
Chasing Convex Functions with Long-term Constraints

Adam Lechowicz
∗

Nicolas Christianson
†

Bo Sun
‡

Noman Bashir
§

Mohammad Hajiesmaili
¶

Adam Wierman
∥

Prashant Shenoy
∗∗

February 22, 2024

Abstract

We introduce and study a family of online metric problems with long-term constraints. In these

problems, an online player makes decisions x𝑡 in a metric space (𝑋,𝑑) to simultaneously minimize their

hitting cost 𝑓𝑡 (x𝑡) and switching cost as determined by the metric. Over the time horizon𝑇 , the player

must satisfy a long-term demand constraint

∑
𝑡 𝑐 (x𝑡) ≥ 1, where 𝑐 (x𝑡) denotes the fraction of demand

satisfied at time 𝑡 . Such problems can find a wide array of applications to online resource allocation in

sustainable energy and computing systems. We devise optimal competitive and learning-augmented

algorithms for specific instantiations of these problems, and further show that our proposed algorithms

perform well in numerical experiments.

1 Introduction

This paper introduces and studies a novel class of online metric problems with long-term demand con-
straints motivated by emerging applications in the design of sustainable systems. In convex function chas-
ing with a long-term constraint, an online player aims to satisfy a demand by making decisions in a normed

vector space, paying a hitting cost based on time-varying convex cost functions which are revealed on-

line, and switching cost defined by the norm. The player is constrained to ensure that the entire demand

is satisfied at or before the time horizon 𝑇 ends, and their objective is to minimize their total cost. The

generality of this problem makes it applicable to a wide variety of online resource allocation problems;

in this paper, we consider one such special case, discussing its connections to other online settings and

suggestions towards broad new areas of inquiry in online optimization with long-term constraints.
Our motivation to introduce these problems is rooted in an emerging class of carbon-aware control

problems for sustainable systems. A shared objective involves minimizing carbon emissions by shifting

flexible workloads temporally and/or spatially to better leverage low-carbon electricity generation (e.g.,

renewables such as solar andwind). Exampleswhich have recently seen significant interest include carbon-

aware electric vehicle (EV) charging [CBS
+
22] and carbon-aware compute shifting [WBS

+
21; BGH

+
21;

RKS
+
22; ALK

+
23; HLB

+
23].

∗
University of Massachusetts Amherst. Email: alechowicz@cs.umass.edu

†
California Institute of Technology. Email: nchristianson@caltech.edu

‡
University of Waterloo. Email: bo.sun@uwaterloo.ca

§
Massachusetts Institute of Technology. Email: nbashir@mit.edu

¶
University of Massachusetts Amherst. Email: hajiesmaili@cs.umass.edu
∥
California Institute of Technology. Email: adamw@caltech.edu

∗∗
University of Massachusetts Amherst. Email: shenoy@cs.umass.edu

1

ar
X

iv
:2

40
2.

14
01

2v
1

 [
cs

.D
S]

 2
1

Fe
b

20
24

alechowicz@cs.umass.edu
nchristianson@caltech.edu
bo.sun@uwaterloo.ca
nbashir@mit.edu
hajiesmaili@cs.umass.edu
adamw@caltech.edu
shenoy@cs.umass.edu

The problems we introduce in this paper build on a long line of related work in online algorithms. Most

existing work can be roughly classified into two types: online metric problems, where many works consider

multidimensional decision spaces and switching costs but do not consider long-term constraints [BLS92;

Kou09; CGW18; BKL
+
19; BCL

+
21; BC22; BCR23], and online search problems, which feature long-term

demand constraints but do not consider multidimensional decision spaces or switching costs [EFK
+
01;

LPS08; MAS14; SZL
+
21].

We briefly review the direct precursors of our work below. In the online metric literature, the problem

we study is an extension of convex function chasing (CFC) introduced by Friedman and Linial [FL93],

where an online player makes online decisions x𝑡 in a normed vector space (𝑋, ∥·∥) over a sequence of

time-varying cost functions in order to minimize their total hitting and switching cost. In the online search

literature, the problem we study is a generalization of one-way trading (OWT) introduced by El-Yaniv et

al. [EFK
+
01], in which an online player must sell an entire asset in fractional shares over a sequence of

time-varying prices while maximizing their profit.

Despite extensive existing work in the online metric and online search tracks, few works simultane-

ously consider long-term demand constraints (as inOWT) and movement/switching costs (as inCFC). The
existing prior works [LCZ

+
23; LCS

+
24] that consider both components are restricted to unidimensional

decision spaces, as is typical in the online search literature. However, generalizing from the unidimen-

sional case is highly non-trivial; e.g., in convex function chasing with a long-term constraint, the problem

cannot simply be decomposed over dimensions due to the shared capacity constraint andmultidimensional

switching cost. Thus, in this work we tackle the following question:

Is it possible to design online algorithms for the studied problems that operate in multidimen-
sional decision spaces while simultaneously considering long-term constraints, hitting costs, and
switching costs?

Although the aforementioned literature focuses on competitive algorithms in adversarial settings,

there has recently been significant interest in moving beyond worst-case analysis, which can result in

overly pessimistic algorithms. The field of learning-augmented algorithms [LV18; PSK18] has emerged as

a paradigm for designing and analyzing algorithms that incorporate untrusted machine-learned advice to

improve average-case performance without sacrificing worst-case performance bounds. Such algorithms

are evaluated through the metrics of consistency and robustness (see Def. 2.1). Recent studies have proposed
learning-augmented algorithms for related problems, including convex function chasing [CHW22], one-

way trading [SLH
+
21], metrical task systems [CSW23], and online search [LSH

+
24]. While the literature

in each of these tracks considers a spectrum of different advice models, their results prompt a natural open

question:

Can we design algorithms for online metric problems with long-term constraints that effectively
utilize untrusted advice (such as machine-learned predictions) to improve performance while pre-
serving worst-case competitive guarantees?

Contributions. Despite extensive prior literature on adjacent problems, the problems we propose in

this paper are the first online settings to combine long-term demand constraints with multidimensional

decision spaces and switching costs. We introduce convex function chasing with a long-term constraint,

and a special case called online metric allocation with a long-term constraint. The general forms of both are

independently interesting for further study.

We obtain positive results for both of the questions posed above under problem instantiations that

are especially relevant for motivating applications. We provide the first competitive results for online

problems of this form in Section 3, and show that our proposed algorithm (Algorithm 1) achieves the best

2

possible competitive ratio. In Section 4, we propose a learning-augmented algorithm, CLIP (Algorithm 2),

and show it achieves the provably optimal trade-off between consistency and robustness.

To achieve these results, the proposed algorithms must tackle technical challenges distinct from prior

work studying adjacent problems. We build on a generalization of the threshold-based designs used for

simple decision spaces in the online search literature called pseudo-cost minimization. We introduce a novel

application of this framework to multidimensional decision spaces (see Section 3), and show that it sys-

tematically addresses the competitive drawbacks of typical algorithm designs for online metric problems.

We evaluate our proposed algorithms in numerical experiments and show that our algorithms outperform

a set of baseline heuristics on synthetic instances of convex function chasing with a long-term constraint.

Our learning-augmented algorithm CLIP (see Section 4) introduces a novel projected consistency con-
straint which is designed to guarantee (1 + 𝜖)-consistency against the provided advice ADV by continu-

ously comparing their solutions in terms of the cost incurred so far, the switching cost trajectories, and

the projected worst-case cost required to complete the long-term constraint. To solve both convex func-

tion chasing and online metric allocation with long-term constraints, we derive a transformation result

that directly relates the performance of an algorithm on the former problem with its performance on the

latter (see Section 2).

2 Problem Formulation and Preliminaries

This section formalizes convex function chasing and online metric allocation with long-term constraints,

motivating them with a sustainability application. We also provide preliminaries used throughout the

paper, and give initial results to build algorithmic connections between both problems.

Convex function chasing with a long-term constraint. A player chooses decisions x𝑡 ∈ 𝑋 ⊆ R𝑑
online from a normed vector space (𝑋, ∥·∥) in order to minimize their total cost

∑𝑇
𝑡=1

𝑓𝑡 (x𝑡) +
∑𝑇+1

𝑡=1
∥x𝑡 −

x𝑡−1∥, where 𝑓𝑡 (·) : 𝑋 → R is a convex “hitting” cost that is revealed just before the player chooses x𝑡 ,
and ∥x𝑡 − x𝑡−1∥ is a switching cost associated with changing decisions between rounds. Additionally, the

player must satisfy a long term constraint of the form

∑𝑇
𝑡=1

𝑐 (x𝑡) = 1, where 𝑐 (x) : 𝑋 → [0, 1] gives the
fraction of the constraint satisfied by a decision x. We denote the utilization at time 𝑡 by 𝑧 (𝑡) =

∑𝑡
𝜏=1

𝑐 (x𝜏),
which gives the total fraction of the long-term constraint satisfied up to and including time 𝑡 . The offline

version of this problem can be formalized as follows:

min

{x𝑡 }𝑡 ∈ [𝑇]

∑︁𝑇

𝑡=1

𝑓𝑡 (x𝑡)︸ ︷︷ ︸
Convex hitting cost

+
∑︁𝑇+1

𝑡=1

∥x𝑡 − x𝑡−1∥︸ ︷︷ ︸
Switching cost

s.t.

∑︁𝑇

𝑡=1

𝑐 (x𝑡) ≥ 1,︸ ︷︷ ︸
Long-term constraint

x𝑖𝑡 ∈ [0, 1] ∀𝑖 ∈ [𝑑], ∀𝑡 ∈ [𝑇] . (1)

Assumptions. Here, we describe the precise variant of convex function chasing with a long-term con-

straint for which we design algorithms in the remainder of the paper. Let ∥x − x′∥ B ∥x − x′∥ℓ1 (w) , where
∥·∥ℓ1 (w) denotes the weighted ℓ1 norm with weight vector w ∈ R𝑑 .

We define the long-term constraint such that 𝑐 (x) B ∥x∥ℓ1 (c) , i.e., the weighted ℓ1 norm with weight vector
c ∈ R𝑑 . Then let the metric space 𝑋 be the ℓ1 ball defined by 𝑋 B {x ∈ R𝑑 : 𝑐 (x) ≤ 1}. For all cost functions
𝑓𝑡 (·) : 𝑋 → R, we assume bounded gradients such that 𝐿 ≤ [∇𝑓𝑡]𝑖/c𝑖 ≤ 𝑈 ∀𝑖 ∈ [𝑑], 𝑡 ∈ [𝑇], where 𝑖 denotes
the 𝑖th dimension of the corresponding vector, and 𝐿,𝑈 are known positive constants.

Letting 0 denote the origin in R𝑑 (w.l.o.g), we have the property 𝑓𝑡 (0) = 0 for all 𝑡 ∈ [𝑇], i.e., that
“satisfying none of the long-term constraint costs nothing”, since 𝑐 (0) = 0. We assume the player starts and
ends at the origin, i.e., x0 = 0 and x𝑇+1 = 0, to enforce switching “on” and “off.” These assumptions are intuitive
and reasonable in practice, e.g., in our example motivating application below.

For analysis, it will be useful to establish a shorthand for the magnitude of the switching cost. Let
𝛽 B max

(
w𝑖/c𝑖

)
, which gives the greatest magnitude of the switching cost coefficient when normalized by

3

the constraint function. We assume that 𝛽 is bounded on the interval [0,𝑈 −𝐿/2); if 𝛽 is “large” (i.e., > 𝑈 −𝐿/2),
we can show that the player should prioritize minimizing the switching cost.1

Recall the player must fully satisfy the long-term constraint before the sequence ends. If the player has
satisfied 𝑧 (𝑡) fraction of the constraint at time 𝑡 , we assume a compulsory trade begins at time 𝑗 as soon as
(𝑇 − (𝑗 + 1)) · c𝑖 <

(
1 − 𝑧 (𝑗)

)
∀𝑖 ∈ [𝑑] (i.e., when the time steps after 𝑗 are not sufficient to satisfy the

constraint). During this compulsory trade, a cost-agnostic algorithm takes over, making maximal decisions
to satisfy the constraint. To ensure that the problem remains technically interesting, we assume that the
compulsory trade is a small portion of the sequence.2

For brevity, we henceforth use CFL to refer to the variant of convex function chasing with a long-term

constraint under the assumptions outlined above.

An example motivating application. CFL can model a variety of applications, including specific ap-

plications that motivate this study. Consider a carbon-aware temporal load shifting application with het-

erogeneous servers. Here, each of the 𝑑 dimensions corresponds to one of 𝑑 heterogeneous servers. An

algorithm makes decisions x𝑡 ∈ R𝑑 , where x𝑖𝑡 ∈ [0, 1] denotes the load of the 𝑖th server at time 𝑡 . The

long-term constraint

∑𝑇
𝑡=1

𝑐 (x𝑡) ≥ 1 enforces that an entire workload should be finished before time 𝑇 ,

and each coefficient c𝑖 represents the throughput of the 𝑖th server. Each cost function 𝑓𝑡 (x𝑡) represents the
carbon emissions due to the electricity usage of the servers configured according to x𝑡 , and the switching

cost ∥·∥ℓ1 (w) captures the carbon emissions overhead (e.g., extra latency) of pausing, resuming, scaling,

and moving the workload between servers.

Online metric allocation with a long-term constraint. Bansal and Coester [BC22] introduced the

online metric allocation problem (MAP), which connects several online metric problems. MAP on a star

metric is equivalent to CFC when cost functions are separable over dimensions and supported on the unit

simplex Δ𝑛 .
3
Furthermore, the randomized metrical task systems problem (MTS) is a special case of MAP

when cost functions are linear and increasing.

We build on this formulation in our setting and introduce online metric allocation with a long-term
constraint, which captures a particularly interesting special case ofCFL. The general version of the problem
considers an 𝑛-point metric space (𝑋,𝑑), and a unit resource which can be allocated in arbitrary fractions

to the points of 𝑋 . At each time 𝑡 ∈ [𝑇], convex cost functions 𝑓 𝑎𝑡 (·) : [0, 1] → R arrive at each point 𝑎 in

the metric space. The online player chooses an allocation 𝑥𝑎𝑡 to each point 𝑎 in the metric space, such that∑𝑛
𝑎=1

𝑥𝑎𝑡 = 1 for all 𝑡 ∈ [𝑇]. When changing this allocation between time steps, the player pays a switching

cost defined by 𝑑 (𝑎, 𝑏) for any distinct points 𝑎, 𝑏 ∈ 𝑋 . As in CFL, the long-term constraint enforces that∑𝑇
𝑡=1

𝑐 (x𝑡) ≥ 1, where 𝑐 (x) is a linear and separable function of the form 𝑐 (x) = ∑𝑛
𝑎=1

c𝑎𝑥𝑎 . As previously,
the player’s objective is to minimize the total cost (hitting plus switching costs) incurred while satisfying

the long-term constraint.

Assumptions. In the rest of the paper, we consider an instantiation of online metric allocation with

a long-term constraint on weighted star metrics that is particularly relevant to a wide class of resource

allocation problems.

To ensure the long-term constraint is non-trivial, we denote at least one point 𝑎′ in the metric space as the “OFF
state”, where c𝑎

′
= 0 and 𝑓 𝑎

′
𝑡 (𝑥) = 0 ∀𝑡 ∈ [𝑇],∀𝑥 ∈ [0, 1]. For all other cost functions, we carry forward the

assumptions that 𝐿 ≤ 𝑑𝑓 𝑎𝑡 /𝑑𝑥𝑎 ≤ 𝑈 , 𝑓 𝑎𝑡 (0) = 0 ∀𝑡 ∈ [𝑇]. We define 𝛽 B max𝑎′,𝑎 𝑑 (𝑎′, 𝑎), i.e., the maximum

1
As brief justification for the bounds on 𝛽 , consider that a feasible solution may have objective value 𝐿 + 2𝛽 . If 𝛽 > 𝑈 −𝐿/2,

𝐿 + 2𝛽 > 𝑈 , and we argue that the incurred switching cost is more important than the cost functions accepted.

2
We assume the first time 𝑗 ′ where (𝑇 − (𝑗 ′ + 1)) c𝑖 < 1 ∀𝑖 satisfies 𝑗 ′ ≫ 1, which implies that 𝑇 and c are both sized

appropriately for the constraint. This is reasonable for an application such as carbon-aware load shifting, since short deadlines

(small 𝑇) or low throughput (small c𝑖 ∀𝑖) imply that even offline solutions suffer a lack of flexibility in reducing the overall cost.

3
Given metric space 𝑋 , consider Δ(𝑋), which represents the set of probability measures over the points of 𝑋 . Since 𝑋 is finite,

we have that |𝑋 | = 𝑛 and Δ(𝑋) is denoted as Δ𝑛 .

4

distance between the OFF state and any other state in the weighted star, inheriting the same assumption that
𝛽 ∈ [0,𝑈 −𝐿/2). For brevity, we henceforth use MAL to refer to the problem on weighted star metrics with

the assumptions described above.

Competitive analysis. Our goal is to design an algorithm that guarantees a small competitive ra-
tio [MMS88; BLS92], i.e., performs nearly as well as the offline optimal solution. Formally, let I ∈ Ω
denote a valid input sequence, where Ω is the set of all feasible inputs for the problem. Let OPT(I)
denote the cost of an optimal offline solution for instance I, and let ALG(I) denote the cost incurred

by running an online algorithm ALG over the same instance. The competitive ratio is then defined as

CR(ALG) B maxI∈Ω ALG(I)/OPT(I) = 𝜂, and ALG is said to be 𝜂-competitive. Note that CR(ALG) is always
≥ 1, and a lower competitive ratio implies that the online algorithm is guaranteed to be closer to the offline

optimal solution.

Learning-augmented consistency and robustness. In the emerging literature on learning-augmented

algorithms, competitive analysis is interpreted via the notions of consistency and robustness, introduced
by [LV18; PSK18].

Definition 2.1. Let LALG denote a learning-augmented online algorithm provided with advice denoted by
ADV. Then LALG is said to be 𝑏-consistent if it is 𝑏-competitive with respect to ADV. Conversely, LALG is 𝑟 -
robust if it is 𝑟 -competitive with respect to OPT when given any ADV (i.e., regardless of the performance of
ADV).

A connection between CFL andMAL. Below we state two useful results connecting the CFL andMAL
settings that influence our algorithm design for each problem.

Lemma 2.2. For any MAL instance on a weighted star metric (𝑋,𝑑), there is a corresponding CFL instance
on (R𝑛−1, ∥·∥ℓ1 (w′)) which preserves 𝑓 𝑎𝑡 (·) ∀𝑡, 𝑐 (·) ∀𝑎 ∈ 𝑋 , and upper bounds 𝑑 (𝑎, 𝑏), ∀(𝑎, 𝑏) ∈ 𝑋 .

Leveraging Lemma 2.2, the following result explicitly connects the competitive results of the CFL and

MAL settings.

Proposition 2.3. Given an algorithm ALG for CFL, any competitive bound for ALG gives an identical com-
petitive bound forMAL with parameters corresponding to the CFL instance constructed in Lemma 2.2.

