possible “on” event. If the fit is successful, then the detector
identifies the “off” event for the device, or, equivalently, the duration of the decay/growth. To do
this, the detector gradually extends the fitted curve while looking for an “off” step of the expected
magnitude, based on the magnitude of the “on” step plus the cumulative growth or decay of the
fitted curve, which increases with the length of the curve. The detector then chooses the “off” step
within a bounded interval most closely matching the expected value. In this case, bounding pre-
vents a runaway search. After selecting the “off” step, the detector is able to trivially reconstruct
the entire feature, based on the identified “on” and “off” events and the fitted curve between them.
The process of fitting and filtering a decay feature is illustrated in Figure 5.

Spike Detector. Power spikes manifest themselves across multiple seconds, either due to vari-
ation in a load’s exact activation time, i.e., when it activates within the 1s sampling interval, or
due to a short ramp-up period, which is especially prevalent in high-wattage loads. Thus, the spike
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Fig. 5. Operation of the decay/growth detector.

Fig. 6. Operation of the cycle detector.

detector collapses consecutive power steps in the same direction (up or down) into a single aggre-
gate power step. Once collapsed, we identify spikes by a large positive step, followed immediately

by a smaller, but still significant, negative step (currently, at least 30% of the positive step). Impor-
tantly, the spike detector separates the spike itself from its load’s standard power step feature. For
example, PowerPlay considers the series of changes in power [0, 0, +500, −400, 0, 0] both a +100W
power step feature with a 500W power spike. Although the naïve step-only approach would out-
put a +500W step and a −400W step, the spike detector recognizes that this time-series most likely
represents a 100W inductive load, such as a 100W refrigerator. Since the magnitude of a spike is
highly influenced by when a load turns on within the sampling interval, we represent the spike as a
binary flag associated with the regular power step feature, e.g., the +100W step in our refrigerator
example.

Step Detector. While power steps are the simplest feature, the trivial approach to identifying
them (detecting second-to-second deltas of a certain magnitude) is often inaccurate due to the
fact that loads turn on at different points within the sampling interval. Thus, similar to the spike
detector above, we collapse multi-second power deltas in the same direction into a single aggregate
delta before comparing the step’s magnitude against a specific (i.e., parameterized) step feature.
Deltas previously assigned to other features are excluded from consideration in this process.

Cycle Detector. Unlike the detectors above, the cycle detector operates on a series of labeled
features (from the detectors above), and then (i) identifies each potential cyclic feature from the
data and (ii) chooses a sequence of the features that most closely matches the cycle’s expected
period length. Figure 6 illustrates the process, where the cyclic feature is a spike. To determine the
best sequence of cyclic features of a particular type, we chose an arbitrary cyclic feature of the type
at time t1, then the next one closest to time t2 = t1 + period , and so on for tk = tk−1 + period . To
account for features missed by its particular feature detector, we may also match tk to tk = tk−1 +

2 ∗ period . The “error” of the resulting sequence of tk is computed as
∑

k |tk − tk−1 − period |, i.e.,
the amount the sequence differs from the expected period. This error is computed for all sequences
starting from each possible t1, and the detector selects as the predicted cycle the sequence with the
lowest total error. After determining the sequence of cycle “on” events, we filter and reconstruct
the feature’s energy usage by filling in its corresponding load’s model starting from each “on”
event, as shown in the final step of Figure 6.
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As an example, consider a refrigerator with a 30min period and a magnitude range between
80W and 120W for its spikes at startup. Now suppose the detector extracts all spikes (due to the
refrigerator’s compressor) from the data, and of those spikes, each one with a step between 80W
and 120W occur at times [0m, 20m, 30m, 55m]. In this case, the detector labels events at 0m, 30m,
and 55m as the “on” events of the refrigerator, while excluding the the event at 20m, as it is does
not match the expected period. While this is a brute-force approach, the relatively small number
of cyclic loads, ensures the process is not computationally expensive.

4.3 Load Tracking Complexity

Each feature detector operates over the most recent data window of sizeW . Within the window,
most detectors make a single pass over the entire window to look for the relevant feature (e.g.,
a step feature looking for an expected step size, or a decay feature looking for descending steps
matching the expected decay magnitude)—i.e., these detectors are expected to operate in O (W )
time. The cycle detector is an exception in that it operates on other features (rather than the data
window itself), and considers possible cycles beginning with every labeled feature, resulting in
O (n2) expected runtime for n features under consideration. However, in practice, the window size
W will dominate the number of labeled features within the data, and therefore the impact of the
cycle detector on overall performance is minimal.

