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ABSTRACT

Modern cloud applications are complex distributed systems with
tens or hundreds of interacting software components. An important
management task in cloud computing platforms is to predict the
impact of a certain workload or reconfiguration change on the per-
formance of the application. Such predictions require the design of
“what-if” models of the application that take as input hypothetical
changes in the application’s workload or environment and estimate
its impact on performance. We present a workload-based what-if
analysis system that uses commonly available monitoring informa-
tion in large scale systems to enable the administrators to ask a
variety of workload-based “what-if”” queries about the system. We
use a network of queues to analytically model the behavior of large
distributed cloud applications. Our system automatically generates
node-level queueing models and then uses model composition to
build system-wide models. We employ a simple what-if query lan-
guage and an intelligent query execution algorithm that employs
on-the-fly model construction and a change propagation algorithm
to efficiently answer queries on large scale systems. We have built
a prototype and have used traces from two large production cloud
applications from a financial institution as well as real-world syn-
thetic applications to evaluate its what-if modeling framework. Our
experimental evaluation validates the accuracy of our node-level
resource usage, latency and workload models and then shows how
our system enables what-if analysis in four different cloud applica-
tions.

1. INTRODUCTION

Today online server applications have become popular in do-
mains ranging from banking, finance, e-commerce, and social net-
working. With the increasing popularity of cloud computing, many
such server applications today run on cloud computing platforms.
These cloud computing platforms can be either private cloud plat-
forms that are used internally within an enterprise or public cloud
platforms that are publicly available to be used on a pay-as-you-go
basis.

As an example of such a cloud computing application, consider
an online stock trade processing application of a major financial
firm that runs on a private cloud infrastcuture. The application con-
sists of 471 separate software components that process incoming
stock trades at low latencies. Similarly, another application from
the financial domain that utilizes cloud computing is an application
that disseminates stock prices and market news to the terminals of
stock traders; this application consists of 8970 components. Such
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cloud computing applications differ significantly in scale and com-
plexity when compared to traditional multi-tier web applications.

Typical cloud computing applications evolve over time as new
functionality is added, its workload volume grows, or its hardware
or software is updated. To deal with such changes, an important
management task for administrators is to predict the impact of any
planned (or hypothetical) change on the performance of individual
components or the entire system. This task, which is referred to
as what-if analysis, requires the design of what-if models that take
as input a potential change in the application workload or its set-
tings and predict the impact of that change on application behavior.
However, given the complexity of today’s cloud computing appli-
cations, manual design of such what-if models is no longer feasible
since administrators may not be able to comprehend the behavior of
acomplex system of tens of interacting components. Consequently,
a what-if analysis system must be able to automatically derive such
models from prior observations of application’s behavior. Further,
the system must be able to scale to large complex applications with
hundreds of interacting components, while allowing rich what-if
analysis efficiently. While a number of modeling techniques have
been proposed for distributed or multi-tier web applications [12,
15, 17, 14, 9, 13], such models are not directly targeted for what-
if analysis or are not designed to scale to larger cloud computing
applications.

In this paper, we present a what-if analysis system to predict the
impact of workload changes on the behavior of cloud computing
applications. We make the following contributions:

e Modeling of complex cloud applications: We employ a queuing-
theoretic framework to model large distributed cloud com-
puting applications. Our modeling framework is based on a
network of queues and captures the dependence between the
workload of each component of the application and the corre-
sponding resource utilization, request latency and the outgo-
ing workloads to other components. We use monitoring data
and request logs to estimate the parameters of such a model
and employ model composition to create larger system-level
models for groups of interacting application components.

o [ntelligent query execution: We use a novel change propa-
gation algorithm that uses these models to execute a what-
if query and determine the impact of a workload change on
other components. This algorithm first computes an influ-
ence graph to determine which application components are
impacted by the specified what-if query and then uses a change
propagation technique to propagate the specified workload
change through each component in the influence graph. The
change propagation algorithm can handle application com-
ponents that saturate due to a workload increase, which en-
hances query result accuracy.



Application [#Nodes[#Edges[Duration] Metric [# of Records
Market Data 9970 22719 | 1day [OULEOINE[ 7763764

Dissemintation bytes
StockTrade 1471 12073 | 4 days [UL20INE] 6060952
rocessmg requests

Table 1: Characteristics of Production Traces

e Prototype Implementation: We have implemented a proto-
type of our what-if modeling framework. Our prototype in-
corporates a What-If Query Language (WIFQL) that can be
used by administrators to pose queries. Since our prototype
needs to handle large cloud applications with hundreds of in-
teracting components, we implement several optimizations
to scale the modeling framework to such large applications.
Specifically our system uses on-the-fly model construction
and employs a cache of preciously constructed models to re-
duce model computation overhead.

e FEvaluation based on real traces and real-world synthetic ap-
plications: We conduct an experimental evaluation of our
system using traces of two large production applications from
a financial institution as well as realistic synthetic applica-
tions. Our experimental results validate the accuracy of our
modeling framework in building build node-level resource
usage, latency and workload models and illustrate our sys-
tem’s ability to enable accurate what-if analysis.

2. BACKGROUND AND PROBLEM FOR-
MULATION

Our work assumes a large distributed application with N inter-
acting components running on a cloud infrastructure. We assume
that the application is structured as a directed acyclic graph (DAG),
where each vertex represents a software component and edges cap-
ture the interactions (i.e., flow of requests) between neighboring
nodes. For simplicity, we assume that each component runs on a
separate physical (or virtual) machine.! We assume that the DAG
has one or more source nodes, that serve as entry points for appli-
cation requests and one or more sinks, that serve as exits. The flow
and processing of requests through such applications is captured
by the DAG structure. This assumption also includes traditional
multi-tier applications where the response of the request goes back
through the source nodes. In such applications, we assume that the
flow of the response does not consume resources and therefore we
do not consider the flow of the response while modeling.

