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Abstract—The ubiquity of mobile devices has led to the
proliferation of mobile services that provide personalized and
context-aware content to their users. Modern mobile services
are distributed between end-devices, such as smartphones, and
remote servers that reside in the cloud. Such services thrive on
their ability to predict future contexts to pre-fetch content or
make context-specific recommendations. An increasingly common
method to predict future contexts, such as location, is via machine
learning (ML) models. Recent work in context prediction has
focused on ML model personalization where a personalized model
is learned for each individual user in order to tailor predictions
or recommendations to a user’s mobile behavior. While the use
of personalized models increases efficacy of the mobile service,
we argue that it increases privacy risk since a personalized model
encodes contextual behavior unique to each user. To demonstrate
these privacy risks, we present several attribute inference-based
privacy attacks and show that such attacks can leak privacy with
up to 78% efficacy for top-3 predictions. We present Pelican,
a privacy-preserving personalization system for context-aware
mobile services that leverages both device and cloud resources
to personalize ML models while minimizing the risk of privacy
leakage for users. We evaluate Pelican using real world traces
for location-aware mobile services and show that Pelican can
substantially reduce privacy leakage by up to 75%.

Index Terms—cloud-based mobile services, personalized ML
models, privacy, deep learning, context-awareness

I. INTRODUCTION

The ubiquitous nature of smartphones and smart devices,
such as wearables, have led to a plethora of online mobile
services in various domains including fitness, entertainment,
news and smart homes. Such mobile services tend to be
distributed between the end-device and the cloud with front-
end components running on the devices as mobile applications
and back-end components running on cloud servers. Modern
mobile services are often context-aware to provide tailored
content or service to users based on their current context. For
example, it is common for a restaurant recommendation ser-
vice to use location as its context when recommending nearby
eateries. While the use of current context in mobile services is
common, mobile services have begun to use machine learning
(ML) models to predict future contexts (e.g., a user’s next or
future location(s)) and provide tailored recommendation based
on these prediction (e.g., suggest directions or store closing
time of predicted future location).

Machine learning has been used in mobile services for tasks
such as next location prediction [1], medical disease detection
[2] and language modeling [3]. The popularity of deep learning

has established the use of aggregated data from a large number
of users to train and deploy a general ML model that makes
predictions for context-aware services for a broad range of
users. A more recent trend in the field is to use personalized
models on a per-user basis rather than a general model to
further improve the efficacy of the service. In this scenario,
rather than using a single ML model for all users, a model
is personalized for each user using training data specific to
the user. For instance, a user’s frequently visited locations in
a mobile service or a user’s viewing history in a streaming
service can be used to develop personalized ML models.

While model personalization is a growing trend in mobile
and Internet of Things services, in this paper, we examine the
implications of such an approach on the privacy of individuals.
We argue that personalized ML models encode sensitive
information in the single-user context traces used as training
data and mobile services that use such personalized models
can leak privacy information through a class of privacy attacks
known as model inversion. Model inversion attacks exploit a
trained ML model to infer sensitive attributes [4]. While ML
researchers have studied inversion attacks in other contexts,
they have not been studied or demonstrated for time-series
models that are commonplace in mobile applications. Our
work formalizes and demonstrates such attacks for personal-
ized mobile services by showing how they can leak sensitive
context (i.e. location) information about a user. To the best of
our knowledge, privacy implications of personalized models in
distributed mobile services have not been previously studied.

Motivated by the need to ensure the privacy of personalized
ML models, we present Pelican, an end-to-end system for
training and deploying personalized ML models for context-
aware mobile services. Our system enhances user privacy by
performing sensitive personalized training on a user’s device
and adding privacy enhancements to personalized models to
further reduce and prevent inversion attacks from leaking sen-
sitive user information. Our system is also designed to allow
low overhead model updates to improve model accuracy while
safeguarding privacy. Finally, our system leverages the device
and cloud architecture of mobile services when personalizing
ML models to enhance user privacy. In design and implemen-
tation of Pelican, we make the following contributions:

C1 We adapt low-resource transfer learning methods to
train and execute personalized ML models on resource-



constrained mobile devices for mobility applications. Our
approach utilizes the inductive biases of a multi-user
ML model and tailors it to a distinct user using their
limited context traces. Our work draws inspiration from
existing work on transfer learning-based personalization
of language models [3].