The proofs of both are deferred to Appendix B.3. At a high-level, Proposition 2.3 shows that if ALG
is 𝜂-competitive against OPT which pays no switching cost, Lemma 2.2 implies it is also 𝜂-competitive on

MAL. In the next section, our proposed algorithms will be presented using CFL notation, but these results
provide the necessary condition which allows them to solveMAL as well.

3 Designing Competitive Algorithms

In this section, we present our robust algorithm design. We start by discussing some inherent challenges

in the problem, highlighting reasons why existing algorithms (e.g., for CFC) fail. Next, we introduce a

generalization of existing techniques from online search called pseudo-costminimization, which underpins

our competitive algorithm, ALG1 (Algorithm 1). Finally, we state (and prove in Appendix B) two bounds,

which jointly imply that ALG1 achieves the optimal competitive ratio for CFL and MAL.

5

Algorithm 1 Pseudo-cost minimization algorithm (ALG1)

input: long-term constraint function 𝑐 (·), distance metric ∥·∥ℓ1 (w) , pseudo-cost threshold function 𝜙 (𝑧)
initialize: 𝑧 (0) = 0;

while cost function 𝑓𝑡 (·) is revealed and 𝑧 (𝑡−1) < 1 do
solve pseudo-cost minimization problem:

x𝑡 = arg min

x∈𝑋 :𝑐 (x)≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1∥ℓ1 (w) −

∫ 𝑧 (𝑡−1)+𝑐 (x)

𝑧 (𝑡−1)
𝜙 (𝑢)𝑑𝑢 (2)

update utilization 𝑧 (𝑡) = 𝑧 (𝑡−1) + 𝑐 (x𝑡)

Challenges. Canonical algorithms for CFC [CGW18; Sel20; ZJL
+
21] make decisions that attempt to

minimize (or nearly minimize) the hitting cost of cost functions 𝑓𝑡 (·) and switching cost across all time

steps. As discussed in the introduction, the structure of the problemwith a long-term constraint means that

such myopic cost-minimization algorithms will fail in general. To illustrate this, consider the actions of a

minimizer-driven algorithm on an arbitrary sequence with length𝑇 . For each 𝑡 < 𝑇 , the algorithm chooses

a point at or near 0, since 0 is the minimizer of each 𝑓𝑡 . However, since 𝑐 (0) = 0, such an algorithm must

subsequently satisfy all or almost all of the long-term constraint during the compulsory trade, incurring an
arbitrarily bad hitting cost.

This challenge motivates an algorithm design that balances between the two extremes of finishing

the long-term constraint “immediately” (i.e., at the first or early time steps), and finishing the long-term

constraint “when forced to” (i.e., during the compulsory trade). Both extremes result in a poor competitive

ratio. Many algorithms in the online search literature (e.g., online knapsack, OWT) leverage a threshold-
based design to address precisely this problem, as in [ZCL08; SZL

+
21; LCS

+
24]. However, such threshold-

based algorithms are traditionally derived for single-dimensional decision spaces with no switching costs.

In what follows, we describe a pseudo-cost minimization approach, which generalizes the threshold-based

design to operate in the setting of CFL.

Algorithm description. Recall that 𝑧 (𝑡) gives the fraction of the long-term constraint satisfied at time

𝑡 . Building off of the intuition of threshold-based design, we define a function 𝜙 , which will be used to

compute a pseudo-cost minimization problem central to our robust algorithm.

Definition 3.1 (Pseudo-cost threshold function 𝜙 for CFL). For any utilization 𝑧 ∈ [0, 1], 𝜙 is defined as:

𝜙 (𝑧) = 𝑈 − 𝛽 + (𝑈/𝛼 −𝑈 + 2𝛽) exp(𝑧/𝛼), (3)

where 𝛼 is the competitive ratio and is defined in (4).

Then our algorithm (Algorithm 1, referred to as ALG1) solves the pseudo-cost minimization problem

defined in (2) to obtain a decision x𝑡 at each time step. At a high level, the inclusion of 𝜙 in this pseudo-

cost problem enforces that, upon arrival of a cost function, the algorithm satisfies “just enough” of the

long-term constraint. Concretely, the structure of the 𝜙 function enforces that 𝜙 (𝑧 (𝑡)) − 𝛽 corresponds to

the “best cost function seen so far”. Then, if a good cost function arrives, the pseudo-cost minimization

problem solves for the x𝑡 which guarantees a competitive ratio of 𝛼 against the current estimate of OPT.
At a glance, it is not obvious that theminimization problem in (2) is tractable; however, in Appendix B.1,

we show that the problem is convex, implying that it can be solved efficiently. In Theorem 3.2, we state the

competitive result for ALG1. We discuss the significance of the result below, and relegate the full proof to

Appendix B.2.

6

Theorem 3.2. ALG1 is 𝛼-competitive for CFL, where 𝛼 is the solution to 𝑈 −𝐿−2𝛽

𝑈 −𝑈/𝛼−2𝛽
= exp(1/𝛼), given by

𝛼 B

[
𝑊

((
2𝛽

𝑈
+ 𝐿

𝑈
− 1

)
𝑒

2𝛽

𝑈
−1

)
− 2𝛽

𝑈
+ 1

]−1

, (4)

where𝑊 is the Lambert𝑊 function [CGH+96].

Intuitively, parameters of CFL (𝐿, 𝑈 , and 𝛽) appear in the competitive bound. While results for OWT
and CFC are not directly comparable, we discuss connections and the relative order of 𝛼 . When 𝛽 →
0, 𝛼 matches the optimal competitive ratio of

[
𝑊

(
(𝐿/𝑈 − 1) 𝑒−1

)
+ 1

]−1

for the minimization variant of

OWT [LPS08; SLH
+
21]. In the intermediate case (i.e., when 𝛽 ∈ (0,𝑈 −𝐿/2)), CFL adds a new linear depen-

dence on 𝛽 compared toOWT. Furthermore, when 𝛽 → 𝑈 −𝐿/2, 𝛼 approaches 𝑈/𝐿, which is the competitive

ratio achievable by e.g., a myopic cost minimization algorithm. Since 𝛼 does not feature a dependence on

the dimension 𝑑 of the vector space, we note a connection with CFC: it is known that “dimension-free”

bounds are achievable in CFC with structural assumptions on the hitting cost [CGW18; AGG20] that are

evocative of our bounded gradient assumptions in CFL.
Via Proposition 2.3, we obtain an immediate corollary to Theorem 3.2 which gives the following com-

petitive bound when ALG1 is used to solve MAL. The full proof of Corollary 3.3 can be found in Ap-

pendix B.3.

Corollary 3.3. ALG1 is 𝛼-competitive forMAL.

On the tightness of competitive ratios. It is important to highlight that the bounds in Theorem 3.2

and Corollary 3.3 are the first competitive bounds for any variant of convex function chasing or online

metric allocation imbued with long-term constraints. A natural follow-up question concerns whether any

online algorithm for CFL (or MAL) can achieve a better competitive bound. In the following, we answer

this question in the negative, showing that ALG1’s competitive ratio is the best that any deterministic

online algorithm for CFL and/or MAL can achieve. We state the result here, and defer the full proof to

Appendix B.4.

Theorem 3.4. There exists a family of CFL instances such that any deterministic online algorithm for CFL
is at least 𝛼-competitive, where 𝛼 is as defined in (4).

Since ALG1 is 𝛼-competitive by Theorem 3.2, this implies that ALG1 achieves the optimal competitive

ratio for CFL. Furthermore, by leveraging Lemma 2.2, this result gives an immediate corollary result in

theMAL setting by constructing a corresponding family ofMAL instances, which forces any algorithm to

achieve a competitive ratio of 𝛼 . We state the result here, deferring the full proof to Appendix B.5.

Corollary 3.5. The CFL instances in Theorem 3.4 correspond to instances ofMAL such that any deterministic
online algorithm forMAL is at least 𝛼-competitive.

As previously, since ALG1 is 𝛼-competitive by Corollary 3.3, it achieves the optimal competitive ratio

for MAL. We note that beyond the settings of CFL and MAL considered in this paper, Theorem 3.4 and

Corollary 3.5 are the first lower bound results for convex function chasing and online metric allocation

with long-term constraints, and may thus give useful insight into the achievable competitive bounds for

different or more general settings of these problems.

4 Learning-augmented Algorithms

In this section, we leverage techniques from the growing literature on learning-augmented algorithms to
consider how untrusted black-box advice can help improve the average-case performance of an algorithm

7

Algorithm 2 Consistency Limited Pseudo-cost minimization (CLIP)

input: consistency parameter 𝜖 , long-term constraint function 𝑐 (·), pseudo-cost threshold 𝜙𝜖 (·)
initialize: 𝑧 (0) = 0; 𝑝 (0) = 0; 𝐴 (0) = 0; CLIP0 = 0; ADV0 = 0

while cost function 𝑓𝑡 (·) is revealed, untrusted advice a𝑡 is revealed, and 𝑧 (𝑡−1) < 1 do
update advice cost ADV𝑡 = ADV𝑡−1+ 𝑓𝑡 (a𝑡)+∥a𝑡 −a𝑡−1∥ℓ1 (w) and advice utilization𝐴

(𝑡) = 𝐴 (𝑡−1) +𝑐 (a𝑡)
solve constrained pseudo-cost minimization problem:

x𝑡 = arg min

x∈𝑋 :𝑐 (x) ≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) −

∫ 𝑝 (𝑡−1) +𝑐 (x)

𝑝 (𝑡−1)
𝜙𝜖 (𝑢)𝑑𝑢 (5)

such that

CLIP𝑡−1 + 𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) + ∥x − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) + (1 − 𝑧 (𝑡−1) − 𝑐 (x))𝐿 + max((𝐴(𝑡) − 𝑧 (𝑡−1) − 𝑐 (x)), 0) (𝑈 − 𝐿)

≤ (1 + 𝜖) [ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 − 𝐴(𝑡))𝐿]

(6)

update cost CLIP𝑡 = CLIP𝑡−1 + 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (w) and utilization 𝑧 (𝑡) = 𝑧 (𝑡−1) + 𝑐 (x𝑡)
solve unconstrained pseudo-cost minimization problem:

x̄𝑡 = arg min

x∈𝑋 :𝑐 (x) ≤1−𝑧 (𝑡−1)
𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w) −

∫ 𝑝 (𝑡−1) +𝑐 (x)

𝑝 (𝑡−1)
𝜙𝜖 (𝑢)𝑑𝑢 (7)

update pseudo-utilization 𝑝 (𝑡) = 𝑝 (𝑡−1) + min(𝑐 (x̄𝑡), 𝑐 (x𝑡))

for CFL and MAL while retaining worst-case guarantees. We first consider a sub-optimal “baseline” al-

gorithm that directly combines advice with a robust algorithm such as ALG1. We then propose a unified

algorithm called CLIP, which integrates advice more efficiently and achieves the optimal trade-off between

consistency and robustness (Definition 2.1).

Advice model. For a CFL or MAL instance I ∈ Ω, let ADV denote untrusted black-box decision advice,

i.e., ADV B {a𝑡 ∈ 𝑋 : 𝑡 ∈ [𝑇]}. If the advice is correct, it achieves the optimal objective value (i.e.,

ADV(I) = OPT(I)).

A simple baseline. Lechowicz et al. [LCS
+
24] show that a straightforward “fixed-ratio” learning-

augmented approach works well in practice for unidimensional online search with switching costs. Here

we show that a similar technique (playing a convex combination of the solutions chosen by the advice and

a robust algorithm) achieves bounded but sub-optimal consistency and robustness for CFL.
Let ROB B {x̃𝑡 : 𝑡 ∈ [𝑇]} denote the actions of a robust algorithm for CFL (e.g., ALG1). For any

value 𝜖 ∈ (0, 𝛼 − 1], the fixed-ratio algorithm (denoted as Baseline for brevity) sets a fixed combination

factor 𝜆 B 𝛼−1−𝜖
𝛼−1

. Then at each time step, Baseline chooses a combination decision according to x𝑡 =

𝜆a𝑡 + (1−𝜆)x̃𝑡 . We present consistency and robustness results for Baseline below, deferring the full proof
to Appendix C.1.

Lemma 4.1. Letting ROB denote the actions of ALG1 and setting a parameter 𝜖 ∈ (0, 𝛼 − 1], Baseline is
(1 + 𝜖)-consistent and

(
(𝑈 +2𝛽)/𝐿 (𝛼−1−𝜖)+𝛼𝜖

(𝛼−1)

)
-robust for CFL.

Although this fixed-ratio algorithm verifies that an algorithm for CFL can utilize untrusted advice

to improve performance, it remains an open question of whether the trade-off between consistency and

robustness given in Lemma 4.1 is optimal. Thus, we study whether a learning-augmented algorithm for

CFL can be designed which does achieve the provably optimal consistency-robustness trade-off. In the next

section, we start by considering a more sophisticated method of incorporating advice into an algorithm

design.

8

An optimal learning-augmented algorithm. We present CLIP (Consistency-Limited Pseudo-cost
minimization, Algorithm 2) which achieves the optimal trade-off between consistency and robustness for

CFL. To start, for any 𝜖 ∈ (0, 𝛼 − 1], we define a corresponding target robustness factor 𝛾𝜖 , which is defined

as the unique positive solution to the following:

𝛾𝜖 = 𝜖 + 𝑈

𝐿
− 𝛾𝜖

𝐿
(𝑈 − 𝐿) ln

(
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

)
. (8)

Note that 𝛾𝛼−1 = 𝛼 , and 𝛾0 = 𝑈/𝐿. We use 𝛾𝜖 to define a pseudo-cost threshold function 𝜙𝜖
which will be

used in a minimization problem to choose a decision at each step of the CLIP algorithm.

Definition 4.2 (Pseudo-cost threshold function 𝜙𝜖
). Given 𝛾𝜖 from (8), 𝜙𝜖 (𝑝) for 𝑝 ∈ [0, 1] is defined as:

𝜙𝜖 (𝑝) = 𝑈 − 𝛽 + (𝑈/𝛾𝜖 −𝑈 + 2𝛽) exp(𝑝/𝛾𝜖). (9)

For each time step 𝑡 ∈ [𝑇], we define a pseudo-utilization 𝑝 (𝑡) ∈ [0, 1], where 𝑝 (𝑡) ≤ 𝑧 (𝑡) ∀𝑡 , and
𝑝 (𝑡)

describes the fraction of the long-term constraint which been satisfied “robustly” (as defined by the

pseudo-cost) at time 𝑡 .

Then CLIP (see Algorithm 2) solves a constrained pseudo-cost minimization problem (defined in (5)) to

obtain a decision x𝑡 at each time step. The objective of this problem is mostly inherited from ALG1, but the
inclusion of a consistency constraint allows the framework to accommodate untrusted advice for bounded

consistency and robustness.

The high-level intuition behind this consistency constraint (defined in (6)) is to directly compare the

solutions of CLIP and ADV so far, while “hedging” against worst-case scenarios which may cause CLIP
to violate the desired (1 + 𝜖)-consistency. We introduce some notation to simplify the expression of the

constraint. We let CLIP𝑡 denote the cost of CLIP up to time 𝑡 , i.e., CLIP𝑡 B
∑𝑡

𝜏=1
𝑓𝜏 (x𝜏) + ∥x𝜏 − x𝜏−1∥ℓ1 (w) .

Similarly, we let ADV𝑡 B
∑𝑡

𝜏=1
𝑓𝜏 (a𝜏) + ∥a𝜏 − a𝜏−1∥ℓ1 (w) denote the cost of ADV up to time 𝑡 . Additionally,

we let 𝐴 (𝑡)
denote the utilization of ADV at time 𝑡 , i.e., 𝐴 (𝑡) B

∑𝑡
𝜏=1

𝑐 (a𝜏)
The constraint defined in (6) considers the cost of both CLIP and ADV so far, and the current hitting

and switching cost 𝑓𝑡 (x) + ∥x − x𝑡−1∥ℓ1 (w) , ensuring that (1 + 𝜖)-consistency is preserved. Both sides

of the constraint also include terms which consider the cost of potential future situations. First, ∥x −
a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) ensures that if CLIP pays a switching cost to follow ADV and/or pays a switching cost

to “switch off” (move to 0) in e.g., the next time step, that cost has been paid for “in advance”. As x𝑇+1 = 0,
the constraint also charges ADV in advance for the mandatory switching cost at the end of the sequence(
∥a𝑡 ∥ℓ1 (w)

)
; this ensures that there is always a feasible setting of x𝑡 .

In the term

(
1 −𝐴 (𝑡)) 𝐿, the consistency constraint assumes that ADV can satisfy the rest of the long-

term constraint at the best marginal cost 𝐿. Respectively, in the term (1 − 𝑧 (𝑡−1) − 𝑐 (x))𝐿 + max((𝐴 (𝑡) −
𝑧 (𝑡−1) − 𝑐 (x)), 0) (𝑈 − 𝐿), the constraint assumes CLIP can satisfy up to

(
1 −𝐴 (𝑡))

of the remaining long-

term constraint at the best cost 𝐿, but any excess (i.e., (𝐴 (𝑡) − 𝑧 (𝑡))) must be satisfied at the worst cost

𝑈 (e.g., during the compulsory trade). This worst-case assumption ensures that when actual hitting costs

replace the above terms, the desired (1 + 𝜖)-consistency holds.

At each step, CLIP also solves an unconstrained pseudo-cost minimization problem to obtain x̄𝑡 , which
updates the pseudo-utilization 𝑝 (𝑡)

. This ensures that when ADV has accepted a cost function which would

not be accepted by the unconstrained pseudo-cost minimization, the threshold function 𝜙𝜖
can “start from

zero” in subsequent time steps.

At a high level, CLIP’s consistency constraint combined with the pseudo-cost minimization gener-

ates decisions which are as robust as possible while preserving consistency. In Theorem 4.3, we state the

consistency and robustness of CLIP; we relegate the full proof to Appendix C.2.

9

Theorem 4.3. For any 𝜖 ∈ [0, 𝛼 − 1], CLIP is (1 + 𝜖)-consistent and 𝛾𝜖 -robust for CFL (𝛾𝜖 as defined in (8)).

The previous result gives an immediate corollary when CLIP is used to solve MAL, which we state

below. The full proof of Corollary 4.4 can be found in Appendix C.3.

Corollary 4.4. For any 𝜖 ∈ [0, 𝛼 − 1], CLIP is (1 + 𝜖)-consistent and 𝛾𝜖 -robust forMAL.

Optimal trade-offs between robustness and consistency. Although the trade-off given by CLIP
implies that achieving 1-consistency requires a large robustness bound of 𝑈/𝐿 in the worst-case, in the

following theorem we show that this is the best we can obtain from any consistent and robust algorithm.

We state the result and discuss its significance here, deferring the full proof to Appendix C.4.

Theorem 4.5. Given untrusted advice ADV and 𝜖 ∈ (0, 𝛼 − 1], any (1 + 𝜖)-consistent learning-augmented
algorithm for CFL is at least 𝛾𝜖 -robust, where 𝛾𝜖 is defined in (8).

This result implies that CLIP achieves the optimal trade-off between consistency and robustness for

CFL. Furthermore, via Lemma 2.2, this result immediately gives Corollary 4.6, which we state here and

prove in Appendix C.5.