As examples of such distributed applications we consider two
production financial applications. The first application is a stock
trade processing application at a major financial firm; the applica-
tion consists of 471 nodes and 2073 edges. New stock trade re-
quests arrive at one of the source nodes and flow through the sys-
tem and exit from the sink nodes as “results”. Each intermediate
node performs some intermediate processing on the trade request
and triggers additional requests at downstream nodes. Nodes may
aggregate incoming stock trades or break down a large stock order
into smaller requests at downstream nodes. The second applica-
tion is a market data dissemination application that disseminates
stock prices and news updates for a company to trading terminals
(“desktops”) of stock traders. In this case, news items arrive from
a number of sources and stock prices are obtained from a variety
of exchanges, and this information is processed, transformed, fil-
tered and/or aggregated and disseminated to any desktop node that

"This assumption is easily relaxed and we employ it for simplicity
of exposition.

has subscribed to information for a particular company. This appli-
cation has 8970 nodes and 22719 edges and must provide updates
at low latency in order for stock traders to make trades based on
the latest market news. Table 1 shows the various characteristics of
these two cloud applications.

Thus, we assume that requests flow through the DAG, with inter-
mediate processing at each node; a request may trigger multiple re-
quests at one or more downstream child nodes, and each node may
aggregate requests from upstream parents. As can be seen, such ap-
plication are significantly larger and more complex than traditional
multi-tier web applications.

We assume that the DAG structure for each application is known
a priori (there are automated techniques to derive the DAG struc-
ture by observing incoming and outgoing traffic at each node [10]).
‘We assume that each node in the DAG is a black box—i.e., we can
observe the incoming and outgoing request streams along its edges
and the total node-level utilization but that we have no knowledge
of the internals of the software component and how it processes
each request. This is a reasonable assumption in practice since IT
administrators typically do not have direct knowledge of the appli-
cation logic inside a software component, requiring us to treat it as
a black box. However, administrators have access to request logs
that the application components may generate and can also track
OS-level resource utilizations on each node.

We assume that there are R different types of requests in the en-
tire distributed application. Each node can receive different types
of requests belonging to the R types and can in turn trigger one or
more requests of one of the R types at downstream child nodes.
Given our black box assumption, the precise dependence of what
type of outputs are generated by what set of inputs is unknown
(and must be learned automatically by correlating request logs at a
parent and a child). Similarly, the precise processing demands im-
posed by a set of requests and the request latencies/response times
are unknown and must also be learned.

Assuming such a cloud application, our first problem is to model
each application component (i.e., node of the DAG) by captur-
ing the dependence between the incoming workload mix and the
request latency, resource utilization, and the outgoing workload.
Second, we need to use these node-level models to create system-
level models that capture the behavior of a group of interacting
nodes. Third, given such system-level models, we wish to en-
able rich workload-based what-if analysis of the distributed ap-
plication. Such an analysis should allow administrators to pose
what-if queries to determine the impact of a workload change at
a particular node(s) on some other node(s) of the system. A typ-
ical what-if query is assumed to contain two parts: (i) the “if”
part, which specifies the hypothetical workload change, and (ii) the
“what” part, which specifies the nodes where the impact of this
change should be computed. For instance, a volume-based what-if
query could ask “what is the impact of doubling the volume of re-
quests seen by source node ¢ on the incoming workload and CPU
utilization seen at some downstream node j?” Similarly, what-if
analysis could pose queries on the impact of a change in the work-
load mix: “what is the impact of a change in the workload mix
from < Aa,Ap,--- > to < Ny, Mg, -+ > at intermediate node
¢ on the disk utilization of a downstream node j?” Queries could
also be concerned with the impact on latency: “what is the impact
of doubling the volume of type B requests at node j on the latency
of requests at node ¢?”” Queries could also pose general questions
such as “will any node in the system saturate if the incoming work-
load at all source nodes increase by 30%7?”.

Thus, to design our what-if analysis system, we must address the
following three problems: (i) how should we model the dependence



Figure 1: Modeling a cloud application using an open network
of queues

between the incoming workload at a node and the request latency,
node utilization and the outgoing workload to downstream nodes?
(i) how should we combine node-level models to create system-
level models that capture the aggregate behavior of a group of in-
teracting nodes in the DAG? (iii) what algorithms should be used
to efficiently execute a what-if query using these models? From
an implementation standpoint, we are interested in a fourth ques-
tion as well: (iv) How should our system scale to complex cloud
applications with tens or hundreds of components?

3. MODELING A CLOUD COMPUTING AP-
PLICATION

In this section, we first present a queuing model for a cloud com-
puting application that allows us to model the utilization and re-
sponse time of these nodes. We then describe the construction of
models to capture the input/output workload dependencies of these
nodes. Finally, we explain how these node-level models are com-
posed to construct system-wide models.

3.1 Queuing theoretic node-level models

Consider the DAG of a cloud computing application with k nodes
denoted by n1, ..., nk and R different type of requests. We model
the application using an open network of k queues, one for each
node with R classes of requests. We model each nodeasa M/G/1/
PS queue i.e. the service times are assumed to have an arbitrary
distribution and the service discipline at each node is assumed to be
processor sharing (PS). Requests can arrive at a queue from other
queues which are its parents in the DAG or in the case of source
nodes of the DAG from external sources. For analytical tractabil-
ity we assume that the distribution of inter-arrival times of requests
coming from outside have a poisson distribution. We denote the
arrival rates of requests of class r at the queue n; from outside
by Ap ;. We assume that different classes of requests arriving at
a queue have different mean service rates. We denote the mean
service rate of requests of class r at node i by y; .