Each load is modeled using a constant number of features, which varies from load to load but is a
fixed parameter of the load’s model. Thus, given a window sizeW and load count L, we can describe
the overall complexity of the load tracking algorithm as roughlyO (W × L). Importantly, this means
that an increase in the number of tracked loads (or equivalently, the number of features) will not
result in a loss of efficiency for tracking existing loads. Our empirical experiments in Section 6.1
support this result and demonstrate the scalability of the tracking algorithm.

4.4 Limitations

PowerPlay’s load tracking algorithm is designed to mitigate many issues that hinder the perform
of traditional NILM algorithms, such as difficulty when the number of loads in the building is
scaled up. By focusing on identifiable features and loads, PowerPlay retains the ability to track
devices even when disaggregating every load would be infeasible. However, we highlight a few
notable limitations (which are largely experienced by NILM algorithms as well):

• Difficulty tracking loads with few features, or features that are not distinctive. A represen-
tative example of such a load is a typical 60W light, which might only have one feature
(a 60W step) that cannot be isolated with high confidence from noisy smart meter data.
PowerPlay’s strength lies in tracking devices that have multiple distinctive features, such
as dryers, washing machines, air conditioners, and so on. Importantly, however, almost all
higher-consumption loads fall into this latter category, and thus PowerPlay is able to effec-
tively track the most important devices in even a large home.

• Sensitivity to poorly tuned models. Since feature matching is dependent on tuned load
models, a poorly tuned model that does not accurately describe load behavior may lead to
PowerPlay failing to track the load. However, model tuning is an advance, one-time step, and
may be assisted by automated techniques such as those mentioned in Section 3.3. Moreover,
a poorly tuned model would not be expected to interfere with the tracking of other loads.

5 IMPLEMENTATION

We implement PowerPlay’s feature detectors and tracking algorithm as a library in Perl. The input
to the tracking algorithm is a continuous stream of new smart meter data, which PowerPlay buffers

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 23. Publication date: February 2019.



23:14 S. Barker et al.

Fig. 7. When deployed in a home, PowerPlay simulates a virtual power meter attached to each tracked

device.

while executing its main loop. Thus, if each iteration of the main loop takes ϵ time, then the
next iteration will consider the set of data points that arrive and are buffered over the previous ϵ .
The tracking algorithm also has, as input, the set of loads to detect and the corresponding set of
identifiable features (parameterized separately for each load) extracted offline. The algorithm then
outputs, for each load, its inferred per-second power usage over ϵ for each iteration of the main
loop, resulting in a separate time-series of power data for each load in the tracking set.

Figure 7 depicts our system architecture deployed in a home environment. The sole hardware
component of the system is the PowerPlay gateway, which consists of an unobtrusive, low-power
machine that reads aggregate power readings and executes the load tracking algorithm. In con-
junction with the device models stored on the gateway, the output of the gateway consists of power
readings for virtualized power meters attached to each of the tracked devices. The home may also
contain any number of untracked devices (e.g., the light in Figure 7), which are not included in
PowerPlay’s output.

We deploy PowerPlay in a real home following the setup shown in Figure 7. While our deploy-
ment home contains nearly 100 individual loads, we focus on five representative tracked devices:
a freezer, a refrigerator, a dryer, a toaster, and a heat recovery ventilator (HRV). Untracked devices
include other typical household appliances (e.g., coffeemaker, TV) as well as many small loads such
as lights, chargers, and so on. Details on the home, its loads, and our instrumentation are provided
in prior work (Barker et al. 2012a). Briefly, the home includes a Internet-enabled power meter in-
stalled in its electrical panel to monitor the second-to-second power usage of the home and each of
its circuits. There are multitude of such meters now available, both commercially (TED 2018) and
in recent research (Klingensmith et al. 2013), that record home-level and circuit-level data at 1Hz
sampling resolution. We also record ground truth power data (or on-off events, which we correlate
with the power meter data) for individual loads not connected to dedicated circuits using either
Z-Wave Smart Energy Switches, Insteon iMeters, or Insteon SwitchLincs. In total, our deployment
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includes 92 sensors producing roughly four million data points per day. Such an extensive deploy-
ment is necessary to compare our results based the home’s power data with ground truth power
data from each individual load.