C2 We formalize practical inference-based privacy attacks
on personalized models using model inversion [4]. We
consider ways in which an adversary can reconstruct
private historical information using only trained person-
alized mobility prediction models. Our work formalizes
model inversion attacks for time-series based ML models
with application in the mobility domain.

C3 We quantify the efficacy of these privacy attacks on mo-
bile services that use personalized models. Our findings
demonstrate that such attacks can leak private historical
mobility patterns with up to 78% accuracy for top-3
predictions. We find that the leakage is higher for smaller
spatial scales and independent of user mobility behavior.

C4 We present the design of Pelican, an end-to-end privacy
preserving personalization framework. We propose a ro-
bust enhancement to mitigate inference-based privacy at-
tacks based on scaling the output probability distribution
at inference time. We empirically evaluate Pelican on
low-level and high-level spatial mobility scales using a
campus dataset and show that Pelican is able to reduce
privacy leakage up to 75%.

II. BACKGROUND

In this section, we present background on context-aware
mobile services and the use of ML models in such services.

Context-Aware Mobile Services. Our work considers mo-
bile services whose service components are distributed across
mobile devices and a back-end cloud. It is typical for mobile
services to be context-aware and tailor the service based on
current or future contexts. In recent years, context-aware mo-
bility applications, such as location-based social networking
and ride-sharing applications, have gained popularity. Context
can be defined as any information used to characterize inter-
actions with the environment or situation of an entity and can
be broadly categorized into temporal, spatial and social. A
common type of context-aware service utilizes the user’s cur-
rent or future location to offer location-aware mobile services.
Unless specified otherwise, our work assumes location to be
the primary context used by the distributed mobile service.

Mobility Prediction. In addition to using current context
such as location, many services now use next location predic-
tion techniques to predict future location(s) that a user will
visit and offer recommendations based on future contexts. For
instance, a mapping service may predict commute times to the
next location a user is predicted to visit. Next location predic-
tion techniques capture the spatial and temporal correlations
between human mobility patterns. Since humans tend to follow
particular routines and habits, learning their mobility behaviors
can assist many domains from recommendation systems to
urban design. Human mobility can be defined through a

series of location and time-varying features. Consider a set
of features xt = {l, e, d} with location l, entry time e and
duration d at time t. The mobility prediction problem can
be defined as follows: given a set of previous sequences
su = {x1, x2, ...xt} for user u, estimate location lt+1 of user
u at the next time step.

Time-Series ML for Next Location Prediction. Prior
work in next location prediction has focused on using variants
of Markov models, Hidden-Markov models and tree-based
classification models to learn the sequential nature of mobility
[5], [6]. With the emerging capabilities in deep learning to
handle temporal or spatial input, recurrent neural networks
(RNN) have been proposed for mobility prediction [7]. RNNs
have the ability to capture sequential data where each sample
is dependent on its previous samples. More recently, a variant
of RNNs, long short term memory (LSTM) models [8] have
shown state-of-the-art performance in predicting human mo-
bility [1], [9]–[11]. Unlike RNNs, LSTMs have the ability to
learn and remember long-term dependencies in the data. Deep
learning-based models generally employ mobility trajectories
of many users to learn generic human mobility patterns and are
capable of handling large prediction spaces typical of general
mobility models.