Corollary 4.6. Any (1+𝜖)-consistent learning-augmented algorithm forMAL is at least𝛾𝜖 -robust (𝛾𝜖 defined
by (8)).

As previously, this implies CLIP achieves the optimal consistency-robustness trade-off for MAL. Be-
yond the settings of CFL andMAL, these Pareto-optimality results may give useful insight into the achiev-

able consistency-robustness trade-offs for more general settings.

5 Numerical Experiments

In this section, we conduct numerical experiments on synthetic CFL instances. We evaluate ALG1 and

CLIP against the offline optimal solution, three heuristics adapted from related work, and the learning-

augmented Baseline.

Setup. Here we give an overview of our experiment setup and comparison algorithms. We construct a

𝑑-dimensional decision space, where 𝑑 is picked from the set {5, 7, ... , 21}. The competitive ratio of our

proposed algorithms depends on both 𝑈/𝐿 and 𝛽 = max𝑖 wi
, as the switching cost. Hence, we evalu-

ate their performance over the range of these parameters. We set different cost fluctuation ratios 𝑈/𝐿 ∈
{50, 150, ... , 1250} by setting 𝐿 and 𝑈 accordingly, and 𝛽 is picked from the set 𝛽 ∈ {0, 5, ... ,𝑈/2.5}. We

also set a parameter 𝜎 ∈ {0, 10, ... ,𝑈/2}, which controls the dimension-wise variability of generated cost

functions 𝑓𝑡 . Across all experiments, 𝑐 (x) = ∥x∥1.

For a given setting of 𝑑 , 𝑈/𝐿, and 𝛽 , we generate 1,000 random instances as follows. First, each term

of the weight vector w for the weighted ℓ1 norm is drawn randomly from the uniform distribution on

[0, 𝛽]. Next, the time horizon 𝑇 is generated randomly from a uniform distribution on [6, 24]. For each
time 𝑡 ∈ [𝑇], a cost function is generated as follows: Let 𝑓𝑡 (x) = f⊺𝑡 x, where f𝑡 is a 𝑑-dimensional cost
vector. To generate f𝑡 , we first draw 𝜇𝑡 from the uniform distribution on [𝐿,𝑈], and then draw each term

of f𝑡 from a normal distribution centered at 𝜇𝑡 with standard deviation 𝜎 (i.e., f𝑖𝑡 ∼ N(𝜇𝑡 , 𝜎)). Any terms

which are outside the assumed interval [𝐿,𝑈] (i.e. f𝑖𝑡 < 𝐿 or f𝑖𝑡 > 𝑈) are truncated appropriately. For each

instance, we report the empirical competitive ratios as the evaluation metric, comparing the tested algo-

rithms against an offline optimal benchmark. We give results for the average empirical competitive ratio

in the main body, with supplemental results for the 95
th
percentile (“worst-case”) empirical competitive

ratio in Appendix A.1.

10

In the setting with advice, we construct simulated advice as follows: Let 𝜉 ∈ [0, 1] denote an adversarial
factor. When 𝜉 = 0, ADV gives the optimal solution, and when 𝜉 = 1, ADV is fully adversarial. Formally,

letting {x★𝑡 : 𝑡 ∈ [𝑇]} denote the decisionsmade by an optimal solution, and letting {x̆𝑡 : 𝑡 ∈ [𝑇]} represent
the decisions made by a solution which maximizes the objective (rather than minimizing it), we have that

ADV = {(1− 𝜉)x★𝑡 + 𝜉 x̆𝑡 : 𝑡 ∈ [𝑇]}. We note that although {x̆𝑡 : 𝑡 ∈ [𝑇]} is adversarial from the perspective

of the objective, it is still a feasible solution for the problem (i.e., it satisfies the long-term constraint).

Comparison algorithms. We use CVXPY [DB16] to compute the offline optimal solution for each

instance using a convex optimization solver with access to all cost functions in advance. This provides the

empirical competitive ratio for each algorithm. We consider three online heuristic techniques based on

the literature for related problems. The first technique is termed “agnostic”, which chooses the minimum

dimension of the cost function in the first time step 𝑡 = 1 (i.e., 𝑘 = arg min𝑖∈[𝑑] c
𝑖
1
), sets x𝑘

1
= 1, and x𝑡 =

0 ∀𝑡 > 1. The second technique is termed “move to minimizer”, which takes inspiration from algorithms

for CFC [ZJL
+
21] and satisfies 1/𝑇 fraction of the long-term constraint at each time step by moving to

the minimum dimension of each cost function. Formally, at each time step 𝑡 , letting 𝑘𝑡 = arg min𝑖∈[𝑑] c
𝑖
𝑡 ,

“move to minimizer” sets x𝑘𝑡𝑡 = 1/𝑇 . Finally, the third technique is termed “simple threshold”, which takes
inspiration from algorithms for online search [EFK

+
01]. This algorithm sets a fixed threshold 𝜓 =

√
𝑈𝐿,

and completes the long-term constraint at the first time step and dimension where the hitting cost does

not exceed 𝜓 . Formally, at the first time step 𝜏 satisfying ∃ 𝑘 ∈ [𝑑] : f𝑘𝜏 ≤ 𝜓 , “simple threshold” sets

x𝑘𝜏 = 1. Importantly, none of these heuristics are accompanied by traditional competitive guarantees, since

our work is the first to consider CFL. In the setting with advice, we compare our proposed CLIP learning-
augmented algorithm against the Baseline learning-augmented algorithm described in Section 4 (e.g.,

Lemma 4.1).

0 10 20 30 40
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

de
ns

ity

ALG1
agnostic
simple threshold
move to minimizer
CLIP[= 2]

Figure 1: CDFs of empirical

competitive ratios for vari-

ous algorithms.

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20
av

g.
 e

m
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

baseline[= 10]
baseline[= 5]
baseline[= 2]
CLIP[= 10]
CLIP[= 5]
ADV

Figure 2: Varying adversar-

ial factor 𝜉 , with𝑈/𝐿 = 250, 𝛽

= 50, 𝑑 = 5, and 𝜎 = 50.

Experimental results. Figure 1 summa-

rizes the main results for ALG1, the compari-

son algorithms, and one setting of CLIP (𝜖 = 2)

in a CDF plot of the empirical competitive ra-

tios across several experiments. Here we fix

𝑈/𝐿 = 250, 𝜉 = 0, 𝜎 = 50, while varying

𝛽 and 𝑑 . ALG1 outperforms in both average-

case and worst-case performance, improving

on the closest “simple threshold” by an aver-

age of 18.2%, and outperforming “agnostic” and

“move to minimizer” by averages of 56.1% and

71.5%, respectively. With correct advice, CLIP
sees significant performance gains everywhere.

In Figure 3-6, we investigate the impact of parameters on the average empirical competitive ratio

for each algorithm. In Appendix A.1, we give corresponding plots for the 95th percentile (“worst-case”)

results. Figure 3 plots competitive ratios for different values of 𝑈/𝐿. We fix 𝛽 = 𝑈/5, 𝑑 = 5, 𝜉 = 0, 𝜎 = 𝑈/5,

while varying 𝑈/𝐿. Since there is a dependence on 𝑈/𝐿 in our competitive results, the performance of ALG1
degrades as 𝑈/𝐿 grows, albeit at a favorable pace compared to the heuristics. Figure 4 plots competitive

ratios for different values of 𝛽 . We fix 𝑈/𝐿 = 250, 𝑑 = 5, 𝜉 = 0, 𝜎 = 50. As 𝛽 grows, the “agnostic” and “move

to minimizer” heuristics improve because the switching cost paid by OPT grows.

In Figure 5, we plot competitive ratios for different values of 𝑑 . We fix 𝑈/𝐿 = 250, 𝛽 = 50, 𝜉 = 0, 𝜎 = 50,

while varying 𝑑 . As 𝑑 grows, ALG1 and CLIP’s performance degrades slower compared to the heuristics, as

predicted by their dimension-free theoretical bounds. Finally, Figure 6 plots competitive ratios for different

11

200 400 600 800 1000
U/L

0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 3: Varying 𝑈/𝐿,
with 𝛽 = 𝑈/5, 𝑑 = 5, 𝜉 = 0,

and 𝜎 = 𝑈/5.

0 20 40 60 80 100
0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 4: Varying 𝛽 , with
𝑈/𝐿 = 250, 𝑑 = 5, 𝜉 = 0,

and 𝜎 = 50.

5 10 15 20
d

0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 5: Varying 𝑑 with

𝛽 = 50,𝑈/𝐿 = 250, 𝜎 = 50,

and 𝜉=0.

0 20 40 60 80 100 120
0

5

10

15

20

av
g.

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 6: Varying 𝜎 , with

𝛽 = 50,𝑈/𝐿 = 250, 𝑑 = 5,

and 𝜉 = 0.

values of 𝜎 . We fix 𝑈/𝐿 = 250, 𝛽 = 50, 𝑑 = 5, 𝜉 = 0, while varying 𝜎 . As cost functions become more

variable, the performance of all algorithms degrades, with the exception of CLIP. There is a plateau as 𝜎

grows, because a large 𝜎 implies that more terms in each f𝑡 must be truncated to the interval [𝐿,𝑈].
Figure 2 plots the effect of prediction error on the learning-augmented algorithms CLIP and Baseline.

We test several values of 𝜉 ∈ [0, 1/2] (recall that 𝜉 = 0 recovers correct advice), while fixing 𝑈/𝐿 = 250, 𝛽 =

50, 𝑑 = 5, and 𝜎 = 50. We also test Baseline and CLIP for several values of 𝜖 ∈ {2, 5, 10} (note that ADV
corresponds to Baseline and CLIP with 𝜖 = 0). Notably, we find that CLIP significantly outperforms the

Baseline algorithm as 𝜉 grows, showing an average improvement of 60.8% when 𝜉 > 0.1. This result

implies that CLIP is more empirically robust to prediction errors than the simple fixed ratio technique of

Baseline.

6 Conclusion

We study online metric problems with long-term constraints, motivated by emerging problems in sustain-

ability. These are the first such problems to concurrently incorporate multidimensional decision spaces,

switching costs, and long-term demand constraints. Our main results instantiate the CFL and MAL prob-

lems towards a motivating application. We design competitive and learning-augmented algorithms, show

that their performance bounds are tight, and validate them in numerical experiments. Several interesting

open questions are prompted by our work. Specifically, (i) what is achievable in non-ℓ1 vector spaces e.g.,

the Euclidean setting, and (ii) can our results forMAL inform algorithm designs for e.g., tree metrics, and

by extension, arbitrary metric spaces?

References

[AGG20] C. J. Argue, Anupam Gupta, and Guru Guruganesh. “Dimension-Free Bounds for Chasing

Convex Functions”. In: Proceedings of Thirty Third Conference on Learning Theory. PMLR, July

2020, pp. 219–241. (Visited on 02/04/2022).

[ALK
+
23] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj Chakkar-

avarthy, David Brooks, and Carole-JeanWu. “Carbon Explorer: A Holistic Framework for De-

signing Carbon Aware Datacenters”. In: Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2. ASP-
LOS 2023. Vancouver, BC, Canada: Association for Computing Machinery, 2023, pp. 118–132.

isbn: 9781450399166. doi: 10.1145/3575693.3575754. url: https://doi.org/10.1145/
3575693.3575754.

12

https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3575693.3575754

[BC22] Nikhil Bansal and Christian Coester. “Online Metric Allocation and Time-Varying Regular-

ization”. In: 30th Annual European Symposium on Algorithms (ESA 2022). Ed. by Shiri Chechik,
Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman. Vol. 244. Leibniz International Pro-

ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2022, 13:1–13:13. isbn: 978-3-95977-247-1. doi: 10.4230/LIPIcs.ESA.2022.13.
url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.13.

[BCL
+
21] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. “Metrical Task Systems

on Trees via Mirror Descent and Unfair Gluing”. In: SIAM Journal on Computing 50.3 (Jan.

2021), pp. 909–923. issn: 0097-5397, 1095-7111. doi: 10.1137/19M1237879.

[BCR23] Sébastien Bubeck, Christian Coester, and Yuval Rabani. “The Randomized k-Server Con-

jecture Is False!” In: Proceedings of the 55th Annual ACM Symposium on Theory of Comput-
ing (STOC 2023). STOC 2023. Orlando, FL, USA: Association for Computing Machinery, 2023,

pp. 581–594. isbn: 9781450399135. doi: 10.1145/3564246.3585132. url: https://doi.org/
10.1145/3564246.3585132.

[BGH
+
21] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy, Ramesh

Sitaraman, Abel Souza, and AdamWierman. “Enabling Sustainable Clouds: The Case for Vir-

tualizing the Energy System”. In: Proceedings of the ACM Symposium on Cloud Computing.
SoCC ’21. Seattle, WA, USA: Association for Computing Machinery, 2021, pp. 350–358. isbn:

9781450386388. doi: 10 . 1145 / 3472883 . 3487009. url: https : / / doi . org / 10 . 1145 /
3472883.3487009.

[BKL
+
19] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. “Chasing Nested

Convex Bodies Nearly Optimally”. In: Proceedings of the 2020 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). Proceedings. Society for Industrial and Applied Mathematics, Dec.

2019, pp. 1496–1508. doi: 10.1137/1.9781611975994.91.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. “An Optimal On-Line Algorithm for Met-

rical Task System”. In: J. ACM 39.4 (Oct. 1992), pp. 745–763. issn: 0004-5411. doi: 10.1145/
146585.146588. url: https://doi.org/10.1145/146585.146588.

[CBS
+
22] Kai-Wen Cheng, Yuexin Bian, Yuanyuan Shi, and Yize Chen. “Carbon-Aware EVCharging”. In:

2022 IEEE International Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm). 2022, pp. 186–192. doi: 10.1109/SmartGridComm52983.
2022.9960988.

[CGH
+
96] Robert M Corless, Gaston HGonnet, David EGHare, David J Jeffrey, and Donald E Knuth. “On

the Lambert W function”. In: Advances in Computational mathematics 5 (1996), pp. 329–359.

[CGW18] NiangJun Chen, Gautam Goel, and Adam Wierman. “Smoothed Online Convex Optimization

in High Dimensions via Online Balanced Descent”. In: Proceedings of the 31st Conference On
Learning Theory. PMLR, July 2018, pp. 1574–1594.

[CHW22] Nicolas Christianson, Tinashe Handina, and Adam Wierman. “Chasing Convex Bodies and

Functions with Black-Box Advice”. In: Proceedings of the 35th Conference on Learning Theory.
Vol. 178. PMLR, July 2022, pp. 867–908.

[CSW23] Nicolas Christianson, Junxuan Shen, and Adam Wierman. “Optimal robustness-consistency

tradeoffs for learning-augmented metrical task systems”. In: International Conference on Arti-
ficial Intelligence and Statistics. 2023.

[DB16] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling language for

convex optimization”. In: Journal of Machine Learning Research 17.83 (2016), pp. 1–5.

13

https://doi.org/10.4230/LIPIcs.ESA.2022.13
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.13
https://doi.org/10.1137/19M1237879
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1137/1.9781611975994.91
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/146585.146588
https://doi.org/10.1109/SmartGridComm52983.2022.9960988
https://doi.org/10.1109/SmartGridComm52983.2022.9960988

[EFK
+
01] Ran El-Yaniv, Amos Fiat, Richard M. Karp, and G. Turpin. “Optimal Search and One-Way

Trading Online Algorithms”. In: Algorithmica 30.1 (May 2001), pp. 101–139. doi: 10.1007/
s00453-001-0003-0. url: https://doi.org/10.1007/s00453-001-0003-0.

[FL93] Joel Friedman and Nathan Linial. “On convex body chasing”. In: Discrete & Computational
Geometry 9.3 (Mar. 1993), pp. 293–321. doi: 10.1007/bf02189324. url: https://doi.org/
10.1007/bf02189324.

[HLB
+
23] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant Shenoy. “Carbon-

Scaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency”. In: Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems 7.3 (Dec. 2023). arXiv:

2302.08681 [cs.DC].

[Kou09] Elias Koutsoupias. “The k-server problem”. In:Computer Science Review 3.2 (May 2009), pp. 105–

118. doi: 10.1016/j.cosrev.2009.04.002. url: https://doi.org/10.1016/j.cosrev.
2009.04.002.

[LCS
+
24] AdamLechowicz, Nicolas Christianson, Bo Sun, NomanBashir,MohammadHajiesmaili, Adam

Wierman, and Prashant Shenoy. “Online Conversionwith SwitchingCosts: Robust and Learning-

augmented Algorithms”. In: Proceedings of the 2024 SIGMETRICS/Performance Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems. Venice, Italy: Associa-
tion for Computing Machinery, June 2024. arXiv: 2310.20598 [cs.DS].

[LCZ
+
23] Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad Hajiesmaili,

Adam Wierman, and Prashant Shenoy. “The Online Pause and Resume Problem: Optimal Al-

gorithms and An Application to Carbon-Aware Load Shifting”. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems 7.3 (Dec. 2023). arXiv: 2303.17551 [cs.DS].

[LPS08] Julian Lorenz, Konstantinos Panagiotou, and Angelika Steger. “Optimal Algorithms for k-

Search with Application in Option Pricing”. In: Algorithmica 55.2 (Aug. 2008), pp. 311–328.

doi: 10.1007/s00453-008-9217-8.

[LSH
+
24] Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C. S. Lui. “Online Search with Pre-

dictions: Pareto-optimal Algorithm and its Applications in Energy Markets”. In: Proceedings
of the 15th ACM International Conference on Future Energy Systems. e-Energy ’24. Singapore,

Singapore: Association for Computing Machinery, June 2024.

[LV18] Thodoris Lykouris and Sergei Vassilvtiskii. “Competitive Caching with Machine Learned Ad-

vice”. In: Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer
Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, July 2018,

pp. 3296–3305. url: https://proceedings.mlr.press/v80/lykouris18a.html.

[MAS14] Esther Mohr, Iftikhar Ahmad, and Günter Schmidt. “Online algorithms for conversion prob-

lems: A survey”. In: Surveys in Operations Research and Management Science 19.2 (July 2014),

pp. 87–104. doi: 10.1016/j.sorms.2014.08.001. url: https://doi.org/10.1016/j.
sorms.2014.08.001.

[MMS88] MarkManasse, LyleMcGeoch, andDaniel Sleator. “Competitive Algorithms for On-Line Prob-

lems”. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. STOC
’88. Chicago, Illinois, USA: Association for Computing Machinery, 1988, pp. 322–333. isbn:

0897912640. doi: 10.1145/62212.62243.

[MPF91] Dragoslav S. Mitrinovic, Josip E. Pečarić, and A. M. Fink. Inequalities Involving Functions and
Their Integrals and Derivatives. Vol. 53. Springer Science & Business Media, 1991.