6 EVALUATION

We evaluate the accuracy and efficiency of PowerPlay’s online load tracking algorithm in our home
deployment. We first measure the computational overhead of load tracking to quantify Power-
Play’s efficiency, which enables it to either track loads on low-power embedded platforms or scale
to thousands of loads (across many homes) on server platforms. We then evaluate PowerPlay’s
accuracy by quantifying the tracking error factor δ for various loads. In both cases, since there is
no prior work on load tracking, we compare PowerPlay to a complete disaggregation algorithm
(based on FHMMs) modified for online operation. In this case, we use the same approach as Kolter
and Johnson (2011) to evaluate their Reference Energy Disaggregation Dataset (REDD), which is
similar to the technique by Kim et al. (2011).

Since PowerPlay relies on load models computed offline, we manually model the representative
set of tracked loads in our deployment home that collectively cover each feature type. The set
includes a toaster oven (steps, decays), a refrigerator and freezer (steps, spikes, cycles), a heat
recovery ventilator or HRV (stable oscillations), and a dryer (bounded oscillations, cycles, steps,
decays). PowerPlay then tracks these loads in real time using per-second power data for the entire
home (operating nearly 100 distinct loads).

6.1 Tracking Efficiency

PowerPlay operates online by continuously receiving power readings each second and executing
its main loop to perform feature detection on the most recent window of data. Since PowerPlay
stores recent data in memory, I/O overhead is negligible and efficiency is solely a result of the
computational overhead of the feature detectors.

The tracking efficiency of PowerPlay is determined by the computation overhead of the feature
detectors in processing the most recent window of data. This overhead determines both (a) the
tracking delay (ϵ from Section 2) of the system, where ϵ = 1s is perfect (1 Hz) real-time tracking,
and (b) the number of loads (and homes) that a platform can effectively track. Note that, since
PowerPlay’s main loop detects features across all loads, increasing the number of loads, ignoring
parallelism, increases tracking delay across all loads. Thus, we measure the aggregate number of
loads PowerPlay can track, while maintaining a low tracking delay.

We perform the following experiments on a single-core server running Ubuntu Linux (kernel
version 3.2.0) with a 2.4GHz Xeon processor. We vary a common window size across all features,
then observe the tracking delay (ϵ) achieved by PowerPlay. As seen in Figure 8, the tracking delay
is modest across every load. For example, with an excessively long tracking window of 24h, Power-
Play completes in less than 3s per load. As expected, loads with more features (e.g., the dryer) result
in a longer tracking delay. We also observe that the tracking delay effectively varies linearly with
the tracking window size. As a result, shortening the window size linearly decreases the tracking
delay. In practice, most features require significantly less than a 24h window to reliably detect.

Result: PowerPlay is able to track multiple loads in real-time, or near real-time, on commodity

servers.

We also compare PowerPlay’s scalability with a complete disaggregation algorithm based on
FHMMs. Here, we assume a server must track loads across many homes, not just a single home.
We quantify both PowerPlay’s performance (with 24 and 4h tracking windows) and an FHMM
approach following Kolter and Johnson (2011). Since disaggregation using the FHMM is expo-
nential in the number of building power states (which is based on the number of loads and the
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Fig. 8. PowerPlay’s tracking algorithm is efficient, with tracking delays of at most a few seconds.

Fig. 9. PowerPlay efficiency enables it to scale to many homes, while maintaining a low tracking delay.

number of power states per load), the FHMM approach models each load as having only four
power states and disaggregates at the level of circuits rather than individual loads. Since our home
has only 25 circuits, but operates 92 individual loads, our FHMM performance numbers for a com-
plete disaggregation are conservative.

Since the FHMM approach requires a sizable amount of data, e.g., 24h, for complete disaggrega-
tion, it cannot operate on a small window size. As a result, our modified FHMM executes a similar
main loop as PowerPlay, but always disaggregates the most recent 24h of data. Our example online
FHMM incurs an 86s tracking delay to track the loads in Figure 8 for a single home. In contrast,
PowerPlay imposes only a 5.6 and 0.6s delay for the 24 and 4h tracking windows, respectively,
for the same home. We also plot the scalability of each approach on a quad-core server running
at 2.4GHz in Figure 9, where the number of independent homes we track is on the x-axis (each
home is an independent tracking process that runs in parallel). We see that the FHMM approach
does not operate in real-time: even tracking loads in a mere 10 homes imposes a tracking delay
greater than 10min. PowerPlay performs much better with the same 24h time window, supporting
roughly 100 homes with a tracking delay of 2.5min. The more realistic scenario, with a smaller 4h
time window, scales even better: PowerPlay tracks each of the five loads in 1,000 homes (or 5,000
total loads) with a tracking delay of only 2.5min.