Model Personalization. A common approach for using
ML models in mobile services (e.g., for predicting future
contexts) is to train a general ML model using aggregated
training data from a larger number of users. Such a model
encodes behavior of a large group of users and can predict the
future behavior of a user who resembles one in the training
set. A recent trend, however, is to employ a personalized
model that is designed for a specific user over the use of
a general model. Personalized models can encode specific
behavior exhibited by an individual user and offer better
efficacy over an aggregated model. In recent years, machine
learning methods for personalization have been proposed in
various domains including autonomous vehicles [12], health
[13], and natural language processing [3]. Recently, Sarker
et al. explored the effectiveness of ML models for predicting
personalized context-aware smartphone usage [14]. They eval-
uate numerous ML algorithms and find that tree-based models,
such as random forests, are the most effective for building
personalized context-aware models. Personalized modeling in
mobility has been generally conducted via Markov models [5].
More recently, Feng et al. developed personal adaptors for
personalized modeling with LSTMs [11].

Machine Learning Privacy. Machine learning models are
vulnerable to privacy attacks and our work argues that model
personalization increases privacy risks for users. Two of the
primary privacy attacks in ML are membership inference
attacks [15] and attribute inference attacks [4]. Membership
inference attacks aim at inferring whether a data sample was
present in the training set. Given a model M and some data
point x, the goal is to infer whether M used x during training.
This attack is particularly problematic when using sensitive
data sets. For instance, if a ML model is trained on a cancer
data set and an adversary is able to infer whether a user
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Fig. 1: Next location prediction architectures: (a) traditional
general model; (b) transfer learning-based feature extraction
model; and (c) transfer learning-based fine tuned model.

was in this data, it will reveal the user’s health status. In
this work, we focus on attribute inference attacks, namely
a model inversion attack. Model inversion attacks aim at
inferring sensitive features using a trained model. Given a
model M and some features {x2, x3..., xn}, the goal is to
reconstruct the value of some sensitive feature x1. This is
problematic when the data set contains sensitive features such
as the location of a user. Model inversion attacks were first
proposed by Fredrikson et al. [16] to exploit linear regression
pharmacogenetic models to infer patient genotype. There have
been various subsequent papers on understanding the broader
risk of such attacks [4], [17]–[21]. Wu et al. proposed a game-
based formalization of inversion attacks for any ML model
yet claimed that privacy leakage from such attacks is context
dependent [17]. Our work formalizes model inversion attacks
for time-series applications with a focus on mobility. We focus
on reconstructing users’ historical mobility patterns using a
next location prediction model.

III. PERSONALIZED MODELS AND PRIVACY IMPLICATIONS

In this section, we first describe our approach for model
personalization based on transfer learning of deep learning
models and then describe our model inversion privacy attack
on such personalized models.

A. ML-driven Next Location Prediction

Predicting the next location(s) based on historical locations
is a fundamental mobility task that is useful in a broad range
of mobile services. We describe three approaches based on
deep learning to perform next location prediction.

1) LSTM-based General Model: The traditional approach
has been to use historical trajectories, temporally extended
sequences of locations, of many different users to train a
deep neural network that predicts the next location of any

given user. Early approaches were based on RNNs while the
state-of-the-art approaches use LSTMs [8] to capture both
the short-term and long-term dependencies in user mobility
patterns. Figure 1a illustrates an example architecture of a
LSTM model with two LSTM layers followed by a linear
layer. Since training deep models, including LSTMs, requires
a large amount of training data, a common approach is to use
historical trajectories of many users to train an accurate but
general model that performs next location prediction [1], [7],
[9], [10], [22].

2) Personalized Models: While a general LSTM model can
learn correlations in mobile behavior across users and perform
well across a range of users that behave similarly, they are
less effective for individual users who exhibit idiosyncratic
or dissimilar behavior. To address this issue, researchers have
proposed to train personalized models for users to capture their
unique behavior [11]. While a single model is used for all
users in case of a general model, personalization requires that
a unique model is learned and deployed for each user.

A LSTM model similar to a general model can be used
for training personalized models. In this case, historical tra-
jectories from a single user are used to train each model. The
advantage of model personalization is that it can yield more
accurate user-specific predictions. However, deep learning
models require a large amount of single user data to train
each personalized model (unlike a general model where less
single user data suffices due to the availability of training data
from many similar users).