14

https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1007/bf02189324
https://doi.org/10.1007/bf02189324
https://doi.org/10.1007/bf02189324
https://arxiv.org/abs/2302.08681
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://arxiv.org/abs/2310.20598
https://arxiv.org/abs/2303.17551
https://doi.org/10.1007/s00453-008-9217-8
https://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1016/j.sorms.2014.08.001
https://doi.org/10.1016/j.sorms.2014.08.001
https://doi.org/10.1016/j.sorms.2014.08.001
https://doi.org/10.1145/62212.62243

[PSK18] Manish Purohit, Zoya Svitkina, and Ravi Kumar. “Improving Online Algorithms via ML Pre-

dictions”. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc.,

2018.

[RKS
+
22] Ana Radovanovic, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte, Binz Roy,

Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, et al. “Carbon-Aware Computing for

Datacenters”. In: IEEE Transactions on Power Systems (2022).

[Sel20] Mark Sellke. “Chasing Convex Bodies Optimally”. In: Proceedings of the Thirty-First Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’20. USA: Society for Industrial and

Applied Mathematics, Jan. 2020, pp. 1509–1518.

[SLH
+
21] Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, and Danny Tsang. “Pareto-

Optimal Learning-Augmented Algorithms for Online Conversion Problems”. In: Advances in
Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.

Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 10339–10350.

[SZL
+
21] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K.

Tsang. “Competitive Algorithms for the Online Multiple Knapsack Problem with Application

to Electric Vehicle Charging”. In: Proceedings of the ACM on Measurement and Analysis of
Computing Systems 4.3 (June 2021). doi: 10.1145/3428336. url: https://doi.org/10.
1145/3428336.

[WBS
+
21] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz Thamsen.

“Let’s Wait AWhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the

Cloud”. In: Proceedings of the 22nd International Middleware Conference. New York, NY, USA:

Association for Computing Machinery, 2021, pp. 260–272. doi: 10.1145/3464298.3493399.

[ZCL08] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. “Budget Constrained Bidding in

Keyword Auctions and Online Knapsack Problems”. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, pp. 566–576.

[ZJL
+
21] Lijun Zhang, Wei Jiang, Shiyin Lu, and Tianbao Yang. Revisiting Smoothed Online Learning.

2021. arXiv: 2102.06933 [cs.LG]. url: https://arxiv.org/abs/2102.06933.

15

https://doi.org/10.1145/3428336
https://doi.org/10.1145/3428336
https://doi.org/10.1145/3428336
https://doi.org/10.1145/3464298.3493399
https://arxiv.org/abs/2102.06933
https://arxiv.org/abs/2102.06933

Appendix

A Numerical Experiments (continued)

In this section, we give supplemental results examining the 95th percentile (“worst-case”) empirical com-

petitive ratio results, following the same general structure as in the main body.

200 400 600 800 1000
U/L

0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 7: Varying 𝑈/𝐿,
with 𝛽 = 𝑈/5, 𝑑 = 5, 𝜉 = 0,

and 𝜎 = 𝑈/5.

0 20 40 60 80 100
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 8: Varying 𝛽 , with
𝑈/𝐿 = 250, 𝑑 = 5, 𝜉 = 0,

and 𝜎 = 50.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
d

0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 9: Varying 𝑑 with

𝛽 = 50,𝑈/𝐿 = 250, 𝜎 = 50,

and 𝜉=0.

0 25 50 75 100 125
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

Figure 10: Varying 𝜎 ,

with 𝛽 = 50,𝑈/𝐿 = 250, 𝑑 =

5, and 𝜉 = 0.

A.1 Supplemental Results

To complement the results for the average empirical competitive ratio shown in Section 5, in this section

we plot the 95th percentile empirical competitive ratios for each tested algorithm, which primarily serve

to show that the improved performance of our proposed algorithm holds in both average-case and tail

(“worst-case”) scenarios.

In Figure 7-10, we investigate the impact of different parameters on the performance of each algo-

rithm. In Figure 7, we plot 95th percentile empirical competitiveness for different values of 𝑈/𝐿 – in this

experiment, we fix 𝛽 = 𝑈/5, 𝑑 = 5, 𝜉 = 0, and 𝜎 = 𝑈/5, while varying 𝑈/𝐿 ∈ {50, ... , 1250}. As observed
in the average competitive ratio plot (Figure 3), the performance of ALG1 degrades as 𝑈/𝐿 grows, albeit

at a favorable pace compared to the comparison algorithms. Figure 8 plots the 95th percentile empirical

competitiveness for different values of 𝛽 – in this experiment, we fix 𝑈/𝐿 = 250, 𝑑 = 5, 𝜉 = 0, and 𝜎 = 50.

As previously in the average competitive results (Figure 4), “agnostic” and “move to minimizer” heuristics

perform better when 𝛽 grows, because the switching cost paid by the optimal solution grows as well.

0.0 0.1 0.2 0.3 0.4 0.5
0

25

50

75

100

95
th

 %
ile

 e
m

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

baseline[= 10]
baseline[= 5]
baseline[= 2]
CLIP[= 10]
CLIP[= 5]
ADV

Figure 11: Varying adversarial

factor 𝜉 , with 𝑈/𝐿 = 250, 𝛽 = 50, 𝑑

= 5, 𝜎 = 50.

In Figure 9, we plot the 95th percentile empirical competitiveness for

different values of 𝑑 – in this experiment, we fix 𝑈/𝐿 = 250, 𝛽 = 50, 𝜉 = 0,

and 𝜎 = 50, while varying 𝑑 . Mirroring the previous results (Figure 5),

ALG1 and CLIP’s competitive performance degrades slower as 𝑑 grows

compared to the comparison heuristics, as predicted by their dimension-
free theoretical bounds. Finally, Figure 10 plots the 95th percentile em-

pirical competitiveness for different values of 𝜎 , which is the dimension-

wise variability of each cost function. Here we fix 𝑈/𝐿 = 250, 𝛽 = 50, 𝑑 =

5, and 𝜉 = 0, while varying 𝜎 ∈ {0, ... ,𝑈/2}. Intuitively, as cost func-

tions become more variable, the competitive ratios of all tested algo-

rithms degrade, with the exception of our learning-augmented algorithm

CLIP. This degradation plateaus as 𝜎 grows, as a large standard devia-

tion forces more of the terms of each cost vector c𝑡 to be truncated to

the interval [𝐿,𝑈].
In Figure 11, we plot the 95th percentile empirical competitive ratio companion to Figure 2, which

measures the effect of prediction error on the learning-augmented algorithms CLIP and Baseline. We

16

test several values of 𝜉 ∈ [0, 1], the adversarial factor (recall that 𝜉 = 0 implies the advice is correct), while

fixing 𝑈/𝐿 = 250, 𝛽 = 50, 𝑑 = 5, 𝜎 = 50. We test Baseline and CLIP for several values of 𝜖 ∈ {2, 5, 10} (note
that ADV corresponds to running either Baseline or CLIP with 𝜖 = 0). Notably, in these 95th percentile

“worst-case” results, we find that CLIP continues to significantly outperforms the Baseline algorithm as

𝜉 grows, further validating that CLIP is more empirically robust to prediction errors than the simple fixed

ratio technique of Baseline.

B Proofs for Section 3 (Competitive Algorithms)

B.1 Convexity of the pseudo-cost minimization problem in ALG1

In this section, we show that the pseudo-cost minimization problem central to the design of ALG1 is a

convex minimization problem, implying that it can be solved efficiently.

Define ℎ𝑡 (x) : 𝑡 ∈ [𝑇] to represent the pseudo-cost minimization problem for a single arbitrary time

step:

ℎ𝑡 (·) = 𝑓𝑡 (x) + 𝑑 (x, x𝑡−1) −
∫ 𝑧 (𝑡−1)+𝑐 (x)

𝑧 (𝑡−1)
𝜙 (𝑢)𝑑𝑢. (10)

Theorem B.1. Under the assumptions of the CFL and MAL problem settings, ℎ𝑡 (·) is always convex.

Proof. We prove the above statement by contradiction.

By definition, we know that the sum of two convex functions gives a convex function. Since we have

that 𝑑 (x, x′) is defined as some norm, by definition and by observing that x′ is fixed, 𝑑 (x, x′) is convex. We

have also assumed as part of the problem setting that each 𝑓𝑡 (x) is convex. Thus, 𝑓𝑡 (x) + 𝑑 (x, x′) must be

convex.

We turn our attention to the term −
∫ 𝑧 (𝑡−1)+𝑐 (x)
𝑧 (𝑡−1) 𝜙 (𝑢)𝑑𝑢. Let 𝑘 (𝑐 (x)) =

∫ 𝑧 (𝑡−1)+𝑐 (x)
𝑧 (𝑡−1) 𝜙 (𝑢)𝑑𝑢. By the

fundamental theorem of calculus, ∇𝑘 (𝑐 (x)) = 𝜙 (𝑧 (𝑡−1) + 𝑐 (x))∇𝑐 (x)
Let 𝑔(𝑐 (x)) = 𝜙 (𝑧 (𝑡−1) + 𝑐 (x)). Then ∇2𝑘 (𝑐 (x)) = ∇2𝑐 (x)𝑘 (𝑐 (x)) + ∇𝑐 (x)𝑔′(𝑐 (x))∇𝑐 (x)⊺ . Since 𝑐 (x)

is piecewise linear (CFL and MAL both assume it is linear), we know that ∇2𝑐 (x)𝑔(𝑐 (x)) = 0. Since 𝜙 is

monotonically decreasing on the interval [0, 1], we know that 𝑔′(𝑐 (x)) < 0, and thus ∇𝑐 (x)𝑔′(𝑐 (x))∇𝑐 (x)⊺
is negative semidefinite. This implies that 𝑘 (𝑐 (x)) is concave in x.

Since the negation of a concave function is convex, this causes a contradiction, because the sum of two

convex functions gives a convex function.

Thus, ℎ𝑡 (·) = 𝑓𝑡 (x) + 𝑑 (x, x𝑡−1) −
∫ 𝑧 (𝑡−1)+𝑐 (x)
𝑧 (𝑡−1) 𝜙 (𝑢)𝑑𝑢 is always convex under the assumptions of CFL

and MAL. □

By showing that ℎ𝑡 (·) is convex, it follows that the pseudo-cost minimization (2) in ALG1 is a convex

minimization problem (i.e., it can be solved efficiently using numerical methods).

B.2 Proof of Theorem 3.2

In this section, we prove Theorem 3.2, which shows that 𝛼 as given by (4) is an upper bound on the worst-

case competitive ratio of ALG1 (given by Algorithm 1) for the CFL problem.

Proof of Theorem 3.2. Let 𝑧 (𝑗) =
∑

𝑡 ∈[𝑇] 𝑐 (x𝑡) denote the fraction of the long-term constraint satisfied by

ALG1 before the compulsory trade on an arbitrary CFL instance I ∈ Ω. Also note that 𝑧 (𝑡) =
∑

𝑚∈[𝑡] 𝑐 (x𝑚)
is non-decreasing over 𝑛.

LemmaB.2. The offline optimal solution OPT(I) for anyCFL instanceI ∈ Ω is lower bounded by𝜙 (𝑧 (𝑗))−𝛽 .

17

Proof of Lemma B.2. We prove this lemma by contradiction. Note that the offline optimum will stay

at 0 whenever possible, and satisfy the long-term constraint using the cost functions with the minimum

gradient (i.e., the best marginal cost). Assume that OPT(I) < 𝜙 (𝑧 (𝑗)) − 𝛽 , and that 𝑧 (𝑗) < 1 (implying that

OPT(I) > 𝐿).

Recall that any cost function 𝑓𝑡 (·) : 𝑋 → R is minimized exactly at 0, since 𝑓𝑡 (0) = 0 ∀𝑡 ∈ [𝑇]. By
convexity of the cost functions, this implies that the gradient of some cost function 𝑓𝑡 is similarlyminimized

at the point 0, and thus the best marginal cost for 𝑓𝑡 can be obtained by taking an infinitesimally small step

away from 0 in at least one direction, which we denote (without loss of generality) as 𝑖 ∈ [𝑑]. For brevity,
we denote this best marginal cost in 𝑓𝑡 by [∇𝑓𝑡]𝑖 .

The assumption that OPT(I) < 𝜙 (𝑧 (𝑗)) − 𝛽 implies that instance I must contain a cost function 𝑓𝑚 (·)
at some arbitrary time step𝑚 (𝑚 ∈ [𝑇]) which satisfies [∇𝑓𝑚]𝑖 < 𝜙 (𝑧 (𝑗)) − 𝛽 for any dimension 𝑖 ∈ [𝑑].

Prior work [LPS08; SZL
+
21] has shown that the worst-case for online search problems with long-term

demand constraints occurs when cost functions arrive online in descending order, so we henceforth adopt

this assumption. Recall that at each time step, ALG1 solves the pseudo-cost minimization problem defined

in (2). Without loss of generality, assume that 𝑧 (𝑚−1) = 𝑧 (𝑗) , i.e. the cost function 𝑓𝑚 (·) arrives when ALG1
has already reached its final utilization (before the compulsory trade). This implies that x𝑚 = 0, and further

that 𝑐 (x𝑚) = 0. This implies that 𝑓𝑚 (x) + ∥x − x𝑚−1∥ℓ1 (w) >
∫ 𝑧 (𝑚−1)+𝑐 (x)
𝑧 (𝑚−1) 𝜙 (𝑢)𝑑𝑢, since the pseudo-cost

minimization problem should be minimized when ALG1 sets x𝑚 = 0.
The pseudo-cost minimization problem at time step𝑚 can be expressed as follows:

x𝑚 = arg min

x∈R𝑑 :𝑐 (x)≤1−𝑧 (𝑚−1)
𝑓𝑚 (x) + ∥x − x𝑚−1∥ℓ1 (w) −

∫ 𝑧 (𝑚−1)+𝑐 (x)

𝑧 (𝑚−1)
𝜙 (𝑢)𝑑𝑢.

We note that ∥x−x𝑚−1∥ℓ1 (w) is upper bounded by 𝛽 (𝑧 (𝑚−1) +𝑐 (x)), since in the worst case, the previous
online decision x𝑚−1 built up all of ALG1’s utilization (𝑧 (𝑚−1)

) so far, and in the next step it will have to

switch dimensions to ramp up to x.
Since the function 𝜙 is monotonically decreasing on 𝑧 ∈ [0, 1], the x𝑚 solving the true pseudo-

cost minimization problem is lower-bounded by the x̆𝑚 solving the following minimization problem (i.e.,

𝑐 (x̆𝑚) ≤ 𝑐 (x𝑚)):

x̆𝑚 = arg min

x∈R𝑑 :𝑐 (x)≤1−𝑧 (𝑚−1)
𝑓𝑚 (x) + 𝛽 (𝑧 (𝑚−1) + 𝑐 (x)) −

∫ 𝑧 (𝑚−1)+𝑐 (x)

𝑧 (𝑚−1)
𝜙 (𝑢)𝑑𝑢.

This further gives the following:

𝑓𝑚 (x) + 𝛽 (𝑧 (𝑡) + 𝑐 (x)) −
∫ 𝑧 (𝑚−1)+𝑐 (x)

𝑧 (𝑚−1)
𝜙 (𝑢)𝑑𝑢

𝑓𝑚 (x) + 𝛽 (𝑧 (𝑡) + 𝑐 (x)) −
∫ 𝑧 (𝑚−1)+𝑐 (x)

𝑧 (𝑚−1)

[
𝑈 − 𝛽 +

(
𝑈

𝛼
−𝑈 + 2𝛽

)
exp(𝑢/𝛼)

]
𝑑𝑢

𝑓𝑚 (x) − (𝑈 − 𝛽)𝑐 (x) + 𝛽 (𝑧 (𝑡) + 𝑐 (x)) − [𝑈 −𝑈𝛼 + 2𝛽𝛼]
(
exp

(
𝑧 (𝑚−1) + 𝑐 (x)

𝛼

)
− exp

(
𝑧 (𝑚−1)

𝛼

))
By assumption, since 𝑓𝑚 (·) is convex and satisfies [∇𝑓𝑚]𝑖 < 𝜙 (𝑧 (𝑗)) − 𝛽 at x = 0, there must exist a

dimension 𝑖 in 𝑓𝑚 where an incremental step away from 0 in direction 𝑖 satisfies the following inequality:

𝑓𝑚 (x) ≲ [∇𝑓𝑚]𝑖 · 𝑐 (x) < [𝜙 (𝑧 (𝑗)) − 𝛽]𝑐 (x) for some x where 𝑐 (x) > 0. Thus, we have the following in the

pseudo-cost minimization problem:

([∇𝑓𝑚]𝑖 −𝑈 + 𝛽)𝑐 (x) + 𝛽 (𝑧 (𝑡) + 𝑐 (x)) − [𝑈 −𝑈𝛼 + 2𝛽𝛼]
(
exp

(
𝑧 (𝑚−1) + 𝑐 (x)

𝛼

)
− exp

(
𝑧 (𝑚−1)

𝛼

))
18

Letting 𝑐 (𝑥) be some scalar 𝑦 (which is valid since we assume there is at least one dimension in 𝑓𝑡 (·)
where the cost function growth rate is at most ∇𝑓𝑚), the pseudo-cost minimization problem finds the value

𝑦 which minimizes the following quantity:

([∇𝑓𝑚]𝑖 −𝑈 + 𝛽)𝑦 + 𝛽 (𝑧 (𝑡) + 𝑦) − [𝑈 −𝑈𝛼 + 2𝛽𝛼]
(
exp

(
𝑧 (𝑚−1) + 𝑦

𝛼

)
− exp

(
𝑧 (𝑚−1)

𝛼

))
Taking the derivative of the above with respect to 𝑦 yields the following:

𝑑

𝑑𝑦

[
([∇𝑓𝑚]𝑖 −𝑈 + 𝛽)𝑦 + 𝛽 (𝑧 (𝑡) + 𝑦) − [𝑈 −𝑈𝛼 + 2𝛽𝛼]

(
exp

(
𝑧 (𝑚−1) + 𝑦

𝛼

)
− exp

(
𝑧 (𝑚−1)

𝛼

))]
=

= [∇𝑓𝑚]𝑖 + 2𝛽 −𝑈 +
(𝑈𝛼 − 2𝛼𝛽 −𝑈) exp

(
𝑧 (𝑚−1)+𝑦

𝛼

)
𝛼

If 𝑦 = 0, we have the following by assumption that [∇𝑓𝑚]𝑖 < 𝜙 (𝑧 (𝑗)) − 𝛽 and that 𝑧 (𝑗) = 𝑧 (𝑚−1)
:

[∇𝑓𝑚]𝑖 + 2𝛽 −𝑈 + (𝑈 − 2𝛽 −𝑈 /𝛼) exp

(
𝑧 (𝑚−1)

𝛼

)
< 𝜙 (𝑧 (𝑗)) + 𝛽 −𝑈 + (𝑈 − 2𝛽 −𝑈 /𝛼) exp

(
𝑧 (𝑚−1)

𝛼

)
< 𝜙 (𝑧 (𝑗)) −

(
𝜙 (𝑧 (𝑚−1))

)
= 0

The above derivation implies that the derivative of the cost minimization problem at 𝑐 (x) = 0 (which

corresponds to the case where x = 0) is strictly less than 0. This further implies that x̆𝑚 must be non-
zero, since the minimizer must satisfy 𝑐 (x̆𝑚) > 0. Since 𝑐 (x̆𝑚) lower bounds the true 𝑐 (x𝑚), this causes a
contradiction, as it was assumed that the utilization after time step𝑚 would satisfy 𝑧 (𝑚) = 𝑧 (𝑚−1) = 𝑧 (𝑗) ,
but if 𝑐 (x𝑚) > 0, 𝑧 (𝑚)

must satisfy 𝑧 (𝑚) > 𝑧 (𝑚−1)
.