Result: PowerPlay scales to support online tracking of many homes; in this case, tracking 5,000

loads across 1,000 homes with a tracking delay of only 2.5min.
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Fig. 10. Both PowerPlay and the FHMM approach accurately assign the energy used by most loads. Assigned

energy shown as absolute values (left) and as an error percentage relative to ground truth (right).

Finally, we also consider PowerPlay’s performance on embedded platforms that track a set
of loads within a home, such as in an embedded energy monitoring and analytics platform
(Klingensmith et al. 2013). To evaluate this case, we deploy PowerPlay on a low-power DreamPlug
computer with a 1.2GHz ARM processor and 512MB memory, costing less than $100. Tracking the
same five loads as above in our deployment home with a 4h tracking window, PowerPlay achieves
a tracking delay of just 18s, with individual load tracking times ranging from less than a second
for the refrigerator to 4s for the toaster.

Result: PowerPlay is capable of online tracking of loads within a home on low-power embedded

platforms.

6.2 Tracking Accuracy

In addition to efficiency, load tracking must also be accurate to be useful. As before, we compare
PowerPlay’s accuracy in tracking multiple loads’ real-time power usage with the FHMM approach,
which performs a complete disaggregation. We take the conservative approach of training the
FHMM on per-load data from the home that we disaggregate, although doing so is often not pos-
sible in practice, since disaggregation is typically only useful in homes where such training data is
not available. As disaggregation often focuses on inferring a breakdown of per-load energy usage
for a building over a long time period, e.g., an entire day or week. Figure 10 shows the actual energy
usage over an entire day for five loads, as well as the inferred energy usage from both PowerPlay
and the FHMM disaggregation. As seen in the left graph of Figure 10, most energy usage is ac-
curately assigned over long periods (especially for larger devices), although the FHMM approach
is less accurate for the heat recovery ventilator due to its stable power oscillations. Viewing the
energy assignments in terms of error percentages from ground truth (the right graph of Figure 10)
demonstrates larger errors, but these are mostly due to missed activity in smaller devices—e.g.,
the FHMM approach fails to recognize the toaster activity entirely. Our results are consistent with
prior work on the FHMM approach, which performs as well, or better, than other prior approaches
to disaggregation (Kim et al. 2011; Kolter and Johnson 2011).

Result: The accuracy of PowerPlay’s inferred energy usage for loads in the tracking set over long

periods is comparable to that of complete disaggregation via a FHMM.

Unfortunately, inferring energy usage over a long period is not appropriate for online operation,
and does not take into account when a load uses energy. We use the tracking error factor δ from
Section 2 to quantify per-load accuracy over time. In Figure 11, we first quantify accuracy as we
scale up the number of non-tracked loads in a home, since more loads result in more (and less
visible) features. In this case, the x-axis is a rough measure of the data’s complexity, i.e., the number
of power deltas >15W. By gradually adding circuits from our home deployment to the smart meter
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Fig. 11. PowerPlay error factors when scaling up to highly noisy and complex smart meter data.

data. For example, the far left side of the graph includes only one circuit (the one including the
corresponding tracked load) and each data point to the right represents a dataset with one more
circuit added to it. For each new circuit, we track the loads and compute the error factor per load
on the new dataset. Figure 11 plots the results for our representative loads. Note that the x-axis
is on a log scale, since a small number of loads contribute the majority of the power deltas. For
comparison, we also include a second model of the freezer that only uses step features (i.e., simply
edge detection), to illustrate the effect of removing all but the most trivial features present in
PowerPlay.

As expected, the error factors increase as we add more circuits and more complexity to a home’s
data. We also see that the freezer’s accuracy is nearly a factor of two higher when including its
full set of identifiable features, compared to restricting it to only step features. However, beyond a
complexity of 1,000 power deltas, the error factors stay roughly constant (with the exception of the
refrigerator), even when the complexity goes to 50,000 power deltas. The refrigerator’s accuracy
decreases significantly when adding a complex load, e.g., in this case a heat recover ventilator that
exhibits stable power oscillations. The reason is that its cycle detector is unable to select spikes
that correspond to the refrigerator, due to the heat recovery ventilator generating a large number
of similarly sized spikes at various intervals.