3) Transfer Learning-Based Personalization: In our work,
we assume a different approach for model personalization
that overcomes some of the limitations of the above methods.
Our approach involves first training a general model for next
location prediction using training data from multiple users.
Then it uses transfer learning to personalize the general model
for a new user using their historical data. The advantage of
personalizing an already trained general LSTM model using
transfer learning is that it requires less single user historical
data than training one from scratch.

The goal of transfer learning is to transfer knowledge
learned from solving one task to assist another [23]. Existing
areas that employ transfer learning, such as computer vision
and natural language processing, typically have a fixed domain
size between source and target tasks. However, the domain of
the multi-user model can differ from the domain of the single
user data for next location prediction. For instance, a general
mobility prediction model that is trained for New York City
will have a different domain from a user who lives in Boston.
In this work, we assume that the target single-user domain is
a subset of the source multi-user domain. Assume the source
domain is Ds and target domain is Dt, where Dt ⊆ Ds.
Prior to applying transfer learning, we transform the target
data by extending the domain with Ds − Dt. In our case,
this implies introducing new categories (e.g., Ds−Dt) to the
existing one-hot encoded location categories in the target data.
This simplifies the transfer learning process by equalizing the
source and target domains. Employing heterogeneous transfer



learning methods for mobility is a direction for future work.
There are two popular methods for transfer learning, either

of which can be used to personalize a general model using a
small amount of user data.

Feature Extraction. One popular method to conduct trans-
fer learning is to employ the general model as a feature extrac-
tor for learning the generic patterns relevant to the task. The
layered architecture of deep learning models assist in learning
different features or correlations within the data at different
layers. Since the general model takes as input the trajectories
of many users, it learns a representation of the generic mobility
pattern of the users. The intuition behind feature extraction is
to exploit and build on top of the representation learned by
the generic model. This is conducted by using the primary
representation layers of the trained general model (e.g., first
two LSTM layers in Figure 1a) and adding a surplus layer or a
new shallow model before the final linear layer to learn specific
patterns from the single user data. This method requires re-
training the model with single-user data, but only updating the
parameters of the newly appended shallow model. To ensure
that only the newly appended shallow model is updated and
the generic patterns are not lost during the training process,
the weights of the general model layers prior to the shallow
model are frozen. In our work, we stack another LSTM layer
before the output layer to capture the patterns unique to the
user as shown in Figure 1b.

Fine Tuning. Another popular transfer learning approach
considers fine tuning the trained general model instead of
building on top of it. The initial layers in a deep learning
model often focus on generic patterns and the latter layers
focus on specific patterns relevant to the task at hand. During
transfer learning, the goal typically is to transfer the generic
features and learn the specific patterns based on the target
data (e.g., single-user trajectory). To do so, one method is to
freeze the initial layers and re-train the latter layers with single
user data. Figure 1c shows an example of such a model. The
particular number of layers to re-train or fine-tune depends
on the nature of the data. With plenty data, more layers can
be re-trained whereas with sparse data, often the case with
single-user trajectories, minimizing this number can be better
due to the risk of overfitting. In our work, we re-train and
update parameters of the second LSTM layer and linear layer
using single user data.

B. Privacy Attacks on Personalized Models

As noted in Section II, ML models are vulnerable to privacy
attacks. A particular type of ML privacy attack is a model
inversion attack that exploits a trained ML model to infer
values of sensitive attributes in the training data [4]. While
inversion attacks have been studied in other contexts, prior
work has not explored inversion attacks on time-series based
ML models, and specifically, context-aware services that use
time-series trajectories of contexts such as location history.

Intuitively, a model inversion attack takes a trained model
as a black box and a possible output y produced by the model
to learn one or more model input features that produce this

output. A simple model inversion attack exploits confidence
values and prior knowledge of the sensitive variable by picking
the value that maximizes the model’s confidence of y weighted
by the prior [4]. In case of a next location prediction model,
it implies taking a predicted next location (model output) to
learn one of the previous locations (model input) visited by
the user. This is concerning given the sensitivity of location
data (e.g., visit to a hospital can leak privacy). The goal is to
not reveal more than needed for the service to operate.