Thus the DAG of a cloud computing application is modeled as
an open network of queues as shown in Figure 1. We use the well
known queueing theory result called the BCMP theorem [4] to an-
alyze this network of queues. The BCMP theorem states that for
such queueing networks the utilization of a node n;, denoted by p;,
is given by :

R R r
p=2R= o ()
i=1 =1 "7

where p; denotes the resource utilization at node n; due to class
r requests, A; denotes the arrival rate of requests of type r at node
n; and u; denotes the service rate of requests of type 7 at node
ni. This equation models the resource utilization of the node as
a function of the per-class arrival rate and per-class service rates.

Similarly, the average number of requests of type r at node n; under
steady-state, denoted by K T s given by:

K =" )

We can now use Little’s Law [5] to find out the T:, the average
response time of requests of type r at node n; using Equations 1
and 2:

T

- K, 1
e A —
AL (L= pi)

This equation models the response time at a node as a function of
the total node resource utilization p; and the per-class service rate
i -

Given a value for the per-class workload at a node A\ we can use
Equation 1 to find out the utilization p; and then use the computed
value p; to find out the response time using Equation 3. The per-
class service times 4’ is the only unknown in the equations. Since
we assume that each node of the application is a black-box we need
to estimate these unknowns from the available information gath-
ered from monitoring of the node. We assume that requests logs at
a node contain an entry for each incoming requests containing the
timestamp and the requests string or type of request and that the re-
source utilization of the node is being periodically monitored using
atool like iostat. Given such logs, multiple values of p; and A can
be collected over time. Since Equation 1 captures the relationship
between these R + 1 variables, the values of the unknown per-class
service rates p; can be numerically estimated using a regression
method such as least squares.

3.2 Workload models

While queueing theory allows us to model the performance met-
rics of a node, we also need to capture the relationship between the
incoming workload and the outgoing workload of a node.

To understand the node-level workload models that we need to
build, consider the node shown in Figure 2. This node n1 has two
parent nodes n2 and ng and three child nodes n4, ns and ng. Let
A5 1 and A% ; denote the arrival rate of requests of type  from node
ngo and n3 respectively to node n1. Similarly, let AT 4, AT 5 and AT ¢
denote the arrival rate of requests of type 7 at node n4, ns and ne
respectively from node n;. We need to build models that capture
the workload of each outgoing edge as functions of workload of the
incoming edges. Thus, we seek a function for each of AT 4, A 5

3)

. —
and /\16 that expresses them as a function of A2 1 and A3 1 where

H . .

Ai,; is short-hand for observed rates of various request types on the
edge going from node n; to nj i.e. (Af;, A7, -+ Af;) . Similarly,
we seek functions for each of the other request types :

Pa = f0ai, N

We model workload-to-workload dependencies as piecewise lin-
ear functions. Although these dependencies are linear in steady
state by the principle of job flow balance [5, 11], we choose piece-
wise linear modeling to capture the behavior of caches in servers.
For instance, a node with a cache can initially be sending a large
number of requests to downstream nodes when the cache is empty,
but when the cache becomes full, it might serve requests from its
cache instead of sending requests to its downstream nodes. This
changing dependence of outgoing workload on incoming workload
can be captured by two linear functions, one each for when a cache
is cold and and when it is hot. To incorporate piecewise linear
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Figure 2: Node-level model Figure 3: Model Composition

modeling, we replace the linear model shown in Equation 4 with
a piecewise-linear model by dividing the 2R-dimensional space
spanned by (A2,1, A3,1) into n hypercube regions. A linear model
is then used to capture the relationship in each of these regions in-
dependently. Thus, we can rewrite Equation 4 as a set of linear
functions one for each region :

r= w, T\ T w, T\ T . Ty
ST (AYT NS+ BTN ) 1f(Ai1>7Ai1>) €7
ST (AYTNs L+ By s ) if (M21, As1) € Za
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®
where Z; is the i*" hypercube region.
Equation 5 relates the outgoing workload to incoming workload,
but to use it for computing the outgoing workload A’4 for a given

value of incoming workload A2 1 and A3,1 we need to first find the
number of regions, n, and the regions themselves, Z;. We then need
to find individual linear functions for each region by computing the
weights of the corresponding linear function, A}"" and B}""". We
use a regression analysis technique called multivariate adaptive re-
gression splines (MARS) [7] that automatically fits piecewise linear
functions on data. Our system uses the monitoring data that con-
tains multiple measurements of the variables ):1> , )E) and \Y4 to
give as training data to MARS which finds out the different regions
and the linear function in each region.

3.3 Model Composition: From Node-level to
System-level Models

We use node-level models to construct system-wide models us-
ing model composition. Model composition essentially “chains”
together multiple node-level models to compute the workload, re-
source utilization and response time of a node as a function of one
or more ancestor nodes. We illustrate the composition algorithm
used by our system using an example. Consider the sub-graph in
Figure 3 that shows a parent node n2, extending our earlier example
in Figure 2. At the node-level, we can compute the outgoing work-

load going from node n to node n1, A2,1, as a set of R piecewise
linear functions, one for each request type :

A1 = f31(Xs.2, A7.2)

Equation 4 gives the outgoing workload going fron node n; to ng4 :
— —

Aa = fla(21, A3

Substituting the value of A2 1 from Equation 6 into Equation 7 we
obtain a “composed model” :

ISw<R (6
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where  f2,1(As,2,A7,2) is a shorthand for (f21,1()\g,2,
— — — — .
A7.2), f31(As,2,A7.2) 5 - - -, f21(Xs,2, A7,2). Doing so enables the

outgoing workload sent from node n; to n4 to be expressed as a
function of incoming workload of parent node ns. This process
can be repeated for the outgoing workload going to nodes ns and
ne from node n1 and can also be recursively extended to nodes that
are further upstream from ns.