Figure 12 then examines three specific points from the previous graph and compares them with
the FHMM approach. In Figure 12(a), we use both PowerPlay and the FHMM approach to track a
load from data that only includes that load. As shown, the FHMM approach is nearly perfect, since
its model is trained on the actual data we disaggregate in this case. By comparison, PowerPlay
shows some error due to the fact that our models, while accurate, only include offline features
and not attributes based on when and how long the load operates. However, Figures 12(b) and
12(c) shows the error factor for the same loads if we include every circuit both with Figure 12(b)
and without Figure 12(c) the complex heat recovery ventilator. Prior work on load disaggregation
has generally evaluated their algorithms at small scales, e.g., 5–10 individual loads, that are not
representative of the multitude of small and complex loads present in a modern home. Our results
demonstrate that PowerPlay performs well even as the number and complexity of loads scales up.

The result shows that PowerPlay is significantly more accurate than the FHMM approach for
each load, with the exception of the clothes dryer. While PowerPlay is not more accurate than
the FHMM approach at small scales, as in Figure 12(a), with less “noisy” data, it is significantly
more accurate as complexity increases. For example, PowerPlay is nearly perfect at detecting the
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Fig. 12. PowerPlay is more robust to noisy smart meter data than the FHMM-based approach.

second-to-second power usage of the toaster even within a highly complex trace, largely due to
PowerPlay’s highly accurate model of the toaster (as shown in Figure 12(a)). In general, the im-
provement in error factor for each load over the FHMM approach is greater than 2× (and over
100X in the case of the toaster). Both PowerPlay and the FHMM approach perform well on the
clothes dryer, because it is large compared to the other loads (∼6kW peak power versus ∼1kW
peak power), such that the added complexity does not affect detection.

The time-series power data corresponding to our representative loads is shown in Figure 13. For
each of these devices, the ground-truth time-series data is shown, as well as the inferred time-series
produced from (1) PowerPlay and (2) the FHMM-based approach. Visual inspection confirms that,
in most cases, PowerPlay is more accurately able to track the true usage of the load. The difference
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Fig. 13. Inferred time-series generated from tracking the true power usage (left) of various loads using either

PowerPlay (center) or the Factorial Hidden Markov Model approach (right).
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Fig. 14. Load tracking of a freezer using simple edge detection (left) is insufficient to accurately capture the

true behavior of the freezer (right) in noisy aggregate data.

between PowerPlay and the FHMM approach is most notable in the case of the toaster, for which
the FHMM is effectively unable to detect its actual active interval (versus PowerPlay, which tracks
the toaster with near-perfect accuracy).

Finally, to illustrate the importance the importance of considering the variety of features used
in PowerPlay, the time-series produced from simple edge detection on the freezer is shown in
Figure 14, alongside the actual usage of the freezer. This edge detection time-series corresponds
to the edges-only case previously depicted in Figure 11, and demonstrates that simple steps (the
only feature considered by an edge detector) are not sufficient to track even a modestly complex
device.

Result: PowerPlay maintains a low per-load tracking error factor as the number of loads, and their

complexity, increases in a home. For the loads in our tracking set, the error factor is generally a factor

of two less than a state-of-the-art disaggregation algorithm based on FHMMs.

6.3 Load Ordering

As discussed in Section 4, when tracking multiple loads, PowerPlay intelligently chooses their
tracking order to maximize the accuracy of feature assignments to loads. A poor ordering of loads
can result in reduced tracking accuracy for all devices, while a good ordering of loads can result in
increased tracking accuracy for all loads. This effect will be most pronounced for devices exhibiting
similar features that may be more difficult to correctly assign.

In the case of our representative loads, the two devices exhibiting the most similar features are
the refrigerator and the freezer. Both are compressor-based devices that are active continuously
throughout the day, and their models are thus compromised of similar features (e.g., spikes on
compressor activation and a cyclic activity pattern). As can be seen in Figure 13, the primary
difference between these two devices that is captured by their models is that the freezer has a
more rapid duty cycle (i.e., is active more frequently). As a result, the freezer is expected to use
more energy overall, and therefore is given priority by PowerPlay when assigning features to loads.

To illustrate the significance of this choice, we conduct an experiment in which we override
PowerPlay’s chosen tracking order such that features are assigned to the refrigerator before the
freezer (representing an arbitrary ordering), and then track both loads again. Note that the tracking
order is the only aspect of the system that we modify—the models and features themselves are left
unchanged.