Model inversion attacks have greater privacy implications
for personalized models than general models. Since a general
model is trained using data from many users, leaking a
previously visited location as present in the training data
may not directly reveal private information of a specific user.
However, an inversion attack on a personalized model directly
reveals prior locations visited by a specific user, which can
leak sensitive information about that user. In the rest of this
section, we formalize and describe a model attack inversion
attack on personalized time-series next-location models.

1) Threat Model: We consider a system which consists of
a location-aware mobile application that collects sequences of
data xt = {f1, f2, ..., fk} with k features at each time step t.
This system consists of the following entities:

Contributors. We assume there exists a set G of unique
users who allow their data to be used to train a multi-user ML
model, MG, for next location prediction. These users serve as
contributors for MG.

Users. We consider a set of honest unique users P , disjoint
from G, that use the location-aware application. We assume all
users in P employ a transfer learning-based personalization
method (see Section III-A3) and general model MG to build
personal models. These users protect their data by keeping it
local and only allowing the service provider black-box access
to the personal ML model.

Service Provider. We consider a service provider S that
hosts the location-aware mobile application. S has access to the
data sequences of users in set G using which it trains MG, and
only black-box access to trained personal models of users in P .
We assume S has the ability to query and observe the model
output and associated confidence scores for all classes. We
consider S to be a honest-but-curious adversary that attempts
to learn historical mobility pattern of users in P using their
personal ML models.

Since our focus is on privacy rather than security, we do not
consider security threats from external adversaries who may
break into the system and steal private data or models.

2) Proposed Privacy Attack: Our focus in this paper is
on attribute inference attacks using model inversion. The
proposed model inversion attack follows the basic premise as
described earlier. We assume that all personal models output
confidence scores (probabilities) for all classes. This is a
typical assumption in mobility applications, particularly when
the focus is on getting the top k most likely next locations
rather than a single next location. Let p = (p1, ..., pm) be the
marginal probabilities of the sensitive variable that can take m
values. For instance, if the sensitive variable is building-level



TABLE I: Descriptions of different adversaries with the com-
ponents they have access to and their goal. Mp refers to a
user’s personalized model, p refers to prior knowledge, xt−1

and xt−2 are inputs to Mp, and lt is the output of Mp.

Adversary Adversarial Knowledge Goal
MP p xt−1 xt−2 lt

A1 X X - X X lt−1

A2 X X X - X lt−2

A3 X X - - X lt−1 or lt−2

location, the marginal probability pi will reflect how often
building i is visited. The novelty in our work arises from the
formalization of this attack from a time-series context.

We assume that adversarial access to features is limited by
time. That is, an adversary has access to all or no features
within a sequence for a given time step. For simplicity, we
further assume that there is a single sensitive variable at
each time step (e.g., location l) for all adversaries. Table I
presents descriptions of different adversaries with the features
they have access to and their goal. We assume all adversaries
have access to some location of the user. A honest-but-curious
service provider can simply observe the output of the personal
models (i.e., lt) or gather such information from other context-
aware applications, mobile cookies, third-party applications
or location-based social networks. A1 and A2 represent the
simplest adversaries which have access to all features except
features at time xt−1 or xt−2 with the goal of correctly
identifying lt−1 and lt−2 respectively. Note, these adversaries
require some historical external information namely all fea-
tures at time t–2 and t–1 respectively. Adversary A3 represents
an adversary who has limited access to historical sequences
but has information on model output or some location lt.

A popular form of model inversion attacks require enumer-
ation over values of the sensitive variable(s). The simplest
and most computationally expensive form of enumeration for
time-series data is a brute force method where an adversary
enumerates through all the features in an unknown sequence
xt. Since deep learning models learn a differentiable mapping
between the input and the output, it is also possible to
reconstruct the input using the output through backpropagation
and gradient descent. Backpropagation is used in deep learning
to calculate the gradient of the loss function with respect to
the parameters of the model and gradient descent allows a
descent or step in the direction that optimizes the loss function
through the gradient. We employ this algorithm to reconstruct
the input, sequences xt−2 and xt−1, by iteratively transforming
a candidate input towards the values that maximize the correct
output. To deal with the large output space typical in mobility
domains, we also add the notion of temperature scaling. Tem-
perature, T , is a hyperparameter that controls the variability in
prediction space by scaling the raw probabilities (i.e., logits)
before applying softmax. The logits (zi) are divided by this
term before applying the softmax function:

pi =
exp (zi/T )∑
i exp (zi/T )

(1)

We use this as a method to soften the candidate input variables
during gradient descent such that they are one-hot encoded and
represent discretized values.