Creation of the composed model shown in Equation 8 requires
composing the piecewise linear function fi’; with each of the R
piecewise linear functions f3’;,1 < w < R. Two piecewise lin-
ear functions can be easily composed by composing the individual
linear functions in each corresponding region which leads to an-
other piecewise linear function. Thus the composed model shown
in Equation 8 is again a piecewise linear function which captures
the relation between the outgoing workload of node n; and the in-
coming workload of a parent node na.

We can now do a similar composition to find the dependence
of the resource utilization of node ni, denoted by p1, and the re-
sponse time of requests of type r at node n1, denoted by T on the

incoming workload of parent node n denoted by Ag 2, A7,2. Sub-
stituting Equation 6 into the resource utilization equation given by
Equation 1 we get :
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which expresses the resource utilization of node n; as a function
of the incoming workload of node n2. Similarly, we can substitute
from Equation 10 into the response time Equation 3 to express the
response time of request type r at node n; as a function of the
incoming workload of parent node n> :

_
pi(1 = p1)

4. ANSWERING WHAT-IF QUERIES

In this section we describe the three step process used by our
system to answer a given what-if query. The execution of a what-if
query is a three step process comprising of: 1) finding the influ-
ence graph of the given query, 2) creating the node-level models
of the nodes in the influence graph using the modeling technique
described above and 3) using the change propagation algorithm
to execute the query. We describe the three steps in greater detail
below.

4.1 On-the-Fly Model Construction using the
Influence Graph

Since the number of nodes and edges in the DAG may be large in
complex applications, it is not economical to precompute all possi-
ble node-level models and periodically recompute models that have
become invalid due to an actual workload or hardware change. In-
stead we employ a “just-in-time” policy to compute models on-
the-fly when a query arrives; only those models that are necessary
to answer the query are computed. Models from prior queries are
cached and reused if they are still valid. We use the notion of an in-
fluence graph to determine which models should be constructed to
answer a query. Given a what-if query, the influence graph is the set
of all possible paths from the nodes in the “if” part of the query to
the nodes in the “what” part. Basically the influence of a workload
change will propagate along all paths from the “if”” nodes/edges to
the “what” nodes; so the influence graph captures all of the nodes

Ty = an



that must be considered to answer the query and other nodes in the
DAG can be ignored.

Upon the arrival of a what-if query, our system first computes
the influence graph by generating the set of nodes that lie along all
paths from the “if” nodes/edges to the “what” nodes. It then trig-
gers on-demand construction of node-level workload models for all
the nodes in the influence graph and node-level resource utilization
and response time models for the “what” nodes alone. The use of
the influence graph to prune the DAG and the reuse of previously
computed models from the model cache enhances the scalability
of the system and reduces computational overheads. The influence
graph is also crucial for efficient query execution, as we will see in
the next section.

4.2 Query Execution Using Change Propaga-
tion

After creating the node-level models for the nodes of the influ-
ence graph, we now need to “execute” the query. Query execu-
tion involves propagating the specified workload change through
the influence graph, one node at a time, to compute its final im-
pact on the nodes/edges specified in the “what” part of the query.
Once the workload change has been propagated to the nodes in
the “what” part, the node-level models can be used to answer the
query. Change propagation is equivalent to model composition—
instead of directly computing a composed model for the “what”
nodes/edges as a function of the “if”” nodes/edges, the propagation
algorithm propagates the specified change through the influence
graph all the way down to the nodes/edges in the “what” part to
achieve the same result.

Given node-level models and the influence graph, the change
propagation algorithm traverses the influence graph in a breadth
first manner. It starts with the nodes/edges in the “if” part and com-
putes the values for the changed workload and then uses the model
to compute its impact on the outgoing workload. This process is
referred to as propagating the change from the incoming edges of
a node to its outgoing edges. To illustrate, consider a query that is
interested in estimating the impact of a doubling of the workload
for a particular edge. If the original request rate was 10 req/s, then
the new workload will be 20 req/s for that edge. This new value
is used, along with the unchanged request rates for all other edges
not impacted by the change, to compute the outgoing request rates
for that node.

The algorithm proceeds in a breadth first fashion through the in-
fluence graph, starting with the “if”” nodes/edges and computing the
outgoing workload for each of the “if”” nodes. The outgoing work-
load of a node becomes the incoming workload for downstream
node(s), and the change propagation process repeats, one node at
a time, in a breadth-first fashion, until the change has propagated
to all of the “what” nodes/edges. At this point, the algorithm com-
putes the value of interest at the node by using the node-level mod-
els and terminates.

4.3 Saturation-aware Change Propagation

The basic change propagation algorithm outlined above naively
assumes that each node has infinite resources and that any specified
workload change will fully propagate through all of the nodes. In
practice, however, each node has finite resources. If the change
to the incoming workload causes the node to saturate, then only a
portion of a workload increase will propagate to the downstream
nodes and the remaining requests will be dropped. For example,
if a node is presently servicing 100 req/s and is 70% utilized, then
a doubling of the workload may cause the node to saturate long
before the workload increases to 200 req/s and drop some of the

query = what_part if_part ;
what_part = “compute” ( simple_compute_part | compound_compute_part );
compound_compute_part = ( simple_compute_part “AND”
( simple_compute_part | compound_compute_part ));
simple_compute_part = ( “cpu utilization” | “spare capacity” | “latency” )
“at nodes” node_id {, node_id } ) |
“workload on” (edge-id {, edge-id } );
edge_id = “(” node_id, node_id “)” ;
if_part = “if” ( simple_change_part | compound_change_part );
compound_change_part = ( simple_change_part “AND”
( simple_change_part | compound_change_part) )
<EOL>;
simple_change_part = workload_change | hardware_change ;
workload_change = “workload” { “for request class”
request_class_id } ( (“at node” node_id ) |
(“on edge” edge-id ) ) set_operator value ;
hardware_change = ( “cpu_speed” | “memory” | “disk_speed” )
set_operator value ;
set_operator = “*="" | </="";

Figure 4: The grammar for the What-If Query Language (WIFQL)

incoming requests. Thus, downstream nodes will not see the full
impact of the doubling of the workload at this parent node.