It then follows by contradiction that OPT(I) ≥ 𝜙 (𝑧 (𝑗)) − 𝛽 .

Lemma B.3. The cost of ALG1 on any valid CFL instance I ∈ Ω is upper bounded by

ALG1(I) ≤
∫ 𝑧 (𝑗)

0

𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧 (𝑗) + (1 − 𝑧 (𝑗))𝑈 . (11)

Proof of Lemma B.3. First, recall that 𝑧 (𝑡) =
∑

𝜏∈[𝑡] 𝑐 (x𝜏) is non-decreasing over 𝑡 ∈ [𝑇].
Observe that whenever 𝑐 (x𝑡) > 0, we know that 𝑓𝑡 (x𝑡) + ∥x𝑡 −x𝑡−1∥ℓ1(w) <

∫ 𝑧 (𝑡−1)+𝑐 (x𝑡)
𝑧 (𝑡−1) 𝜙 (𝑢)𝑑𝑢. Then,

if 𝑐 (x𝑡) = 0, which corresponds to the case when x𝑡 = 0, we have the following:

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w) −
∫ 𝑧 (𝑡−1)+𝑐 (x𝑡)

𝑧 (𝑡−1)
𝜙 (𝑢)𝑑𝑢 = 0 + ∥−x𝑡−1∥ℓ1(w) − 0 ≤ 𝛽𝑐 (x𝑡−1)

This gives that for any time step where 𝑐 (x𝑡) = 0, we have the following inequality:

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w) ≤ 𝛽𝑐 (x𝑡−1),∀𝑡 ∈ [𝑇] : 𝑐 (x𝑡) = 0. (12)

And thus, since any time step where 𝑐 (x𝑡) > 0 implies 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w) <
∫ 𝑧 (𝑡−1)+𝑐 (x𝑡)
𝑧 (𝑡−1) 𝜙 (𝑢)𝑑𝑢, we

have the following inequality for all time steps (i.e., an upper bound on the excess cost not accounted for in
the pseudo-cost threshold function or compulsory trade)

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w) −
∫ 𝑧 (𝑡−1)+𝑐 (x𝑡)

𝑧 (𝑡−1)
𝜙 (𝑢)𝑑𝑢 ≤ 𝛽𝑐 (x𝑡−1),∀𝑡 ∈ [𝑇] . (13)

19

Thus, we have

𝛽𝑧 (𝑗) =
∑︁
𝑡 ∈[𝑗]

𝛽𝑐 (x𝑡−1) ≥
∑︁
𝑡 ∈[𝑗]

[
𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w) −

∫ 𝑧 (𝑡−1)+𝑐 (x𝑡)

𝑧 (𝑡−1)
𝜙 (𝑢)𝑑𝑢

]
(14)

=
∑︁
𝑡 ∈[𝑗]

[
𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1(w)

]
−

∫ 𝑧 (𝑗)

0

𝜙 (𝑢)𝑑𝑢 (15)

= ALG1 − (1 − 𝑧 (𝑗))𝑈 −
∫ 𝑧 (𝑗)

0

𝜙 (𝑢)𝑑𝑢. (16)

Combining Lemma B.2 and Lemma B.3 gives

ALG1(I)
OPT(I) ≤

∫ 𝑧 (𝑗)

0
𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧 (𝑗) + (1 − 𝑧 (𝑗))𝑈

𝜙 (𝑧 (𝑗)) − 𝛽
≤ 𝛼, (17)

where the last inequality holds since for any 𝑧 ∈ [0, 1]∫ 𝑧

0

𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧 + (1 − 𝑧)𝑈 =

∫ 𝑧

0

[𝑈 − 𝛽 + (𝑈 /𝛼 −𝑈 + 2𝛽) exp(𝑧/𝛼)] + 𝛽𝑧 + (1 − 𝑧)𝑈 (18)

= (𝑈 − 𝛽)𝑧 + 𝛼 (𝑈 /𝛼 −𝑈 + 2𝛽) [exp(𝑧/𝛼) − 1] + 𝛽𝑧 + (1 − 𝑧)𝑈 (19)

= 𝛼 (𝑈 /𝛼 −𝑈 + 2𝛽) [exp(𝑧/𝛼) − 1] +𝑈 (20)

= 𝛼 [𝑈 − 2𝛽 + (𝑈 /𝛼 −𝑈 + 2𝛽) exp(𝑧/𝛼)] (21)

= 𝛼 [𝜙 (𝑧) − 𝛽] . (22)

Thus, we conclude that ALG1 is 𝛼-competitive for CFL. □

B.3 Proof of Corollary 3.3

In this section, we prove Corollary 3.3, which shows that the worst-case competitive ratio of ALG1 forMAL
is again upper bounded by 𝛼 as defined in (4).

Proof of Corollary 3.3. To show this result, we first prove a result stated in the main body, namely Lemma

2.2, which states the following: For any MAL instance on a weighted star metric (𝑋,𝑑), there is a cor-

responding CFL instance on (R𝑛−1, ∥·∥ℓ1 (w′)) which preserves 𝑓 𝑎𝑡 (·) ∀𝑡, 𝑐 (·) ∀𝑎 ∈ 𝑋 , and upper bounds

𝑑 (𝑎, 𝑏) ∀(𝑎, 𝑏) ∈ 𝑋 .

Before the proof, we note that Bansal andCoester [BC22] showed onlinemetric allocation on aweighted

star metric (𝑋,𝑑) is identical to convex function chasing (with separable cost functions) on the normed

vector space (Δ𝑛, ∥·∥ℓ1 (w)), where Δ𝑛 is the 𝑛-point simplex in R𝑛 and ∥·∥ℓ1 (w) is the weighted ℓ1 norm,

with weights given by the corresponding edge weight in the underlying star metric as follows:

∥x∥ℓ1 (w) =
∑︁
𝑎∈𝑋

w𝑎 |x𝑎 |.

Proof of Lemma 2.2. Recall that by assumption, the MAL instance contains at least one OFF point denoted

by 𝑎′ ∈ 𝑋 in the MAL instance, where c𝑎
′
= 0. Without loss of generality, let the first dimension in Δ𝑛

correspond to this OFF point.

We define a linear map Φ : Δ𝑛 → R𝑛−1
, where Φ has 𝑛 − 1 rows and 𝑛 columns, and is specified as

follows:

Φ𝑖, 𝑗 =

{
1 if j = i+1

0 otherwise

20

It is straightforward to see that Φx ∈ R𝑛−1, ∀x ∈ Δ𝑛 .

Recall that a CFL decision space is the ℓ1 ball defined by the long-term constraint function in R𝑛−1
. For

anyMAL instance with constraint function 𝑐 (x) : Δ𝑛 → R, we can define a long-term constraint function

𝑐′(x′) : R𝑛−1 → R as follows. The MAL constraint function 𝑐 (x) is defined as ∥·∥ℓ1 (c) for some vector

c ∈ R𝑛−1
. Then

c′ = Φc
𝑐′(x′) = ∥x′∥ℓ1 (c′) ∀x′ ∈ R𝑛−1

Furthermore, for any 𝑧 ∈ [0, 1], let x ∈ Δ𝑛 : 𝑐 (x) < 1−𝑧. Then it follows that Φx is in R𝑛−1
: 𝑐′(x′) < 1−𝑤 .

Recall that cost functions in theMAL instance are convex and linearly separable as follows:

𝑓𝑡 (x) =
∑︁
𝑎∈𝑋

𝑓 𝑎𝑡 (x𝑎)

Next, again letting x ∈ Δ𝑛 , note that the 𝑖th term in x is identical to the (𝑖 − 1)th term in Φx (excluding the
first term in x). Then we can construct cost functions in the CFL instance as follows:

𝑓 ′𝑡 (x′) =
∑︁

𝑖∈[𝑛−1]
𝑓 𝑖+1

𝑡 (x𝑖)

Under the mapping Φ, note that it is straightforward to show that 𝑓𝑡 (x) = 𝑓 ′𝑡 (Φx) for any x ∈ Δ𝑛 .

Finally, consider the distances in theMAL instance’s weighted star metric, which can be expressed as a

weighted ℓ1 norm defined byw, where the terms ofw correspond to the weighted edges of the star metric.

Recall that 𝛽 B max𝑎′,𝑎 ∥𝑎′ − 𝑎∥ℓ1 (w) , i.e., the maximum distance between the OFF point and any other

point in the weighted star.

Then we define a corresponding distance metric in the CFL instance, which is an ℓ1 norm weighted by

w′ ∈ R𝑛−1
, which is defined as follows:

w′𝑖 = w𝑖+1 +w0.

Note that w0
is the edge weight associated with the OFF point. Then for any (x, y) ∈ Δ𝑛 , it is straightfor-

ward to show the following:

∥x − y∥ℓ1 (w) ≤ ∥Φx − Φy∥ℓ1 (w′)

This follows since for any (x, y) ∈ Δ𝑛 where x0 = 0 and y0 = 0 (i.e., allocations which do not allocate

anything to the OFF point), ∥Φx − Φy∥ℓ1 (w′) = ∥x − y∥ℓ1 (w) + ∥x − y∥ℓ1 ·w0
.

Conversely, if either x or y have x0 > 0 or y0 > 0, we have ∥x − y∥ℓ1 (w) ≤ ∥Φx − Φy∥ℓ1 (w′) ≤
∥x− y∥ℓ1 (w) + ∥x− y∥ℓ1 ·w0

. Finally, supposing that (without loss of generality) x has x0 = 1, we have that

∥x − y∥ℓ1 (w) = ∥Φx − Φy∥ℓ1 (w′) .
Thus, ∥Φx−Φy∥ℓ1 (w′) upper bounds ∥x− y∥ℓ1 (w) . Furthermore, the constructed distance metric preserves

𝛽 , i.e. given (𝑎′, 𝑎) = arg max𝑎′,𝑎 ∥𝑎′ − 𝑎∥ℓ1 (w) , we have that ∥Φ𝑎′ − Φ𝑎∥ℓ1 (w′) = 𝛽 .

Next, we show that the transformation Φ is bijective. We define the affine map Φ−1
: R𝑛−1 → Δ𝑛 as

follows: Φ−1
has 𝑛 rows and 𝑛−1 columns, where the first row is all −1, and the bottom 𝑛 rows are the 𝑛×𝑛

identity matrix. Let b ∈ R𝑛−1
denote the vector with b0 = 1 and all other terms are zero, i.e., b𝑖 = 0 ∀𝑖 ≥ 1.

For any x′ ∈ R𝑛−1
: 𝑐′(x′) ≤ 1, it is straightforward to show that Φ−1x′ + b is in Δ𝑛 , since by definition

we have that

∑
𝑖∈[𝑛+1]

(
Φ−1x′ + b

)
𝑖
= 1. Furthermore, by definition of 𝑐′(x′), we have that 𝑐 (Φ−1x′ + b) =

𝑐′(x′), because the 𝑖th term (excluding the first term) of Φ−1x′ + b is identical to the (𝑖 − 1)th term of x′.
Similarly, by definition of 𝑓 ′𝑡 , we have that 𝑓𝑡 (Φ−1x′ + b) = 𝑓 ′𝑡 (x′).

21

Finally, considering the distance metric, we have that for any (x′, y′) ∈ R𝑛−1
: 𝑐′(x′) ≤ 1:

∥(Φ−1x′ + b) − (Φ−1y′ + b)∥ℓ1 (w) ≤ ∥x′ − y′∥ℓ1 (w′) .

This follows by considering that for any x′, Φ−1x′ + b adds a dimension (corresponding to the OFF point)

and sets

(
Φ−1x′ + b

)
= 1− ∥x′∥1. Then the distance between any two points which allocate a non-negative

fraction to the OFF point in Δ𝑛 is ≤ the distance in R𝑛−1
by definition of the weight vector w′

, and the

distance between e.g., the allocation fully in the OFF point (𝑎′) and any other allocation is exactly preserved.
Furthermore, note that if w0 = 0 (i.e., the weight of the OFF state in the weighted star metric is 0), Φ is

a bijective isometry between (Δ𝑛, ∥·∥ℓ1 (w)) and (R𝑛−1, ∥·∥ℓ1 (w′)). □

The transformation defined byΦ in Lemma 2.2 allows us to put decisions on theCFL instance (R𝑛−1, ∥·∥ℓ1 (w′))
in one-to-one correspondence with decisions in (Δ𝑛, ∥·∥ℓ1 (w)).

Below, we formalize this by proving a result stated in the main body (Proposition 2.3) which states

the following: Given an algorithm ALG for CFL, any performance bound on ALG which assumes OPT does

not pay any switching cost will translate to an identical performance bound for MAL whose parameters

depend on the corresponding CFL instance constructed according to Lemma 2.2.

Proof of Proposition 2.3. The cost of ALG on the CFL instance is an upper bound on the cost of the ALG’s
decisions mapped into the MAL instance. This follows since the cost functions are preserved exactly

between the two instances, the long-term constraint function is preserved exactly, and the CFL switching

cost is by definition an upper bound on theMAL switching cost.

If the CFL performance bound assumes that OPT does not pay any switching cost (e.g., as in Theo-

rem 3.2), lower bounding the cost of OPT on the CFL instance is equivalent to lower bounding the cost of

OPT on theMAL instance, as the cost functions and constraint functions are preserved exactly.

Thus, we have that any such performance bound for ALG on theCFL instance constructed appropriately
(as in Lemma 2.2) immediately gives an identical performance bound for the MAL instance, yielding the

result. □

By Lemma 2.2, we have that since ALG1 is 𝛼-competitive for CFL (Theorem 3.2), ALG1 is 𝛼-competitive

for any CFL instance constructed based on a MAL instance. Furthermore, by Proposition 2.3, ALG1 is also

𝛼-competitive on the underlyingMAL instance, where 𝛼 is given by (4). □

B.4 Proof of Theorem 3.4

In this section, we prove Theorem 3.4, which shows that 𝛼 as given by (4) is the best competitive ratio

achievable for CFL.
To show this lower bound, we first define a family of special adversaries, and then show that the

competitive ratio for any deterministic algorithm is lower bounded under the instances provided by these

adversaries.

Prior work has shown that difficult instances for online search problems with a minimization objective

occur when inputs arrive at the algorithm in an decreasing order of cost [EFK
+
01; LPS08; SZL

+
21; LCZ

+
23].

For CFL, we additionally consider how an adaptive adversary can essentially force an algorithm to incur a

large switching cost in the worst-case. We now formalize such a family of adversaries {A𝑦}𝑦∈[𝐿,𝑈] , where
A𝑦 is called a 𝑦-adversary.

Definition B.4 (𝑦-adversary for CFL). Let𝑤,𝑚 ∈ Z be sufficiently large, and 𝛿 := (𝑈 −𝐿)/𝑤.
Without loss of generality, let 𝑘 = arg max𝑖∈[𝑑] w𝑖 , where w is the weight vector for ∥·∥ℓ1 (w) , and

let 𝛽 = max𝑖∈[𝑑] w𝑖 . For 𝑦 ∈ [𝐿,𝑈], an adaptive adversary A𝑦 sequentially presents two types of cost

functions 𝑓𝑡 (·) to both ALG and OPT.

22

These types of cost functions are Up(x) = 𝑈 1x⊺ , and Down𝑖 (x) = ∑𝑑
𝑗≠𝑘

𝑈 x𝑗 + (𝑈 − 𝑖𝛿)x𝑘 .
The adversary sequentially presents cost functions from these two types in an alternating, “continu-

ously decreasing” order. Specifically, they start by presenting cost function Up(x), up to𝑚 times.

Then, they present Down1(x), which has linear cost coefficient 𝑈 in every direction except direction

𝑘 , which has cost coefficient (𝑈 − 1 · 𝛿). Down1(x) is presented up to𝑚 times. If ALG ever “accepts” a cost
function Down1(x) (i.e., if ALG makes a decision x where 𝑐 (x) > 0), the adaptive adversary immediately

presents Up(x) starting in the next time step until either ALG moves to the origin (i.e. online decision

x = 0) or ALG’s utilization 𝑧 = 1.

The adversary continues alternating in this manner, presenting Down2(x) up to𝑚 times, followed by

Up(x) if ALG accepts anything, followed by Down3(x) up to𝑚 times, and so on. This continues until the

adversary presents Down𝑤𝑦 (x), where 𝑦 B (𝑈 −𝑤𝑦𝛿), up to𝑚 times. After presenting Down𝑤𝑦 (x), A𝑦

will present Up(x) until either ALG moves to the origin or has utilization 𝑧 = 1. Finally, the adversary

presents exactly𝑚 cost functions of the form

∑𝑑
𝑗≠𝑘

𝑈 x𝑗 + (𝑦 + 𝜀)x𝑘 , followed by𝑚 cost functions Up(x).
The mechanism of this adaptive adversary is designed to present “good cost functions” (i.e.,Down𝑖 (x))

in a worst-case decreasing order, interrupted by blocks of “bad cost functions” Up(x) which force a large

switching cost in the worst case.

A𝑈 is simply a stream of𝑚 cost functions 𝑈 , and the final cost functions in any 𝑦-adversary instance

are always Up(x).

Proof of Theorem 3.4. Let 𝑔(𝑦) denote a conversion function [𝐿,𝑈] → [0, 1], which fully describes the

progress towards the long-term constraint (before the compulsory trade) of a deterministic ALG playing

against adaptive adversary A𝑦 . Note that for large 𝑤 , the adaptive adversary A𝑦−𝛿 is equivalent to first

playingA𝑦 (besides the last two batches of cost functions), and then processing batches with cost functions

Down𝑤𝑦+1(x) andUp(x). Since ALG is deterministic and the conversion is unidirectional (irrevocable), we

must have that 𝑔(𝑦 − 𝛿) ≥ 𝑔(𝑦), i.e. 𝑔(𝑦) is non-increasing in [𝐿,𝑈]. Intuitively, the entire capacity should
be satisfied if the minimum possible price is observed, i.e 𝑔(𝐿) = 1.

Note that for 𝜀 → 0, the optimal solution for adversary A𝑦 is OPT(A𝑦) = 𝑦 + 2𝛽/𝑚, and for 𝑚

sufficiently large, OPT(A𝑦) → 𝑦.

Due to the adaptive nature of each 𝑦-adversary, any deterministic ALG incurs a switching cost propor-
tional to 𝑔(𝑦), which gives the amount of utilization obtained by ALG before the end of A𝑦’s sequence.

Whenever ALG accepts some cost function with coefficient𝑈 −𝑖𝛿 in direction 𝑘 , the adversary presents

Up(x) starting in the next time step. Any ALG which does not switch away immediately obtains a com-

petitive ratio strictly worse than an algorithm which does switch away (if an algorithm accepts 𝑐 fraction

of a good price and switches away immediately, the switching cost it will pay is 2𝛽𝑐 . An algorithm may

continue accepting 𝑐 fraction of coefficient 𝑈 in the subsequent time steps, but a sequence exists where

this decision will take up too much utilization to recover when better cost functions are presented later.