Additionally, we propose an enumeration method that em-
ploys the time-based dependence between the features. Con-
sidering that mobile devices are consistently with users, we can
assume that there exists cross-correlation between consequent
sequences and continuity (e.g., no gaps in time periods). Thus,
we can use smart enumeration techniques that take advantage
of these correlations by enumerating through only certain fea-
tures and using cross-correlation to infer the rest. This method
is dependent on the nature of the input features and works for
numerical time-varying features. For example, if we assume a
sequence consists of location (l), duration at location (d), and
entry time at location (e), for adversary A1, we can enumerate
through dt−2 and lt−2 and compute et−2 from knowledge
of et−1 and dt−2 (e.g., et−2 = et−1 − dt−2). Moreover, to
minimize the search space, we propose identifying the user’s
locations of interest. Since the adversary is assumed to have
black-box access to the model, we propose observing the
output for a few instances and selecting only locations with
confidence greater than or equal to some threshold (i.e. 1%).
This will minimize the search space substantially, particularly
since the personalized model includes all locations in a given
proximity, instead of only those captured in the user’s data
due to the domain equalization mentioned in Section III-A3.

IV. PRIVACY LEAKAGE FROM INVERSION ATTACKS

In this section, we empirically evaluate the efficacy of the
model inversion privacy attack presented in Section III-B.

A. Experimental Setup

Data. We employ a campus-scale WiFi dataset from
September to November 2019. This data consists of 156
buildings that are connected by 5104 HP Aruba access points
(APs). Each AP event includes a timestamp, event type, MAC
address of the device and the AP. Since the WiFi network
requires all users to authenticate themselves, each event can
be associated with a user. For this work, all user information
is anonymized using a hashing algorithm.

Using well known methods for extracting device trajectories
from WiFi logs (e.g., [10]), we extract fine-grained mobility
trajectory of 300 users spanning over 150 buildings and 2956
APs. We filter the data to consist of only on-campus students
by assessing whether users stay in a dorm on a typical weekday
night. The final processed data set includes sequences of
four features for each user: session-entry (e), session-duration
(d), building (l), and day-of-week (w). Note, session-entry is
discretized into 30 minutes intervals and session-duration is
discretized into 10 minutes intervals to reduce the variability.
Duration is also capped at 4 hours since less than 10% of users
spend more time in a single building [10].

Task. We focus on next-location prediction using historical
trajectories. Let xt = [et, dt, lt, wt] be a sequence at time t.
Then, let the ML model be M : xt−2, xt−1 → lt. That is, the
ML model takes as input two sequences and outputs the next



TABLE II: Runtime of attack methods for 100 users.

Method Runtime (hours)
Brute Force 82.18
Gradient Descent 6.27
Time-Based 0.68

location. We employ both building-level and AP-level spatial
scales for our experiments. Location l is considered to be a
sensitive variable.

Models. We employ trajectories of 200 users to train the
general LSTM as described in Section III-A1. 80% of the data
is used for training and 20% is used for testing. We perform
grid search on time-series based 5-fold cross validation to
select the optimal hyperparameters for the model. The general
LSTM is trained using a learning rate of 1e−4 with a weight
decay of 1e−6 and hidden layer size of 128. We use batches of
size 128 with a dropout rate of 0.1 between the LSTM layers.
To learn personalized models, without loss of generality, we
employ transfer learning-based feature extraction (TL FE) (see
Section III-A3). We train individual personalized models for
100 unique and distinct users. We perform grid search using 3-
fold time-series cross validation for hyperparameter selection.