The resulting disaggregation errors for the refrigerator and freezer are shown in Figure 15, for
both cases of excluding the HRV load (a) and including it (b). We see that the disaggregation error
of both devices is improved by ordering loads by load size (which prioritizes the freezer over the
refrigerator). This result is due to the freezer having a more rapid (i.e., distinctive) cyclic activity
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Fig. 15. A load tracking order based on load sizes leads to improved tracking accuracy for all loads.

pattern, which is easier for PowerPlay to extract from the aggregate power data. Once the freezer
features are extracted from the aggregate data, the refrigerator is easier to identify. The inverse
is also true—if the refrigerator is tracked first, then some freezer features are incorrectly assigned
to the refrigerator load, resulting in lower accuracy both for the refrigerator and subsequently for
the freezer. This effect is most pronounced for the aggregate-data case (b), since the addition of
the HRV obscures some features that are otherwise easier to detect.

Note that a useful consequence of this behavior is that tracking additional devices using Power-
Play can improve the tracking accuracy of existing devices by removing distinctive features before
they are erroneously assigned to other loads. In the particular instance of Figure 15, greater refrig-
erator accuracy is only achieved by first identifying and extracting the freezer features (tracking
the refrigerator in isolation results in the lower accuracy of the “arbitrary” case).

Result: PowerPlay achieves greater tracking accuracy across loads by tracking more identifiable

loads first, and thus can increase overall accuracy as the total number of tracked loads is increased.

6.4 Case Study: Demand Response Capacity

Last, we consider a real application of scalable, online load tracking, where a utility wishes to
monitor aggregate demand response capacity across a neighborhood in real time. In this case, we
assume the utility is only able to reduce demand by deferring customers’ A/Cs, such that the de-
mand response capacity at any point in time is the amount of power consumed by each active A/C.
Thus, to estimate demand response capacity over time, the utility must know: (i) what percentage
of its customers have active A/Cs, and (ii) how much power they are consuming.

We assume a utility server collects smart meter data from each home and runs PowerPlay to
track the power usage of customer A/Cs. For our case study, we consider a 10-day period of our
deployment home’s smart meter data, including a central A/C. To simulate many homes across a
neighborhood, we generate 100 virtual homes by randomly time-shifting the A/C’s power usage
within the smart meter data, which results in 100 distinct homes with different time-varying A/C
power usage. PowerPlay then uses our model of the A/C (which includes a mix of the cycle, decay,
and step features) to track each home’s A/C power usage. Finally, we use PowerPlay’s output to
query the set of active A/Cs across homes over time. For example, at a random point in time, 34
of the 100 homes had an active A/C, with PowerPlay correctly identifying the status of each A/C
with 96% accuracy. In particular, PowerPlay detected 30 out of 34 active A/Cs and all inactive A/Cs,
demonstrating 88% recall and 100% precision. Of the 30 detected A/Cs, PowerPlay’s second-to-
second inferred power readings differed from the A/Cs actual power usage by an average of 104W
(out of its 3kW peak and 2.6kW average power). PowerPlay estimated the total A/C power usage
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across the neighborhood, i.e., its demand response capacity, to be 78.1kW, which differs from the
actual capacity of 87.9kW by 12%, with the difference primarily due to the four undetected active
A/Cs. Excluding the undetected A/Cs, the total A/C power inferred by PowerPlay differed from
the actual power by less than 1%.

Result: PowerPlay enables new applications for online analytics on smart meter data—in this case

accurate, online estimation of the grid’s demand response capacity,

7 CONCLUSIONS

This article presents PowerPlay, a system for online load tracking that emphasizes both efficiency
and accuracy. In essence, “tracking” a particular load creates a virtual power meter for it, which
mimics having a network-connected energy meter attached to it. PowerPlay takes a model-driven
approach to online load tracking, which focuses on detecting identifiable load features in smart
meter data. By focusing on a small set of identifiable features common across loads, PowerPlay
employs models of specific devices to efficiently detect them even in the presence of many other
(either tracked or untracked) devices. Using a higher-level feature abstraction allows PowerPlay
to remain computationally tractable even on low-power machines and results in accurate load
tracking in close to real-time. Our experiments on a set of representative loads in a real-world home
demonstrate that PowerPlay improves per-load tracking accuracy by a factor of two compared to a
FHMM-based disaggregation algorithm. These results point to the potential of using a system like
PowerPlay to replace physical plug-level energy meters in a sensing deployment with software-
based “virtual” energy meters.
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