In the extreme case, if an algorithm continues accepting 𝑐 fraction of these 𝑈 coefficients, it might fill its

utilization and then OPT can accept a cost function which is arbitrarily better).

Since accepting any price by a factor of 𝑐 incurs a switching cost of 2𝛽𝑐 , the switching cost paid by ALG
on adversary A𝑦 is 2𝛽𝑔(𝑦). We assume that ALG is notified of the compulsory trade, and does not incur a

significant switching cost during the final batch.

Then the total cost incurred by an 𝛼★-competitive online algorithm ALG on adversaryA𝑦 is ALG(A𝑦) =
𝑔(𝑈/𝛼★)𝑈/𝛼★ −

∫ 𝑦

𝑈/𝛼★ 𝑢𝑑𝑔(𝑢) + 2𝛽𝑔(𝑦) + (1 −𝑔(𝑦))𝑈 , where 𝑢𝑑𝑔(𝑢) is the cost of buying 𝑑𝑔(𝑢) utilization at

cost coefficient 𝑢, the last term is from the compulsory trade, and the second to last term is the switching

cost incurred by ALG. Note that any deterministic ALG which makes conversions when the price is larger

than 𝑈/𝛼★
can be strictly improved by restricting conversions to prices ≤ 𝑈/𝛼★

.

23

For any 𝛼★-competitive online algorithm, the corresponding conversion function 𝑔(·) must satisfy

ALG(A𝑦) ≤ 𝛼★OPT(A𝑦) = 𝛼★𝑦,∀𝑦 ∈ [𝐿,𝑈]. This gives a necessary condition which the conversion

function must satisfy as follows:

ALG(A𝑦) = 𝑔(𝑈/𝛼★)𝑈/𝛼★ −
∫ 𝑦

𝑈/𝛼★
𝑢𝑑𝑔(𝑢) + 2𝛽𝑔(𝑦) + (1 − 𝑔(𝑦))𝑈 ≤ 𝛼★𝑦, ∀𝑦 ∈ [𝐿,𝑈] .

By integral by parts, the above implies that the conversion function must satisfy 𝑔(𝑦) ≥
𝑈 −𝛼★𝑦

𝑈 −𝑦−2𝛽
− 1

𝑈 −𝑦−2𝛽

∫ 𝑦

𝑈/𝛼★ 𝑔(𝑢)𝑑𝑢. By Grönwall’s Inequality [MPF91, Theorem 1, p. 356], we have that

𝑔(𝑦) ≥ 𝑈 − 𝛼★𝑦

𝑈 − 𝑦 − 2𝛽
− 1

𝑈 − 𝑦 − 2𝛽

∫ 𝑦

𝑈/𝛼★

𝑈 − 𝛼★𝑢

𝑈 − 𝑢 − 2𝛽
· exp

(∫ 𝑦

𝑢

1

𝑈 − 𝑟 − 2𝛽
𝑑𝑟

)
𝑑𝑢

≥ 𝑈 − 𝛼★𝑦

𝑈 − 𝑦 − 2𝛽
−

∫ 𝑦

𝑈/𝛼★

𝑈 − 𝛼★𝑢

(𝑈 − 𝑢 − 2𝛽)2
𝑑𝑢

≥ 𝑈 − 𝛼★𝑦

𝑈 − 𝑦 − 2𝛽
−

[
𝑈𝛼★ −𝑈 − 2𝛽𝛼★

𝑢 + 2𝛽 −𝑈
− 𝛼★ ln (𝑢 + 2𝛽 −𝑈)

]𝑦
𝑈/𝛼★

≥ 𝛼★ ln (𝑦 + 2𝛽 −𝑈) − 𝛼★ ln (𝑈/𝛼★ + 2𝛽 −𝑈) , ∀𝑦 ∈ [𝐿,𝑈] .

𝑔(𝐿) = 1 by the problem definition – we can combine this with the above constraint to give the fol-

lowing condition for an 𝛼★-competitive online algorithm:

𝛼★ ln (𝐿 + 2𝛽 −𝑈) − 𝛼★ ln (𝑈/𝛼★ + 2𝛽 −𝑈) ≤ 𝑔(𝐿) = 1.

The optimal 𝛼★ is obtained when the above inequality is binding, so solving for the value of 𝛼★ which

solves 𝛼★ ln (𝐿 + 2𝛽 −𝑈) − 𝛼★ ln (𝑈/𝛼★ + 2𝛽 −𝑈) = 1 yields that the best competitive ratio for any ALG

solving CFL is 𝛼★ ≥
[
𝑊

(
𝑒

2𝛽/𝑈 (𝐿/𝑈+2𝛽/𝑈−1)
𝑒

)
− 2𝛽

𝑈
+ 1

]−1

. □

B.5 Proof of Corollary 3.5

In this section, we prove Corollary 3.5, which shows that 𝛼 as given by (4) is the best competitive ratio

achievable forMAL.
To show this lower bound, we build off of the family of adversaries in Definition B.4, which are designed

to force an algorithm to incur a large switching cost while satisfying the long-term constraint. In Definition

B.5 we define this family of adversarial instances tailored forMAL.

Definition B.5 (𝑦-adversary for MAL). Let𝑤,𝑚 ∈ Z be sufficiently large, and 𝛿 := (𝑈 −𝐿)/𝑤.
Recall that w denotes the vector of edge weights for each point in the weighted star metric 𝑋 , and the

OFF point is defined (without loss of generality) as the point 𝑎′ ∈ 𝑋 where c𝑎
′
= 0 and 𝑓 𝑎

′
𝑡 (x𝑎) = 0∀𝑡 ∈

[𝑇],∀x𝑎 ∈ [0, 1]. We will assume that c𝑎 = 1 ∀𝑎 ∈ 𝑋 : 𝑎 ≠ 𝑎′.
Then we setw𝑎′ = 0, i.e., the OFF point is connected to the interior vertex of the weighted star with an

edge of weight 0. Without loss of generality, we let 𝑘 = arg max𝑎∈[𝑛] w
𝑎
denote the largest edge weight of

any other (non-OFF) point in the metric. By definition, recall that 𝛽 = w𝑘
.

For 𝑦 ∈ [𝐿,𝑈], an adaptive adversary A𝑦 sequentially presents two different sets of cost functions

𝑓 𝑎𝑡 (·) at each point in the metric space.

These sets of cost functions are Up = {𝑓 𝑎 (𝑥) = 𝑈 x𝑎 ∀𝑎 ∈ 𝑋 \ {𝑎′}}, and Down𝑖 = {𝑓 𝑘 (x𝑘) =

(𝑈 − 𝑖𝛿)x𝑘 } ∩ {𝑓 𝑎 (x𝑎) = 𝑈 x𝑎 ∀𝑎 ∈ 𝑋 \ {𝑎′, 𝑘}}. Note that the adversary only ever presents cost functions

with a coefficient < 𝑈 at the point 𝑘 which corresponds to the largest edge weight.

The adversary sequentially presents either of these two sets of cost functions in an alternating, “con-

tinuously decreasing” order. Specifically, they start by presenting Up, up to𝑚 times.

24

Then, they present Down, which has cost coefficient 𝑈 in every point except point 𝑘 , which has cost

coefficient (𝑈 − 1 · 𝛿). Down1
is presented up to𝑚 times. If ALG ever “accepts” a cost function in Down1

(i.e., if ALG makes a decision 𝑥 where 𝑐 (𝑥) > 0), the adaptive adversary immediately presents Up starting

in the next time step until either ALG moves entirely to the OFF point (i.e. online decision 𝑥𝑎
′
= 1) or ALG’s

utilization 𝑧 = 1.

The adversary continues alternating in this manner, presenting Down2
up to𝑚 times, followed by Up

if ALG accepts anything, followed by Down3
up to𝑚 times, and so on. This continues until the adversary

presentsDown𝑤𝑦
, where𝑦 = (𝑈 −𝑤𝑦𝛿), up to𝑚 times. After presentingDown𝑤𝑦

,A𝑦 will presentUp(𝑥)
until either ALG moves to the OFF point or has utilization 𝑧 = 1. Finally, the adversary presents the set of

cost functions {𝑓 𝑘 (x𝑘) = (𝑦 + 𝜀)x𝑘 } ∩ {𝑓 𝑎 (x𝑎) = 𝑈 x𝑎 ∀𝑎 ∈ 𝑋 \ {𝑎′, 𝑘}}𝑚 times, followed by Up𝑚 times.

The mechanism of this adaptive adversary is designed to present “good cost functions” (i.e., Down𝑖
)

in a worst-case decreasing order, interrupted by blocks of “bad cost functions” Up which force a large

switching cost in the worst case.

As in Theorem 3.4, A𝑈 is simply a stream of𝑚 Up sets of cost functions, and the final cost functions

in any 𝑦-adversary instance are always Up.

Proof of Corollary 3.5. As previously, we let 𝑔(𝑦) denote a conversion function [𝐿,𝑈] → [0, 1], which fully

describes the progress towards the long-term constraint (before the compulsory trade) of a deterministic

ALG playing against adaptive adversaryA𝑦 . Since ALG is deterministic and the conversion is unidirectional

(irrevocable), 𝑔(𝑦) is non-increasing in [𝐿,𝑈]. Intuitively, the entire long-term constraint should be satis-

fied if the minimum possible price is observed, i.e 𝑔(𝐿) = 1. For 𝜀 → 0, the optimal solution for adversary

A𝑦 is OPT(A𝑦) = 𝑦 + 2𝛽/𝑚, and for𝑚 sufficiently large, OPT(A𝑦) → 𝑦.

As in Theorem 3.4, the adaptive nature of each 𝑦-adversary forces any deterministic ALG to incur a

switching cost of 2𝛽𝑔(𝑦) on adversary A𝑦 , and we assume that ALG does not incur a significant switching
cost during the final batch (i.e., during the compulsory trade).

Then the total cost incurred by an 𝛼★-competitive online algorithm ALG on adversaryA𝑦 is ALG(A𝑦) =
𝑔(𝑈/𝛼★)𝑈/𝛼★ −

∫ 𝑦

𝑈/𝛼★ 𝑢𝑑𝑔(𝑢) + 2𝛽𝑔(𝑦) + (1 −𝑔(𝑦))𝑈 , where 𝑢𝑑𝑔(𝑢) is the cost of buying 𝑑𝑔(𝑢) utilization at

cost coefficient 𝑢, the last term is from the compulsory trade, and the second to last term is the switching

cost incurred by ALG. Note that this expression for the cost is exactly as defined in Theorem 3.4.

Thus by Theorem 3.4, for any 𝛼★-competitive online algorithm, the conversion function 𝑔(·) must

satisfy ALG(A𝑦) ≤ 𝛼★OPT(A𝑦) = 𝛼★𝑦,∀𝑦 ∈ [𝐿,𝑈]. Via integral by parts and Grönwall’s Inequality

[MPF91, Theorem 1, p. 356], we have the following condition on 𝑔(𝑦):

𝑔(𝑦) ≥ 𝛼★ ln (𝑦 + 2𝛽 −𝑈) − 𝛼★ ln (𝑈/𝛼★ + 2𝛽 −𝑈) , ∀𝑦 ∈ [𝐿,𝑈] .

𝑔(𝐿) = 1 by the problem definition – combining this with the previous condition gives the following

condition for an 𝛼★-competitive online algorithm:

𝛼★ ln (𝐿 + 2𝛽 −𝑈) − 𝛼★ ln (𝑈/𝛼★ + 2𝛽 −𝑈) ≤ 𝑔(𝐿) = 1.

As in Theorem 3.4, the optimal 𝛼★ is obtained when the above inequality is binding, yielding that the best

competitive ratio for any ALG solvingMAL is 𝛼★ ≥
[
𝑊

(
𝑒

2𝛽/𝑈 (𝐿/𝑈+2𝛽/𝑈−1)
𝑒

)
− 2𝛽

𝑈
+ 1

]−1

. □

C Proofs for Section 4 (Learning-Augmentation)

C.1 Proof of Lemma 4.1

In this section, we prove Lemma 4.1, which shows that the baseline fixed-ratio combination algorithm

(Baseline) is (1+𝜖)-consistent and
(
(𝑈 +2𝛽)/𝐿 (𝛼−1−𝜖)+𝛼𝜖

(𝛼−1)

)
-robust for CFL, given any 𝜖 ∈ [0, 𝛼 −1] and where

25

𝛼 is as defined in (4). Recall that Lemma 4.1 specifies ALG1 as the “robust algorithm” to use for the following

analysis.

Proof of Lemma 4.1. Under the assumption that ADV satisfies the long-term constraint, (i.e., that

∑𝑇
𝑡=1

𝑐 (a𝑡) ≥
1), we first observe that the online solution of Baseline must also satisfy the long-term constraint.

Under the assumptions of CFL, note that 𝑐 (x) is linear (i.e., a weighted ℓ1 norm with weight vector c).
By definition, denoting the decisions of ALG1 by x̃𝑡 , we know that

∑𝑇
𝑡=1

𝑐 (x̃𝑡) ≥ 1.

Thus, we have the following:

𝑇∑︁
𝑡=1

𝑐 (x𝑡) =
𝑇∑︁
𝑡=1

𝑐 (𝜆a𝑡 + (1 − 𝜆)x̃𝑡) = 𝜆

𝑇∑︁
𝑡=1

𝑐 (a𝑡) + (1 − 𝜆)
𝑇∑︁
𝑡=1

𝑐 (x̃𝑡) ≥ 𝜆 + (1 − 𝜆) = 1.

Let I ∈ Ω be an arbitrary valid CFL sequence. We denote the hitting and switching costs of the robust

advice by ALG1hitting and ALG1switch, respectively. Likewise, the hitting and switching cost of the black-box
advice ADV is denoted by ADVhitting and ADVswitch.

The total cost of Baseline is upper bounded by the following:

Baseline(I) =
𝑇∑︁
𝑡=1

𝑓𝑡 (x𝑡) +
𝑇+1∑︁
𝑡=1

∥x𝑡 − x𝑡−1∥ℓ1 (w) ,

=

𝑇∑︁
𝑡=1

𝑓𝑡 (𝜆a𝑡 + (1 − 𝜆)x̃𝑡) +
𝑇+1∑︁
𝑡=1

∥𝜆a𝑡 + (1 − 𝜆)x̃𝑡 − 𝜆a𝑡−1 − (1 − 𝜆)x̃𝑡−1∥ℓ1 (w) ,

≤ 𝜆

𝑇∑︁
𝑡=1

𝑓𝑡 (a𝑡) + (1 − 𝜆)
𝑇∑︁
𝑡=1

𝑓𝑡 (x̃𝑡) +
𝑇+1∑︁
𝑡=1

∥𝜆a𝑡 − 𝜆a𝑡−1∥ℓ1 (w) +
𝑇+1∑︁
𝑡=1

∥(1 − 𝜆)x̃𝑡 − (1 − 𝜆)x̃𝑡−1∥ℓ1 (w) ,

≤ 𝜆ADVhitting(I) + (1 − 𝜆)ALG1hitting(I) + 𝜆

𝑇+1∑︁
𝑡=1

∥a𝑡 − a𝑡−1∥ℓ1 (w) + (1 − 𝜆)
𝑇+1∑︁
𝑡=1

∥x̃𝑡 − x̃𝑡−1∥ℓ1 (w) ,

≤ 𝜆ADVhitting(I) + (1 − 𝜆)ALG1hitting(I) + 𝜆ADVswitch(I) + (1 − 𝜆)ALG1switch(I),
≤ 𝜆ADV(I) + (1 − 𝜆)ALG1(I).

Since ALG1 ≤ 𝛼 · OPT ≤ 𝛼 · ADV, this gives the following:

Baseline(I) ≤ 𝜆ADV(I) + (1 − 𝜆)𝛼ADV(I), (23)

Baseline(I) ≤ (𝜆 + (1 − 𝜆)𝛼) · ADV(I) (24)

Baseline(I) ≤ (1 + 𝜖) · ADV(I). (25)

Furthermore, since ADV ≤ 𝑈 + 2𝛽 ≤ OPT
𝐿/(𝑈 +2𝛽) , we have:

Baseline(I) ≤ 𝜆
OPT(I)
𝐿/(𝑈 +2𝛽)

+ (1 − 𝜆)𝛼OPT(I), (26)

Baseline(I) ≤
[
𝜆(𝑈 + 2𝛽)

𝐿
+ (1 − 𝜆)𝛼

]
· OPT(I), (27)

Baseline(I) ≤
(
(𝑈 +2𝛽)/𝐿(𝛼 − 1 − 𝜖) + 𝛼𝜖

(𝛼 − 1)

)
· OPT(I) . (28)

By combining (25) and (28), we conclude that Baseline is (1 + 𝜖)-consistent with respect to black-box

advice ADV, and
(
(𝑈 +2𝛽)/𝐿 (𝛼−1−𝜖)+𝛼𝜖

(𝛼−1)

)
-robust. □

26

C.2 Proof of Theorem 4.3

In this section, we prove Theorem 4.3, which shows that CLIP is (1 + 𝜖)-consistent and 𝛾𝜖 -robust for CFL,
where 𝛾𝜖 is defined as the solution to the following (as in (8)):

𝛾𝜖 = 𝜖 + 𝑈

𝐿
− 𝛾𝜖

𝐿
(𝑈 − 𝐿) ln

(
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

)
.

Proof of Theorem 4.3. We show the above result by separately considering consistency (the competitive

ratio when advice is correct) and robustness (the competitive ratio when advice is not correct) in turn.

Recall that the black-box advice ADV is denoted by a decision a𝑡 at each time 𝑡 . Throughout the following

proof, we use shorthand notation CLIP𝑡 to denote the cost of CLIP up to time 𝑡 , and ADV𝑡 to denote the

cost of ADV up to time 𝑡 . We start with the following lemma to prove consistency.

Lemma C.1. CLIP is (1 + 𝜖)-consistent.

Proof. First, we note that the constrained optimization enforces that the possible cost so far plus a com-

pulsory term is always within (1 + 𝜖) of the advice. Formally, if time step 𝑗 ∈ [𝑇] denotes the time step

marking the start of the compulsory trade, we have that the constraint given by (6) holds for every time

step 𝑡 ∈ [𝑗].
Thus, to show (1+𝜖) consistency, we must resolve the cost during the compulsory trade and show that

the final cumulative cost of CLIP is upper bounded by (1 + 𝜖)ADV.
Let I ∈ Ω be an arbitrary valid CFL sequence. If the compulsory trade begins at time step 𝑗 < 𝑇 ,

both CLIP and ADVmust greedily fill their remaining utilization during the last𝑚 time steps [𝑗,𝑇]. This is
assumed to be feasible, and the switching cost is assumed to be negligible as long as𝑚 is sufficiently large.

Let (1 − 𝑧 (𝑗−1)) denote the remaining long-term constraint that must be satisfied by CLIP at the final

time step, and let (1 −𝐴 (𝑗−1)) denote the remaining long-term constraint to be satisfied by ADV.
We consider the following two cases, which correspond to the cases where CLIP has under- and over-

provisioned with respect to ADV, respectively.