Measures. We employ top-k accuracy as an evaluation
metric. The goal is to identify the top-k most likely locations
from the model output and assess whether the true location is
a subset of that.

B. Analysis of Privacy Attack

We analyze the proposed privacy attack on 100 distinct
users. We use time-based dependence and adversary A1 as our
default attack method and adversary respectively, and perform
all experiments on building spatial level unless otherwise
stated. For all experiments, attack accuracy is defined as the
percentage of historical locations correctly identified.

1) Impact of attack type: We compare the two proposed
attack methods, time-based enumeration and gradient descent
with temperature scaling, with brute force. Figure 2a contains
an evaluation of the attack methods discussed in Section III-B.
As expected, the brute force method performs well, reaching
79.64% attack accuracy for top-3 predictions. Our proposed
time-based method performs equivalently to the brute force
method with attack accuracy growing as k increases. However,
the gradient descent method is the least effective at construct-
ing historical mobility patterns with attack accuracy of less
than 16%. We hypothesize this is due to the large domain
size and discrete nature, instead of continuous, of mobility
locations which results in an inaccurate reconstruction of the
historical data.

Despite the similar performance, the brute force and time-
based enumeration methods differ substantially in computa-
tional complexity. The runtime of the brute force method is
over 120 times that of the time-based method suggesting that
the time-based attack is highly efficient to launch in practical
settings. Table II contains runtimes of the three methods.

2) Impact of adversarial knowledge: The results shown
in Figure 2b illustrate the impact of adversarial knowledge

from Table I on the attack. Despite the differing levels of
adversarial knowledge, all adversaries perform effectively and
equivalently at reconstructing historical mobility patterns. In-
terestingly, adversary A3’s attack capabilities do not degrade
despite the lack of adversarial knowledge. This illustrates that
even with limited prior information on historical time steps,
an adversary can effectively perform a model inversion attack.

3) Impact of prior information: All experiments thus far
assume that the adversary has access to the true marginal
probabilities of the sensitive variable. However, this is unlikely
to be known by a typical adversary. In reality, an adversary
can get access to the most probable value(s) of the sensitive
variable but not know exact probabilities. We attempt to esti-
mate the marginal probabilities p in this manner by assigning
a high probability (e.g., 75%) to the most probable value and
equally distributing the remaining probability among the other
values. The adversary can also easily observe the output of
the target model for a period of time and predict p. Figure
2c demonstrates the impact of different p generation methods,
namely true, none, predict and estimate.

The results in Figure 2c confirm the importance of using
p during the attack; without p, the attack is less effective.
However, the attack is not sensitive to the precision of p.
The true method results in the highest attack effectiveness
across k whereas predicting or estimating p results in a 5-10%
degradation in attack efficacy. The difference between true,
predict and estimate methods grows as k increases. Naturally,
among these three, the effectiveness of the estimate method
grows the slowest as k increases, due to its highly skewed
probability estimates.

4) Impact of mobility spatial levels: Mobility spatial levels
(the spatial resolution) can differ based on the task definition.
Thus far, all experiments were evaluated at a building-level
scale. To understand the impact of a fine-grained spatial scale,
we run the attack at the scale of access points (APs). There
are 2956 APs in our data set.

The results in Figure 3a show that the attack leaks less
privacy at the AP scale when compared to building scale.
We hypothesize this is due to the large domain size of AP-
level models, which makes it difficult to reconstruct historical
patterns. Similar to building scale, there is more privacy
leakage as k grows. In future work, we would like to consider
ways to handle larger spatial scales.

5) Impact of degree of mobility: We also evaluate how
characteristics of mobility affect privacy leakage. The degree
of mobility varies for different users. Highly mobile users
visit many locations and less mobile users tend to visit fewer
locations during a given time period. For instance, socially
active users may physically move around more than their
counterparts. We evaluate how degree of mobility affects
attack accuracy in Figure 3b.