Hence change propagation must consider the impact of the work-
load change on the node utilization and only propagate the full
workload change in the absence of saturation; otherwise, only that
fraction of the workload increase, until saturation is reached, should
be propagated. To do so, we enhance our basic change propagation
algorithm to make it saturation-aware. Our enhanced algorithm
also proceeds in a breadth-first fashion. However, it first com-
putes the utilization of all resources on the node using the incoming
workload rates (using Equation 1). If the utilization of any resource
exceeds 100%, then the workload change will cause saturation on
the node. In this case, the incoming request rates are reduced pro-
portionately so that the utilization of the bottleneck resource drops
to just under 100%. This reduced workload is propagated through
the node, like before and the remaining requests are assumed to
be dropped. On the other hand, if no resource utilization exceeds
100%, then the full incoming workload is propagated, like in the
basic algorithm. Our enhanced algorithm ensures that the impact
on the “what” nodes and edges will match the actual behavior in
practice; a list of saturated intermediate nodes can be optionally
listed with the query result.

S. SYSTEM IMPLEMENTATION

This section describes WIFQL, a query language that can be used
to pose what-if queries to our system and the implementation de-
tails of our prototype.

5.1 Posing What-if Queries

Since the goal of our system is to enable users to understand the
impact of potential workload changes on the system behavior, our
system supports a simple query language to enable a rich set of
queries to be posed by IT administrators. Any query in our What-
If Query Language (WIFQL) has two parts: a what part and an if
part. The if part of the query describes the hypothetical change,
while the what part asks the system to compute the impact of that
change on different performance metrics at one or more nodes in
the system. As an example of an WIFQL query, consider

compute workload on edges (n1,n4), (n1,n5) , (n1,n6)
cpu utilization at nodes n1,n2 latency at nodes n1, n2
if workload on (n2,n1) *=2

workload on (n3,n1) *= 0.5
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Figure 5: System Architecture

This example query asks the system to compute the impact of a
doubling of the workload along the edge from node n2 to n; and a
halving of the workload along the edge from node n3 to n1 on the
CPU utilization and latency at nodes n1 and no and the workload
on the edges going from node n; to nodes n4,ns5 and ne.

Figure 4 describes our query language grammar. As shown, the
if part allows users to specify hypothetical changes to the work-
load or changes to the hardware (e.g., a faster CPU). The workload
changes, which is the focus of this work, can be specified by iden-
tifying one or more edges or nodes in the DAG and indicating a
change in volume or a change in the mix of requests; set operators
such as multiply and divide can be used to specify relative changes
to the current workload, rather than absolute values. The what part
specifies the performance metrics of interest at particular nodes or
edges; several metrics are supported including resource utilizations,
workloads, latencies or spare capacities. As indicated earlier, we
assume that the DAG representing the application is known a pri-
ori and is used by queries to refer to particular nodes and edges of
interest and specify workload changes on these nodes or edges.

5.2 Prototype Implementation

We have implemented a prototype of our system using Python
and the R statistical language to perform what-if analysis in large
cloud applications. Figure 5 depicts the high-level architecture of
our system.

The frontend is implemented using a python implementation of
the lex and yacc parsing tools. It accepts user-posed queries and
parses them by using the grammar rules of WIFQL. User-posed
queries are then executed by the execution engine, which com-
prises of two key components; the on-the-fly modeling engine and
the what-if analysis engine. The on-the-fly modeling engine first
computes the influence graph using a graph API in python and then
creates node-level models by using on-the-fly model construction.
The modeling engine retrieves data about the workload on the in-
coming and outgoing edges of the node and the total resource uti-
lization of the node and then invokes an R module for building
the node-level models. The R module uses the MARS function
present in the MDA package to build piecewise linear node-level
workload models and the linear regression function to find the per-
class service rates using least squares regression. Next, the what-if
analysis engine uses these models to answer (“execute”) the query
via the change propagation algorithm to propagate the hypotheti-
cal workload change through the model and compute its impact on
the nodes of interest to the user. The change propagation algorithm
is again implemented by using the graph API written in python.
The what-if analysis engine stores the node-level models computed
by the modeling engine in a model cache that is implemented as
three tables in the MySQL relational database engine; one each for
storing the weight vectors used in node-level workload models, the

breakpoints of the piecewise-linear model and the per-class service
rates on a node required in the node-level resource utilization and
response-time models.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our system by
performing experiments on four cloud applications. We first eval-
uate the accuracy of the analytical node-level resource utilization
and response-time models and then the piecewise-linear workload
models. We then perform experiments to ascertain the accuracy of
system-level models formed by composition. We then employ our
system to perform case studies where we pose what-if queries to
our system and compare the predictions with ground truth values
observed in actual experimental data.

6.1 Experimental Setup

We evaluate our system on four different applications. These
applications are chosen from different domains and are of varying
scale. The first two applications are from the financial domain and
are being used by the data center of a financial institution. The third
application is a benchmark e-commerce application. The fourth ap-
plication is a synthetic Java enterprise application. All these appli-
cations are running on a private cloud infrastructure.