Case 1: CLIP(I) has “underprovisioned” ((1− 𝑧 (𝑗−1)) > (1−𝐴 (𝑗−1))). In this case, CLIPmust satisfy

more of the long-term constraint during the compulsory trade compared to ADV.
From the previous time step, we know that the following constraint holds: CLIP𝑗−1+∥x𝑗−1−a𝑗−1∥ℓ1 (w)+

∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿 + (𝐴 (𝑗−1) − 𝑧 (𝑗−1))𝑈 ≤ (1 + 𝜖)
[
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿

]
.

Let {x𝑡 }𝑡 ∈[𝑗,𝑇] and {a𝑡 }𝑡 ∈[𝑗,𝑇] denote the decisions made by CLIP and ADV during the compulsory trade,

respectively. By definition, we have that

∑𝑇
𝑡=𝑗 𝑐 (x𝑡) = (1 − 𝑧 (𝑗−1)) and ∑𝑇

𝑡=𝑗 𝑐 (a𝑡) = (1 −𝐴 (𝑗−1)).
Considering {𝑓𝑡 (·)}𝑡 ∈[𝑗,𝑇] , we know that by definition

∑𝑇
𝑡=𝑗 𝑓𝑡 (a𝑡) ≥ 𝐿

∑𝑇
𝑡=𝑗 𝑐 (a𝑡), and by convex as-

sumptions on the cost functions,

∑𝑇
𝑡=𝑗 𝑓𝑡 (x𝑡) ≤

∑𝑇
𝑡=𝑗 𝑓𝑡 (a𝑡) +𝑈 (∑𝑇

𝑡=𝑗 𝑐 (x𝑡) −
∑𝑇

𝑡=𝑗 𝑐 (a𝑡)).
Note that the worst case for CLIP occurs when

∑𝑇
𝑡=𝑗 𝑓𝑡 (a𝑡) = 𝐿

∑𝑇
𝑡=𝑗 𝑐 (a𝑡), as ADV is able to satisfy the

rest of the long-term constraint at the best possible price.

27

By the constraint in the previous time step, we have the following:

CLIP𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿 + (𝐴 (𝑗−1) − 𝑧 (𝑗−1))𝑈
≤ (1 + 𝜖) [ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿],

CLIP𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + 𝐿

𝑇∑︁
𝑡=𝑗

𝑐 (a𝑡) +𝑈
(

𝑇∑︁
𝑡=𝑗

𝑐 (x𝑡) −
𝑇∑︁
𝑡=𝑗

𝑐 (a𝑡)
)

≤ (1 + 𝜖)
[
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + 𝐿

𝑇∑︁
𝑡=𝑗

𝑐 (a𝑡)
]
,

CLIP(I) ≤ (1 + 𝜖) [ADV(I)] .

Case 2: CLIP(I) has “overprovisioned” ((1 − 𝑧 (𝑗−1)) ≤ (1 − 𝐴 (𝑗−1))). In this case, CLIP must satisfy

less of the long-term constraint during the compulsory trade compared to ADV.
From the previous time step, we know that the following constraint holds: CLIP𝑗−1+∥x𝑗−1−a𝑗−1∥ℓ1 (w)+

∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿 + (𝐴 (𝑗−1) − 𝑧 (𝑗−1))𝑈 ≤ (1 + 𝜖)
[
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿

]
.

Let {x𝑡 }𝑡 ∈[𝑗,𝑇] and {a𝑡 }𝑡 ∈[𝑗,𝑇] denote the decisions made by CLIP and ADV during the compulsory trade,

respectively. By definition, we have that

∑𝑇
𝑡=𝑗 𝑐 (x𝑡) = (1 − 𝑧 (𝑗−1)) and ∑𝑇

𝑡=𝑗 𝑐 (a𝑡) = (1 −𝐴 (𝑗−1)).
Considering {𝑓𝑡 (·)}𝑡 ∈[𝑗,𝑇] , we know that by definition,

∑𝑇
𝑡=𝑗 𝑓𝑡 (x𝑡) ≥ 𝐿

∑𝑇
𝑡=𝑗 𝑐 (x𝑡), and

∑𝑇
𝑡=𝑗 𝑓𝑡 (a𝑡) ≥

𝐿
∑𝑇

𝑡=𝑗 𝑐 (a𝑡). By convexity, because

∑𝑇
𝑡=𝑗 𝑐 (x𝑡) ≤

∑𝑇
𝑡=𝑗 𝑐 (a𝑡),

∑𝑇
𝑡=𝑗 𝑓𝑡 (x𝑡) ≤

∑𝑇
𝑡=𝑗 𝑓𝑡 (a𝑡).

By the constraint in the previous time step, we have:

CLIP𝑗−1 + ∥x𝑗−1 − a𝑗−1∥ℓ1 (w) + ∥a𝑗−1∥ℓ1 (w) + (1 − 𝑧 (𝑗−1))𝐿
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿

=

CLIP𝑗−1 + ∥x𝑗−1 − a𝑗−1∥ℓ1 (w) + ∥a𝑗−1∥ℓ1 (w) + 𝐿
∑𝑇

𝑡=𝑗 𝑐 (x𝑡)
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + 𝐿

∑𝑇
𝑡=𝑗 𝑐 (a𝑡)

≤ (1 + 𝜖).

Let 𝑦 =
∑𝑇

𝑡=𝑗 𝑓𝑡 (x𝑡) − 𝐿
∑𝑇

𝑡=𝑗 𝑐 (x𝑡), and let 𝑦′ =
∑𝑇

𝑡=𝑗 𝑓𝑡 (a𝑡) − 𝐿
∑𝑇

𝑡=𝑗 𝑐 (a𝑡). By definition, 𝑦 ≥ 0 and

𝑦′ ≥ 0.

Note that CLIP𝑗−1 + ∥x𝑗−1 − a𝑗−1∥ℓ1 (w) + ∥a𝑗−1∥ℓ1 (w) + (1 − 𝑧 (𝑗−1))𝐿 + 𝑦 ≥ CLIP(I) and ADV𝑗−1 +
∥a𝑗−1∥ℓ1 (w) + 𝐿

∑𝑇
𝑡=𝑗 𝑐 (a𝑡) + 𝑦′ = ADV(I).

Furthermore, by definition and convexity of the cost functions 𝑓𝑡 (·), we have that 𝑦 ≤ 𝑦′.
Combined with the constraint from the previous time step, we have the following bound:

CLIP(I)
ADV(I) ≤

CLIP𝑗−1 + ∥x𝑗−1 − a𝑗−1∥ℓ1 (w) + ∥a𝑗−1∥ℓ1 (w) + (1 − 𝑧 (𝑗−1))𝐿 + 𝑦
ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + (1 −𝐴 (𝑗−1))𝐿 + 𝑦′

≤
CLIP𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + 𝐿

∑𝑇
𝑡=𝑗 𝑐 (x𝑡)

ADV𝑗−1 + ∥a𝑗−1∥ℓ1 (w) + 𝐿
∑𝑇

𝑡=𝑗 𝑐 (a𝑡)
≤ (1 + 𝜖) .

Thus, by combining the bounds in each of the above two cases, the result follows, and we conclude

that CLIP is (1 + 𝜖)-consistent with accurate advice. □

Having proved the consistency of CLIP, we proceed to show robustness in the next lemma.

Lemma C.2. CLIP is 𝛾𝜖 -robust, where 𝛾𝜖 is as defined in (8).

Proof. Let 𝜖 ∈ (0, 𝛼 − 1] be the target consistency (recalling that CLIP is (1 + 𝜖) consistent), and let I ∈ Ω
denote an arbitrary valid CFL sequence.

To prove the robustness of CLIP, we consider two “bad cases” for the advice ADV(I), and show that in

the worst-case, CLIP’s competitive ratio is bounded by 𝛾𝜖 .

28

Case 1: ADV(I) is “inactive”. Consider the case where ADV accepts nothing during the main sequence

and instead satisfies the entire long-term constraint in the final time step. In the worst-case, this gives that

ADV(I) = 𝑈 + 2𝛽 .

Based on the consistency constraint (and using the fact that CLIPwill always be “overprocuring” w.r.t.
ADV throughout the main sequence), we can derive an upper bound on the amount that CLIP is allowed to
accept from the robust pseudo-cost minimization. Recall the following constraint:

CLIP𝑡−1 + 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (w) + ∥x𝑡 − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) + (1 − 𝑧 (𝑡−1) − 𝑐 (x𝑡))𝐿

≤ (1 + 𝜖)
[
ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿

]
.

Proposition C.3. 𝑧PCM is an upper bound on the amount that CLIP can accept from the pseudo-cost mini-
mization without violating (1 + 𝜖) consistency, and is defined as:

𝑧PCM = 𝛾𝜖 ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

]
Proof. Consider an arbitrary time step 𝑡 . When CLIP is not allowed to accept anything more from the

robust pseudo-cost minimization, we have that 𝑐 (x𝑡) is restricted to be 0 (recall that a𝑡 = 0 for any time

steps before 𝑇 , because the advice is assumed to be inactive).

By definition, since any cost functions accepted in CLIP𝑡−1 can be attributed to the robust pseudo-cost

minimization, we have the following in the worst-case:

CLIP𝑡−1 =

∫ 𝑧 (𝑡−1)

0

𝜙𝜖 (𝑢)𝑑𝑢 + 𝛽𝑧 (𝑡−1) .

Combining the above with the left-hand side of the consistency constraint, we have the following by

observing that x𝑡 = 0 and a𝑡 = 0, and the switching cost to “ramp-up” is absorbed into the pseudo-cost 𝜙 :

CLIP𝑡−1 + (1 − 𝑧 (𝑡−1))𝐿 =

∫ 𝑧 (𝑡−1)

0

𝜙𝜖 (𝑢)𝑑𝑢 + 𝛽𝑧 (𝑡−1) + (1 − 𝑧 (𝑡−1))𝐿.

As stated, let 𝑧 (𝑡−1) = 𝑧PCM. Then by properties of the pseudo-cost,

CLIP𝑡−1 + (1 − 𝑧PCM)𝐿 =

∫ 𝑧PCM

0

𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧PCM)𝑈 + (1 − 𝑧PCM)𝐿 − (1 − 𝑧PCM)𝑈 ,

= 𝛾𝜖 [𝜙𝜖 (𝑧PCM) − 𝛽] + (1 − 𝑧PCM)𝐿 − (1 − 𝑧PCM)𝑈 ,

= 𝛾𝜖𝐿 + (𝐿 −𝑈)
(
1 − 𝛾𝜖 ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

])
,

= 𝛾𝜖𝐿 + 𝐿 −𝑈 − (𝐿 −𝑈) 𝛾𝜖 ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

]
.

Substituting for the definition of 𝛾𝜖 , we obtain:

CLIP𝑡−1 + (1 − 𝑧PCM)𝐿 = 𝛾𝜖𝐿 + 𝐿 −𝑈 − (𝐿 −𝑈) 𝛾𝜖 ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

]
,

=

[
𝜖𝐿 +𝑈 − 𝛾𝜖 (𝑈 − 𝐿) ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

]]
+ 𝐿 −𝑈 + (𝑈 − 𝐿) 𝛾𝜖 ln

[
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

]
,

= 𝜖𝐿 + 𝐿 = (1 + 𝜖)𝐿.

This completes the proposition, since (1+𝜖)𝐿 is exactly the right-hand side of the consistency constraint
(note that (1 + 𝜖)

[
ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴𝑡)𝐿

]
= (1 + 𝜖)𝐿). □

29

If CLIP is constrained to use at most 𝑧PCM of its utilization to be robust, the remaining (1 − 𝑧PCM)
utilization must be used for the compulsory trade and/or to follow ADV. Thus, we have the following

worst-case competitive ratio for CLIP, specifically for Case 2:

CLIP(I)
OPT(I) ≤

∫ 𝑧PCM

0
𝜙𝜖 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧PCM)𝑈

𝐿

By the definition of 𝜙𝜖 (𝑝), we have the following:

CLIP(I)
OPT(I) ≤

∫ 𝑧PCM

0
𝜙𝜖 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧PCM)𝑈

𝐿

≤ 𝛾𝜖 [𝜙𝜖 (𝑧PCM) − 𝛽]
𝐿

≤ 𝛾𝜖 [𝐿 + 𝛽 − 𝛽]
𝐿

≤ 𝛾𝜖 .

Case 2: ADV(I) is “overactive”. We now consider the case where ADV accepts bad cost functions which
which it “should not” accept (i.e. ADV(I) ≫ OPT(I)). Let ADV(I) = 𝑣 ≫ OPT𝑇 (i.e. the final total hitting

and switching cost of ADV is 𝑣 for some 𝑣 ∈ [𝐿,𝑈 +2𝛽], and this is much greater than the optimal solution).

This is without loss of generality, since we can assume that 𝑣 is the “best cost function” accepted by

ADV and the consistency ratio changes strictly in favor of ADV. Based on the consistency constraint, we can

derive a lower bound on the amount that CLIP must accept from ADV in order to stay (1 + 𝜖)-consistent.
To do this, we consider the following sub-cases:

• Sub-case 2.1: Let 𝑣 ≥ 𝑈 +𝛽
1+𝜖 .

In this sub-case, CLIP can fully ignore the advice, because the following consistency constraint is never

binding (note that ADV𝑡 ≥ 𝑈 +𝛽
1+𝜖 𝐴

(𝑡)
):

CLIP𝑡−1 + 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (w) + ∥x𝑡 − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿 + (𝐴 (𝑡) − 𝑧 (𝑡−1) − 𝑐 (x𝑡))𝑈

≤ (1 + 𝜖)
[
ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿

]
,

(1 −𝐴 (𝑡))𝐿 + (𝐴 (𝑡))𝑈 + ∥a𝑡 ∥ℓ1 (w) ≤ (1 + 𝜖)
[
ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿

]
,

(1 −𝐴 (𝑡))𝐿 +𝑈𝐴 (𝑡) + 𝛽𝐴 (𝑡) ≤ (1 + 𝜖)
[
𝑈 + 𝛽

1 + 𝜖
𝐴 (𝑡) + (1 −𝐴 (𝑡))𝐿

]
• Sub-case 2.2: Let 𝑣 ∈ (𝐿, 𝑈 +𝛽

1+𝜖).
To remain (1 + 𝜖) consistent, CLIP must accept some of these “bad cost functions” denoted by 𝑣 in the

worst-case. We would like to derive a lower bound 𝑧ADV, such that 𝑧ADV describes the minimum amount

that CLIP must accept from ADV in order to always satisfy the (1 + 𝜖) consistency constraint.

Based on the consistency constraint, we have the following:

CLIP𝑡−1 + 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (w) + ∥x𝑡 − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿 + (𝐴 (𝑡) − 𝑧 (𝑡−1) − 𝑐 (x𝑡))𝑈

≤ (1 + 𝜖)
[
ADV𝑡 + ∥a𝑡 ∥ℓ1 (w) + (1 −𝐴 (𝑡))𝐿

]
.

We let 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (w) + ∥x𝑡 − a𝑡 ∥ℓ1 (w) + ∥a𝑡 ∥ℓ1 (w) ≤ 𝑣𝑐 (x𝑡) for any x𝑡 : 𝑐 (x𝑡) < 𝑐 (a𝑡), which
holds by convexity of the cost functions 𝑓𝑡 (·) and a prevailing assumption that 𝑐 (x𝑡) ≤ 𝑐 (a𝑡) for the “bad
cost functions” accepted by ADV. Note that 𝑣 −𝑈 is negative (by the condition of Sub-case 1.2):

30

CLIP𝑡−1 + 𝑣𝑐 (x𝑡) + 𝐿 − 𝐿𝐴 (𝑡) +𝑈𝐴 (𝑡) −𝑈𝑧 (𝑡−1) −𝑈 x𝑡 ≤ (1 + 𝜖)
[
𝑣𝐴(𝑡−1) + 𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝐴 (𝑡)

]
,

𝑣𝑐 (x𝑡) −𝑈 x𝑡 ≤ (1 + 𝜖)
[
𝑣𝐴 (𝑡−1) + 𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝐴 (𝑡)

]
− CLIP𝑡−1 − 𝐿 + 𝐿𝐴 (𝑡) −𝑈𝐴 (𝑡) +𝑈𝑧 (𝑡−1) ,

𝑣𝑐 (x𝑡) −𝑈 x𝑡 ≤ 𝑣𝐴 (𝑡) −𝑈𝐴 (𝑡) − CLIP𝑡−1 +𝑈𝑧 (𝑡−1) + 𝜖

[
𝑣𝐴 (𝑡−1) + 𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝐴 (𝑡)

]
,

x𝑡 ≥
𝑣𝐴(𝑡) −𝑈𝐴 (𝑡) − CLIP𝑡−1 +𝑈𝑧 (𝑡−1) + 𝜖

[
𝑣𝐴(𝑡) + 𝐿 − 𝐿𝐴 (𝑡)]

𝑣 −𝑈
.

In the event that 𝐴 (𝑡−1) = 0 (i.e. nothing has been accepted so far by either ADV or CLIP), we have the
following:

x𝑡 ≥
𝑣𝑐 (a𝑡) −𝑈𝑐 (a𝑡) + 𝜖 [𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝑐 (a𝑡)]

𝑣 −𝑈
,

x𝑡 ≥ a𝑡 −
𝜖 [𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝑐 (a𝑡)]

𝑈 − 𝑣
.

Through a recursive definition, we can show that for any 𝐴 (𝑡)
, given that CLIP has accepted 𝑧 (𝑡−1)

of

ADV’s suggested prices so far, it must set x𝑡 such that:

𝑧 (𝑡) ≥ 𝑧 (𝑡−1) + a𝑡 −
𝜖 [𝑣𝑐 (a𝑡) + 𝐿 − 𝐿𝑐 (a𝑡)]

𝑈 − 𝑣
.

Continuing the assumption that 𝑣 is constant, if CLIP has accepted 𝑧 (𝑡−1)
thus far, we have the following

if we assume that the acceptance up to this point happened in a single previous time step𝑚:

𝑐 (x𝑡) ≥ 𝐴 (𝑡) +
𝑈𝑐 (x𝑚) − CLIP𝑡−1 + 𝜖

[
𝑣𝐴(𝑡) + 𝐿 − 𝐿𝐴 (𝑡)]

𝑣 −𝑈
,

𝑐 (x𝑡) ≥ 𝑐 (a𝑡) + 𝑐 (a𝑚) +
𝑈𝑐 (x𝑚) − 𝑣𝑐 (x𝑚) + 𝜖 [𝑣 (𝑐 (a𝑡) + 𝑐 (a𝑚)) + 𝐿 − 𝐿(𝑐 (a𝑡) + 𝑐 (a𝑚))]

𝑣 −𝑈
,

𝑐 (x𝑡) ≥ 𝑐 (a𝑡) + 𝑐 (a𝑚) − x𝑚 + 𝜖 [𝑣 (𝑐 (a𝑡) + 𝑐 (a𝑚)) + 𝐿 − 𝐿(𝑐 (a𝑡) + 𝑐 (a𝑚))]
𝑣 −𝑈

,

𝑐 (x𝑡) + 𝑐 (x𝑚) ≥ 𝑐 (a𝑡) + 𝑐 (a𝑚) +
𝜖 [𝑣 (𝑐 (a𝑡) + 𝑐 (a𝑚)) + 𝐿 − 𝐿(𝑐 (a𝑡) + 𝑐 (a𝑚))]

𝑣 −𝑈
,

𝑧 (𝑡) ≥ 𝐴 (𝑡) +
𝜖
[
𝑣𝐴 (𝑡) + 𝐿 − 𝐿𝐴 (𝑡)]

𝑣 −𝑈
.