1. We evaluate our system on traces collected from these two
production financial applications running on a private cloud
platform. The traces collected from the stock trade process-
ing application contain the total number of requests sent out
by every component within every 30 second interval. The
traces collected from the market data dissemination applica-
tion contain data for the number of bytes sent out from every
component on each of its outgoing edge, within every 30 sec-
ond interval.

2. The third application is the TPCW benchmark which models
an online bookstore application. We implement the TPC-W
application as a 2-node Java servlet based application con-
sisting of the front-end server (Tomcat) and a back-end database
(MySQL). We use a testbed comprising of two virtual ma-
chines running on a OpenStack [1] based private cloud plat-
form for performing this experiment. Each virtual machine
has a single 2.8 GHz Pentium 4 processor with 1GB memory.
We use Tomcat version 5.5.26 and MySQL version 5.1.26
for setting up our TPC-W application. The TPC-W experi-
mental setup allows us to monitor the end-to-end latency and
resource utilization values apart from workload values.

3. The fourth application is an emulated application created from
several configurable Java servlets with each servlet running
inside a Tomcat server that is itself running inside a virtual
machine running on a OpenStack [1] based private cloud
platform. The java servlet can be configured to take a desired
processing time to process an incoming request and then trig-
ger a desired number of requests to other such servlets. Thus,
these servlets can be joined together in arbitrary ways to cre-
ate large emulated data center applications having any de-
sired topology.

6.2 Accuracy of Node-level Resource Usage
and Latency Models

We model the cloud application as an open network of queues

that lead to Equation 1 which captures the node-level resource uti-

lization and Equation 3 which captures the node-level latency. We
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validate the accuracy of this queueing model using the TPCW ap-
plication running on a two server cloud testbed.

We use the httperf load generation tool to simulate requests ar-
riving from customers with exponentially distributed inter-arrival
times. The TPC-W web application exposes 14 different servlets
which a customer visiting the website can invoke. We create a
workload comprising of requests to two of these servlets, the “new
products ” and “execute search”. We independently vary the ar-
rival rate of requests to both these servlets from 10 to 100 requests
per second with increase of 10 requests per second, thus generating
a total of 100 arrival rate combinations. For each arrival rate combi-
nation, we let the system run for 15 minutes and measure the CPU
utilizations at the Tomcat and MySQL server and the end-to-end
latency. We use half of the 100 values for estimating the values of
the per-class service rates on each of the 2 nodes and then use these
values to predict the per-node resource utilizations and per-node
per-class response time for the other half. The per-node response
times are summed up to get the end-to-end latency. We compute
the prediction errors by comparing the predictions of the node-level
models with the values observed during the experiments. Figure 6
and Figure 7 shows the distribution of prediction errors in terms of
percentage relative error in predicting the resource utilization and
latency respectively.

By using an open network of queue modeling, we are able to
predict node-level CPU utilization to within 2% of the actual value.
The median prediction error for response time using our modeling
approach is less than 10%.

6.3 Accuracy of Node-level Workload Models

We evaluate the accuracy of using piecewise-linear functions
created by using MARS to model the relationship of the outgoing
workload of a node with the incoming workload of the node. We
use the traces collected from the two applications to create these
models and then ascertain the accuracy of these models.

For each of the two applications, we selected each component in
turn and extracted the data for the workload on its incoming edges
and outgoing edges. We then use MARS to estimate a function
which expresses the workload on each outgoing edge of a node
as a piecewise linear function of the workload on all the incom-
ing edges on the node. We evaluate the accuracy of the piecewise
linear model in predicting the workload on each outgoing edge of
this component. Cross-validation was used to measure the predic-
tion accuracy; we divide the trace data for the selected component
into training windows of 1 hour each and compute a model us-
ing MARS for each window for each outgoing edge. We then use
each model to predict the data points outside of the window it was

Data Dissemination App

trained on; the deviations between the predicted and actual values
were measured. We use the root mean square (RMS) error as a
metric of error; we divide the RMS error by the range of actual
values to report the results in normalized RMS error (%). The aver-
age normalized RMS error for the models of all the outgoing edges
of a component is taken as the error for that component. We de-
pict the errors for all the components of the two applications using
CDF curves that show the percentage of components that have er-
rors below a certain value. Figure 8 shows the errors for the market
data dissemination application while Figure 9 shows the errors for
the stock trade processing application. The curve labeled “Level-
17 errors shows the CDF for the errors. We describe the concept of
levels and the description about the “Level-2” and Level-3” curves
later in this section. The CDF curves indicate that the workload-to-
workload models of 70% of the components have errors less than
10% in the case of the market data dissemination application while
models for 80% of the components have errors less than 15% in the
case of the stock trade processing application.

Our experimental results show that piecewise linear modeling
provides accurate models of node-level workload for production
cloud data center applications.

6.4 Accuracy of System-level models with in-
creasing composition depth

We evaluate the accuracy of system-level models created by com-
posing multiple node-level models. Composition of multiple node-
level models leads to an accumulation of the error terms. We con-
duct experiments to measure the increase in error with compos-
ing increasing number of node-level models. We again use the
traces from the two financial applications to evaluate the accuracy
of system-level models. We reuse the node-level models of each
component built for validating the accuracy of node-level workload
models in the previous section for this experiment.

We select each component and compose its node-level workload
model with that of its ancestor components to express the outgoing
workload of this component as a function of the incoming work-
load of its ancestors. By using composition repeatedly we succes-
sively construct models expressing workload of a component as a
function of its ancestors at different levels. Level 1 model is built
between the outgoing workload of a component and its incoming
workload. Level 2 model is built between the outgoing workload of
a component and the incoming workload of its immediate parents.
Similarly level i model is built between the component and its an-
cestors that are reachable in (i - /) edges. We compute the average
normalized RMS error of each component by computing the aver-
age normalized RMS error for the models of all the outgoing edges



Stock Trade Processing App

Market Data Dissemination App

Stock Trade Processing App

100 100————————————————————— 100y
o o &
S 80 S 80 5 80
2 2 2
— . . Level-2

60 Bm Level-1 errors 60 - 60 -
3 8 Direct Model g Direct Model
> %= Level-2 errors > Level-2 > Level-2
2 40 *—* Level-3 errors 2 40 %= Composed Model 2 40 *= Composed Model
8 g g
o 20 o} o 20
o o o

0 0

10 20 30 40 50 60 70 80 90 100
Normalized RMS Error (%)

10 20 30 40 50 60 70 80 90 100
Normalized RMS Error (%)

10 20 30 40 50 60 70 80 90 100
Normalized RMS Error (%)

Figure 9: Composed Modeling for Stock Figure 10: Composed vs Direct Modeling Figure 11: Composed vs Direct Modeling

Trade Processing App

of the component using cross-validation and then averaging the er-
rors. Figures 8 and 9 show the CDF of normalized RMS errors for
each level for the two applications. The CDF curve drops with in-
creasing levels implying that the errors increase as we predict the
workload of a component using ancestors higher up the component
in the graph. Inspite of the increasing errors with increasing lev-
els, the errors remain tolerable; for the Market Data Dissemination
application even at level 4 the prediction errors for 80% of the com-
ponents are less than 20%, while for the Stock Trade Processing at
the level of 3 for 75% of the components the errors are less than
20%.

Our results on using composition to create system-level models
on the traces collected from the two production applications reveal
that even with increasing composition depth, the system-level mod-
els are effective in predicting workload.

6.5 Accuracy of System-level models with vary-
ing topology

The node-level models can be composed in a number of ways to
create a system-level model depending on the topology of the DAG.
We perform experiments to ascertain the prediction accuracy of
composed models under different topologies. For this experiment
we select some subgraphs in the DAGs for the two applications.
We select subgraphs that correspond to three topologies-chain, split
and join. These topologies correspond to different ways in which
the components can interact with one another in an application: (i)
in the chain topology, each component receives requests from a sin-
gle upstream component, (ii) in the split topology, a component can
send requests to multiple downstream components and (iii) in the
join topology, a component can receive requests from multiple up-
stream components. For each subgraph, we create node-level mod-
els for each component and then use composition to create models
to predict the workload on each outgoing edge of the subgraph. We
measure prediction errors in predicting workload of each outgoing
edge as a function of incoming workload of its ancestors at increas-
ing levels.

Figures 12(a) and 12(b) show the subgraphs that we choose for
this experiment. Figures 12(a) is from the Market Data Dissemi-
nation application and Figure 12(b) is a subgraph from the Stock
Trade Processing application. Figure 12(a) illustrates the chain and
split topologies, while figure 12(b) is an example of a join topol-
ogy. Tables 12(c) and 12(d) show how the errors of the composed
models vary as we predict the workload on various edges/nodes of
the graphs. For the subgraphs selected from the market data dis-
semination application the prediction errors on all edges are within
5% while for the subgraph selected from the stock trade processing
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Figure 12: Prediction Errors of composed modeling on differ-
ent topologies

application the prediction errors are within 13%.

The errors reveal that our composition based modeling tech-
nique performs well even in case of complex application topolo-
gies.

6.6 Workload-only What-if Analysis Case Study

We create use-case scenarios to illustrate how our system can be
used in practice and evaluate its performance in answering what-
if questions which commonly arise in large-scale cloud applica-
tions. In this section, we pose workload-related what-if questions;
we choose subgraphs from the market data dissemination applica-
tion and the stock trade processing application and use our system
to predict the impact of workload changes on source nodes at the
workload on the other edges of the subgraphs.

We choose one subgraph each from the market data dissemina-
tion application and the stock trade processing application. The
first subgraph has 1 source node while the other subgraph has 3
source nodes.

The topology of the first subgraph is shown in Figure 13(a). On
this subgraph we pose the query: “what happens to the workload
on downstream edges of subgraph 1 if the outgoing workload of
the single source node increases by 2 and 2.5 times the current
value”. We examine the application traces and find periods of 1
hour duration each, h1, h2 and hs, such that the outgoing workload
from the source node increases by 2 and 2.5 times the workload in
h1 in the hours h2 and hs respectively. Our system uses the trace
from hour h; and then predicts the workload values in hours hs
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and hs. We compare the ground truth value of the workload seen
in the two hours and compare our system’s predictions to compute
the errors. Figure 13(c) plots the errors on all the downstream edges
in terms of the normalized RMS error for each of the two changes
mentioned in the what-if question.

The topology of the second subgraph is shown in Figure 14(a).
On this subgraph we pose the query: “what happens to the work-
load on downstream nodes a) if the workload on the source nodes
143, 19 and 92 becomes 1.12, 1.5 and 1.5 times respectively the
current value b) if the workload on the source nodes 143, 19 and
92 becomes 1.8, 1.65 and 1.65 times respectively the current value
times”. We compare our system’s prediction with ground truth val-
ues observed in the traces to compute the errors. Figure 14(c) plots
the errors for the two queries for the downstream nodes in terms of
normalized RMS error.

The trace collected from the stock trade processing application
only contain the requests going out of each node and we assume
that these requests are equally distributed among all its outgoing
edges. Similarly, in the case of the market data dissemination ap-
plication, the traces contain the bytes sent out on each edge and we
assume that the number of bytes are an approximation of the num-
ber of requests. We note that even under these simplifying assump-
tions, our system is able to make predictions with errors between
8% and 18%.