This gives intuition into the desired 𝑧ADV bound. The above describes and motivates that the aggregate
acceptance by CLIP at any given time step 𝑡 must satisfy a lower bound. Consider that the worst case for

Sub-case 1.2 occurs when all of the 𝑣 prices accepted by ADV arrive first, before any prices which would

be considered by the pseudo-cost minimization. Then let 𝐴 (𝑡) = 1 for some arbitrary time step 𝑡 , and we

have the following lower bound on 𝑧ADV:

𝑧ADV ≥ 1 − 𝑣𝜖

𝑈 − 𝑣
.

If CLIP is forced to use 𝑧ADV of its utilization to be (1 + 𝜖) consistent against ADV, that leaves at most

(1 − 𝑧ADV) utilization for robustness.

We define 𝑧′ = min(1 − 𝑧ADV, 𝑧PCM) and consider the following two cases.

31

• Sub-case 2.2.1: if 𝑧′ = 𝑧PCM, the worst-case competitive ratio is bounded by the following. Note that if

𝑧′ = 𝑧PCM, the amount of utilization that CLIP can use to “be robust” is exactly the same as in Case 1:

CLIP(I)
OPT(I) ≤

∫ 𝑧PCM

0
𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧ADV − 𝑧PCM)𝑈 + 𝑧ADV𝑣

𝐿
,

≤
∫ 𝑧PCM

0
𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧PCM)𝑈

𝐿
≤ 𝛾𝜖 .

• Sub-case 2.2.2: if 𝑧′ = 1 − 𝑧ADV, the worst-case competitive ratio is bounded by the following. Note

that CLIP cannot use 𝑧PCM of its utilization for robustness, so the following bound assumes that the cost

functions accepted by CLIP are bounded by the worst (1 − 𝑧ADV) fraction of the pseudo-cost threshold

function 𝜙𝜖
(which follows since 𝜙𝜖

is non-decreasing on 𝑧 ∈ [0, 1]):

CLIP(I)
OPT(I) ≤

∫
1−𝑧ADV

0
𝜙 (𝑢)𝑑𝑢 + 𝛽 (1 − 𝑧ADV) + 𝑧ADV𝑣

𝐿
.

Note that if 𝑧′ = 1−𝑧ADV, we know that 1−𝑧ADV < 𝑧PCM, which further gives the following by definition

of 𝑧ADV:

1 − 𝑧PCM < 1 − 𝑣𝜖

𝑈 − 𝑣
,

𝑣𝜖 < (𝑈 − 𝑣)𝑧PCM,

𝑣 <
𝑈

(1 + 𝜖
𝑧PCM

) .

Since 𝑧ADV𝑣 =

(
(1−𝑧PCM)𝑈

1+ 𝜖
𝑧
PCM

)
, we have the following:

CLIP(I)
OPT(I) ≤

∫
1−𝑧ADV

0
𝜙 (𝑢)𝑑𝑢 + 𝛽 (1 − 𝑧ADV) +

(
(1−𝑧PCM)𝑈

1+ 𝜖
𝑧
PCM

)
𝐿

,

≤
∫ 𝑧PCM

0
𝜙 (𝑢)𝑑𝑢 + 𝛽𝑧PCM + (1 − 𝑧PCM)𝑈

𝐿
≤ 𝛾𝜖 .

Thus, by combining the bounds in each of the above two cases, the result follows, and we conclude

that CLIP is 𝛾𝜖 -robust for any advice ADV. □

Having proven Lemma C.1 (consistency) and Lemma C.2 (robustness), the statement of Theorem 4.3

follows – CLIP is (1 + 𝜖)-consistent and 𝛾𝜖 -robust given any advice for CFL. □

C.3 Proof of Corollary 4.4

In this section, we prove Corollary 4.4, which shows that CLIP is (1+𝜖)-consistent and 𝛾𝜖 -robust forMAL,
where 𝛾𝜖 is defined in (8).

Proof of Corollary 4.4. We show the above result by separately considering consistency (the competitive

ratio when advice is correct) and robustness (the competitive ratio when advice is not correct), relying on

the proof of Theorem 4.3.

Consistency. By definition,MAL on a weighted star metric is identical to an instance of convex function

chasing with a long-term constraint on (Δ𝑛, ∥·∥ℓ1 (w′)), where Δ𝑛 is the 𝑛-point simplex in R𝑛 and ∥·∥ℓ1 (w′)

32

is the weighted ℓ1 norm, with weights w′
given by the corresponding edge weight in the underlying star

metric.

Observe that the consistency proof given in Lemma C.1 holds when the consistency constraint at each

time step is defined as follows:

CLIP𝑡−1 + 𝑓𝑡 (x) + ∥x − x𝑡−1 ∥ℓ1 (w′) + ∥x − a𝑡 ∥ℓ1 (w′) + ∥a𝑡 ∥ℓ1 (w′) + (1 − 𝑧 (𝑡−1) − 𝑐 (x))𝐿 + max((𝐴(𝑡) − 𝑧 (𝑡−1) − 𝑐 (x)), 0) (𝑈 − 𝐿)

≤ (1 + 𝜖) [ADV𝑡 + ∥a𝑡 ∥ℓ1 (w′) + (1 − 𝐴(𝑡))𝐿],
(29)

where x and a denote decisions by CLIP and ADV (respectively) supported on Δ𝑛 . Thus, since the consis-

tency proof in Lemma C.1 exactly holds under the CFL vector space corresponding to MAL, we conclude
that CLIP is (1 + 𝜖)-consistent forMAL.

Robustness. First, we note that the robustness proof given in Lemma C.2 assumes OPT does not pay

any switching cost. This implies that the proof of Lemma C.2 meets the conditions of Proposition 2.3,

which states that any performance bound for an arbitrary ALG solving CFL which assumes OPT pays no

switching cost translates to an identical bound forMAL, where the problem’s parameters can be recovered

by constructing a corresponding CFL instance according to Lemma 2.2.

Thus, by Proposition 2.3, we conclude that CLIP is 𝛾𝜖 -robust forMAL, where 𝛾𝜖 is defined in (8).

By combining the two results, the statement of Corollary 4.4 follows – CLIP is (1 + 𝜖)-consistent and
𝛾𝜖 -robust given any advice ADV forMAL. □

C.4 Proof of Theorem 4.5

In this section, we prove Theorem 4.5, which shows that any (1 + 𝜖)-consistent algorithm for CFL is at

least 𝛾𝜖 -robust, where 𝛾𝜖 is as defined in (8).

Proof of Theorem 4.5. To show this result, we leverage the same special family of 𝑦-adversaries for CFL
defined in Definition B.4, where 𝑦 ∈ [𝐿,𝑈]. Recall that 𝑘 = arg max𝑖∈[𝑑] w𝑖 , where w is the weight vector

for ∥·∥ℓ1 (w) .
As in the proof of Theorem 3.4, we note that for adversaryA𝑦 , the optimal offline solution is OPT(A𝑦) =

𝑦 + 2𝛽/𝑚, and that as𝑚 grows large, OPT(A𝑦) → 𝑦.

Against these adversaries, we consider two types of advice – the first is bad advice, which sets a𝑡 = 0
for all time steps 𝑡 < 𝑇 (i.e., before the compulsory trade), incurring a final cost of𝑈 + 2𝛽 .

On the other hand, good advice sets a𝑡 = 0 for all time steps up to the first time step when𝑦 is revealed,

at which point it sets a𝑘𝑡 = 1/𝑚 to achieve final cost ADV(A𝑦) = OPT(A𝑦) = 𝑦 + 2𝛽/𝑚.
We let 𝑔(𝑦) denote a robust conversion function [𝐿,𝑈] → [0, 1], which fully quantifies the actions

of a learning-augmented algorithm LALG playing against adaptive adversary A𝑦 , where 𝑔(𝑦) gives the
progress towards the long-term constraint under the instance A𝑦 before (either) the compulsory trade or

the black-box advice sets a𝑘𝑡 > 0. Note that for large𝑤 , the adaptive adversary A𝑦−𝛿 is equivalent to first

playingA𝑦 (besides the last two batches of cost functions), and then processing batches with cost functions

Down𝑤𝑦+1(x) and Up(x). Since LALG is deterministic and the conversion is unidirectional (irrevocable),

we must have that 𝑔(𝑦 − 𝛿) ≥ 𝑔(𝑦), i.e. 𝑔(𝑦) is non-increasing in [𝐿,𝑈].
As in the proof of Theorem 3.4, the adaptive nature of each 𝑦-adversary forces any algorithm to incur

a switching cost proportional to 𝑔(𝑦), specifically denoted by 2𝛽𝑔(𝑦).
For any 𝛾-robust online algorithm LALG given any arbitrary black-box advice, the following must hold:

LALG(A𝑦) ≤ 𝛾OPT(A𝑦) = 𝛾𝑦, ∀𝑦 ∈ [𝐿,𝑈] .

The cost of LALGwith conversion function𝑔 on an instanceA𝑦 is LALG(A𝑦) = 𝑔(𝑈/𝛾)𝑈/𝛾−
∫ 𝑦

𝑈/𝛾 𝑢𝑑𝑔(𝑢)+
2𝛽𝑔(𝑦) + (1 − 𝑔(𝑦))𝑈 , where 𝑢𝑑𝑔(𝑢) is the cost of buying 𝑑𝑔(𝑢) utilization at price 𝑢, the last term is from

the compulsory trade, and the second to last term is the switching cost incurred by LALG.

33

This implies that 𝑔(𝑦) must satisfy the following:

𝑔(𝑈/𝛾)𝑈/𝛾 −
∫ 𝑦

𝑈/𝛾
𝑢𝑑𝑔(𝑢) + 2𝛽𝑔(𝑦) + (1 − 𝑔(𝑦))𝑈 ≤ 𝛾𝑦, ∀𝑦 ∈ [𝐿,𝑈] .

By integral by parts, the above implies that the conversion function must satisfy 𝑔(𝑦) ≥ 𝑈 −𝛾𝑦
𝑈 −𝑦−2𝛽

−
1

𝑈 −𝑦−2𝛽

∫ 𝑦

𝑈/𝛾 𝑔(𝑢)𝑑𝑢. By Grönwall’s Inequality [MPF91][Theorem 1, p. 356], we have that

𝑔(𝑦) ≥ 𝑈 − 𝛾𝑦

𝑈 − 𝑦 − 2𝛽
− 1

𝑈 − 𝑦 − 2𝛽

∫ 𝑦

𝑈/𝛾

𝑈 − 𝛾𝑢

𝑈 − 𝑢 − 2𝛽
· exp

(∫ 𝑦

𝑢

1

𝑈 − 𝑟 − 2𝛽
𝑑𝑟

)
𝑑𝑢 (30)

≥ 𝑈 − 𝛾𝑦

𝑈 − 𝑦 − 2𝛽
−

∫ 𝑦

𝑈/𝛾

𝑈 − 𝛾𝑢

(𝑈 − 𝑢 − 2𝛽)2
𝑑𝑢 (31)

≥ 𝑈 − 𝛾𝑦

𝑈 − 𝑦 − 2𝛽
−

[
𝑈𝛾 −𝑈 − 2𝛽𝛾

𝑢 + 2𝛽 −𝑈
− 𝛾 ln (𝑢 + 2𝛽 −𝑈)

]𝑦
𝑈/𝛾

(32)

≥ 𝛾 ln (𝑦 + 2𝛽 −𝑈) − 𝛾 ln (𝑈/𝛾 + 2𝛽 −𝑈) , ∀𝑦 ∈ [𝐿,𝑈] . (33)

In addition, to simultaneously be𝜂-consistentwhen the advice is correct, LALGmust satisfy LALG(A𝐿) ≤
𝜂OPT(A𝐿) = 𝜂𝐿. If the advice is correct (and𝑚 is sufficiently large), we assume that LALG pays no switching
cost to satisfy the long-term constraint at the best cost functions 𝐿. It must still pay for switching incurred

by the robust algorithm (recall that OPT pays no switching cost).∫ 𝐿

𝑈/𝛾
𝑔(𝑢)𝑑𝑢 + 2𝛽𝑔(𝐿) ≤ 𝜂𝐿 − 𝐿. (34)

By combining equations (33) and (34), the conversion function 𝑔(𝑦) of any 𝛾-robust and 𝜂-consistent
online algorithm must satisfy the following:

𝛾

∫ 𝐿

𝑈/𝛾
ln

(
𝑢 + 2𝛽 −𝑈

𝑈/𝛾 + 2𝛽 −𝑈

)
𝑑𝑢 + 2𝛽

[
𝛾 ln

(
𝑢 + 2𝛽 −𝑈

𝑈/𝛾 + 2𝛽 −𝑈

)]
≤ 𝜂𝐿 − 𝐿. (35)

When all inequalities are binding, this equivalently gives that

𝜂 ≥ 𝛾 + 1 − 𝑈

𝐿
+ 𝛾 (𝑈 − 𝐿)

𝐿
ln

(
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

)
. (36)

We define 𝜂 such that 𝜂 B (1 + 𝜖). By substituting for 𝜂 into (36), we recover the definition of 𝛾𝜖 as given

by (8), which subsequently completes the proof. Thus, we conclude that any (1 + 𝜖)-consistent algorithm
for CFL is at least 𝛾𝜖 -robust. □

C.5 Proof of Corollary 4.6

In this section, we prove Corollary 4.6, which shows that any (1 + 𝜖)-consistent algorithm for MAL is at

least 𝛾𝜖 -robust, where 𝛾𝜖 is as defined in (8).

Proof of Corollary 4.6. To show this result, we leverage the same special family of 𝑦-adversaries for CFL
defined in Definition B.5, where 𝑦 ∈ [𝐿,𝑈]. Recall that 𝑘 = arg max𝑎∈[𝑛] w

𝑎
, deonotes the largest edge

weight of any (non-OFF) point in the metric space, and 𝛽 = w𝑘
.

As in the proof of Theorem 3.4, we note that for adversaryA𝑦 , the optimal offline solution is OPT(A𝑦) =
𝑦 + 2𝛽/𝑚, and that as𝑚 grows large, OPT(A𝑦) → 𝑦.

34

Against these adversaries, we consider two types of advice – the first is bad advice, which sets a𝑎
′

𝑡 = 1

(i.e., ADV stays in the OFF point) for all time steps 𝑡 < 𝑇 (i.e., before the compulsory trade), incurring a final

cost of𝑈 + 2𝛽 .

On the other hand, good advice sets a𝑎
′

𝑡 = 1 for all time steps up to the first time step when𝑦 is revealed,

at which point it sets a𝑘𝑡 = 1/𝑚 to achieve final cost ADV(A𝑦) = OPT(A𝑦) = 𝑦 + 2𝛽/𝑚.
As previously, we let 𝑔(𝑦) denote a robust conversion function [𝐿,𝑈] → [0, 1], which fully quantifies

the actions of a learning augmented algorithm LALG playing against adaptive adversary A𝑦 . Since LALG
is deterministic and the conversion is unidirectional (irrevocable), 𝑔(𝑦) is non-increasing in [𝐿,𝑈]. Intu-
itively, the entire long-term constraint should be satisfied if the minimum possible price is observed, i.e

𝑔(𝐿) = 1.

As in Theorem 4.5, the adaptive nature of each 𝑦-adversary forces any deterministic ALG to incur a

switching cost of 2𝛽𝑔(𝑦) on adversary A𝑦 , and we assume that ALG does not incur a significant switching
cost during the final batch (i.e., during the compulsory trade).

For any 𝛾-robust LALG given any arbitrary black-box advice, the following must hold:

LALG(A𝑦) ≤ 𝛾OPT(A𝑦) = 𝛾𝑦, ∀𝑦 ∈ [𝐿,𝑈] .

The cost of LALGwith conversion function𝑔 on an instanceA𝑦 is LALG(A𝑦) = 𝑔(𝑈/𝛾)𝑈/𝛾−
∫ 𝑦

𝑈/𝛾 𝑢𝑑𝑔(𝑢)+
2𝛽𝑔(𝑦) + (1 − 𝑔(𝑦))𝑈 , where 𝑢𝑑𝑔(𝑢) is the cost of buying 𝑑𝑔(𝑢) utilization at price 𝑢, the last term is from

the compulsory trade, and the second to last term is the switching cost incurred by LALG. Note that this
expression for the cost is exactly as defined in Theorem 4.5.

Thus by Theorem 4.5, for any learning-augmented algorithm LALGwhich is simultaneously𝜂-consistent

and 𝛾-robust, the conversion function 𝑔(·) must satisfy the following inequality (via integral by parts and

Grönwall’s Inequality [MPF91, Theorem 1, p. 356]):

𝛾

∫ 𝐿

𝑈/𝛾
ln

(
𝑢 + 2𝛽 −𝑈

𝑈/𝛾 + 2𝛽 −𝑈

)
𝑑𝑢 + 2𝛽

[
𝛾 ln

(
𝑢 + 2𝛽 −𝑈

𝑈/𝛾 + 2𝛽 −𝑈

)]
≤ 𝜂𝐿 − 𝐿. (37)

When all inequalities are binding, this equivalently gives that the optimal 𝜂 and 𝛾 satisfy:

𝜂 ≥ 𝛾 + 1 − 𝑈

𝐿
+ 𝛾 (𝑈 − 𝐿)

𝐿
ln

(
𝑈 − 𝐿 − 2𝛽

𝑈 − 𝑈/𝛾𝜖 − 2𝛽

)
. (38)

We define 𝜂 such that 𝜂 B (1 + 𝜖). By substituting for 𝜂 into (36), we recover the definition of 𝛾𝜖 as given

by (8), which subsequently completes the proof. Thus, we conclude that any (1 + 𝜖)-consistent algorithm
for CFL is at least 𝛾𝜖 -robust. □

35

	Introduction
	Problem Formulation and Preliminaries
	Designing Competitive Algorithms
	Learning-augmented Algorithms
	Numerical Experiments
	Conclusion
	Numerical Experiments (continued)
	Supplemental Results

	Proofs for Section 3 (Competitive Algorithms)
	Convexity of the pseudo-cost minimization problem in ALG1
	Proof of Theorem 3.2
	Proof of [cor:alphaCompMAL]Corollary 3.3
	Proof of Theorem 3.4
	Proof of [cor:lowerboundMAL]Corollary 3.5

	Proofs for Section 4 (Learning-Augmentation)
	Proof of [lem:baseline]Lemma 4.1
	Proof of Theorem 4.3
	Proof of [cor:constrobCLIPMAL]Corollary 4.4
	Proof of Theorem 4.5
	Proof of [cor:optimalconstrobMAL]Corollary 4.6