6.7 Resource Usage What-if Analysis Case Study

We now use our system to conduct a what-if analysis case study

on an emulated application where we pose resource-usage what-
if questions. We construct this application using the configurable
Java servlets described earlier.

Figure 15(a) shows the topology of the emulated application used
for this experiment. We configure the nodes to send a desired num-
ber of requests to downstream nodes and take a desired processing
time for each request. Node 55 splits the requests it receives equally
between node 52 and node 56. Each of these nodes then send the
requests to node 54. Each request on node 56 takes 8 times the
processing time it takes on node 55 while each request on node 52
takes half the processing time it takes on node 55. Each request on
node 54 takes the same processing time as on node 55. The sys-
tem is first run for half an hour each with incoming request rates
of 10, 20 and 30 requests per second at node 55. Our system is
given the monitoring data collected during this training phase and
then we pose 2 what-if queries on our system: “what is the CPU
utilization at the nodes if the incoming workload at the source node
is increased to 2 times and 3 times the current value”. During the
test phase, we run the emulated application with incoming request
rates of 40 requests per second and 60 requests per second for half
an hour each to find the ground truth values of CPU utilization on
all nodes. Table 15(b) shows the CPU utilization at all the nodes of
the application observed during the training phase and test phase.
As the table shows, CPU utilization reaches 100% at node 56 after
the request rate reaches 40 requests per second.

Tables 15(c) shows the errors in terms of relative percentage
errors in our system’s answers obtained by using the basic propa-
gation algorithm and the saturation-aware propagation algorithm.
Since the errors for the two propagation techniques are the same
for node 55 and node 52 we do not show them in the table. The
errors reveal that saturation-unaware propagation makes errors in
estimating the CPU utilization of node 56 and node 54. While for
a 2x increase in workload, the saturation-unaware algorithm makes
an error of 2.07% on node 56 and 17% on downstream node 54, its
errors increase to 53% and 29% for the same nodes for the 3x in-
crease what-if query. For a 3x increase in workload the saturation-
unware propagation technique does not consider that node 56 has
saturated and assumes that the entire workload continues to flows to
downstream node 54, leading to prediction errors. The saturation-
aware propagation algorithm, however, is able to take into account
node saturation and gives errors of 0.3% and 6% for both the what-
if queries.

The results of this experiment with an emulated application show
that our system is able to predict resource utilization of nodes with
high accuracy. Moreover, our system’s change propagation algo-
rithm is also able to take into account intermediate nodes saturat-
ing because of excessive workload.

7. RELATED WORK

A number of recent efforts have focused on building systems for
performing what-if analysis on various distributed systems. The de-
sign and implementation of a self-predicting cluster-based storage
system is presented in [14]. The self-predicting system is able to
answer what-if questions that administrators frequently ask about
the impact of a decision on the performance of the system. The
approach, however, involves intrusive instrumentation of the sys-
tem in order to make it self-predicting. WISE [13] is a system
for answering what-if deployment and configuration questions for
content distribution networks (CDN). This system enables the user
to ask questions about the impact of commonly occurring CND
scenarios like change in the mapping of clients to servers or de-
ployment of a new data center. WISE deals with systems that span
across large geographies and models the network latency part but
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does not consider the server processing within data centers.

Apart from systems that are directly aimed at performing what-
if analysis, a number of modeling techniques have been proposed
that predict the performance of the system under various workload
conditions. These can be employed for answering what-if ques-
tions about the system. Modeling of multi-tier internet applications
based on queuing networks has been previously proposed [16, 17].
An approach for automatically extracting all the invariants of the
system and capturing them using models is proposed in [9]. All
these techniques [16, 17, 9, 6] are aimed towards multi-tier appli-
cations while our system is targeted towards large-scale distributed
systems.

IRONModel [15] proposes a modeling architecture for creating
robust models. The models are used for answering what-if ques-
tions about the impact of reconfigurations on the response time and
throughput of a large storage system. IRONModel, however, in-
volves intrusive instrumentation of the system for creating these
models that is not a feasible solution in production environments.

A number of modeling techniques have also been used for per-
formance debugging in distributed systems. A technique for au-
tomatically inferring dependencies between the components of a
large distributed application by only looking at the number of pack-
ets exchanged between the difference components is proposed in
[3]. These dependencies are then used to determine the source of
a problem. Signal processing techniques have been used to au-
tomatically discover causal paths in a distributed system by only
utilizing passive measurements like the number of messages be-
ing exchanged [2] . The technique discovers the delays being en-
countered at different nodes of the distributed application and this
knowledge is used to ascertain paths that may be responsible for a
large delay.

Similar to the WIFQL language proposed in our work to pose
what-if questions, [8] also designed a new declarative language to
enable administrators to find out the current performance of large
scale applications and understand various performance correlations
of the system.

8. CONCLUSIONS

Cloud computing providers often need to ascertain the impact of
unseen workload changes on large distributed cloud applications.
Predicting how a certain change in workload will influence com-
plex cloud computing applications is a challenging problem that
needs automation. In this paper we presented a system which en-

ables the user to perform “what-if” analysis on large distributed
applications. Our system is non-intrusive and only uses commonly
available monitoring data to construct models and uses a new change
propagation technique to estimate the impact of specified workload
changes.

We modeled a large-scale cloud application as an open network
of queues to derive resource utilization, latency and workload mod-
els. We used traces from two large production applications running
on the private cloud infrastructure of a major financial institution
and data from synthetic enterprise applications running on our own
private cloud testbed to evaluate the efficacy of our what-if model-
ing framework. Our experimental evaluation validated the accuracy
of the node-level resource utilization, response time and workload
models and then showed how our system enables what-if analysis
in four different cloud applications.
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