The degree of mobility has a weak effect on privacy leakage.
Since users tend to spend a majority of their time at a single
location [10], it is likely that the attack is less affected by
the degree of mobility at less visited locations. These results
are supported by a regression analysis; the correlation coeffi-
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Fig. 2: Results of evaluating the efficacy of the privacy attack under varying system configurations: (a) impact of varying attack
methods; (b) impact of varying adversarial knowledge; and (c) impact of nature of prior knowledge p.

cients are weak, 0.337 and 0.107 for building and AP level
respectively, with statistically significant p-values (p ≤ 0.05).

6) Impact of mobility predictability: We further evaluate the
impact of mobility predictability on attack accuracy. Highly
predictable users have highly correlated mobility patterns
across time and space. We employ the personalized model
accuracy as a proxy for mobility predictability. That is, higher
model accuracy implies higher predictability of mobility since
the model is expected to capture the correlations in the
mobility pattern of the user.

We show results in Figure 3c. Mobility predictability
strongly affects privacy leakage for building spatial level. This
is not surprising since the attack is based on inverting the
model itself; more accurate models more precisely capture mo-
bility patterns which can then be exploited by the attack. These
results are supported by numerical results from regression
analysis. There is a strong correlation coefficient of 0.804 with
a statistically significant p-value (p = 2.92e−2). However, we
note that the relationship is weak for AP spatial level with
a correlation coefficient of 0.078 and insignificant p-value of
0.031. We hypothesize that the distribution of time spent in
different APs can explain the variance in attack accuracies for
similar target model accuracies seen in Figure 3c.

Key Takeaways: The proposed time-based model inversion
attack is computationally efficient and effective at revealing
historical mobility patterns with 77.61% accuracy for top-3
estimates even with limited adversarial knowledge and low
precision prior p. While the privacy leakage is independent
of the mobility behavior of the user, there is a trade-off
between model efficacy (i.e. correlation in data) and privacy.
Furthermore, models of coarse-grained spatial scales leak more
privacy. These results demonstrate that context-aware person-
alized models can be easily exploited with limited information
for users with highly correlated mobility patterns.

V. PRIVACY PRESERVING ML FRAMEWORK FOR MOBILE
SERVICES

In this section, we present Pelican, a privacy preserving
framework for machine learning-based mobile services.

A. System Design

Pelican is a distributed framework for training and de-
ploying personalized ML models for mobile services in a
privacy preserving manner. Pelican’s architecture is designed
to safeguard private training data of individual users, such as
historical location trajectories, while learning a personalized
model. Pelican also incorporates privacy preserving enhance-
ments into the deep learning model itself to thwart model
inversion attacks. The framework leverages the device and
cloud tiers of distributed mobile services to achieve its goals.
Figure 4 depicts the design of Pelican.

Pelican comprises of the following key components:
1) Cloud-based Initial Training: The first step in designing

a privacy-preserving ML model for mobility is to train a
general model, MG, using training data from multiple users.
Since initial training of the model is compute intensive, this
component of our framework runs on cloud servers and
leverages specialized resources such as GPUs when available.
The initial training components invokes a deep learning library
on a cluster of cloud servers to train a general model. For
example, in case of next location prediction, we train a LSTM-
based deep learning model using time-series trajectories of
locations visited by 200 users over a duration of two months.

2) Device-based Personalization: Once a general ML
model has been trained in the cloud, the next phase person-
alizes this model for each user using transfer learning. The
personalization involves using a small amount of training data
for each new user to learn a distinct personalized model, MP .
Since the personal training data contains sensitive private in-
formation (e.g., location visits), the training for personalization
is executed on the local device rather than the cloud. Retaining
all private data on local user-owned devices enhances privacy.

To do so, the general model is downloaded from the cloud
to the device and transfer learning is performed on the device
using personal training data (e.g., location history of the user).
Transfer learning-based personalization can be conducted via
feature extraction or fine tuning (see Section III-A3) depending
on the nature of the data. If the personal training data is
sparse, feature extraction should be used to avoid overfitting.
Note that unlike training the general model which is compute
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Fig. 3: Results for two spatial scales with 150 unique buildings and 2956 unique APs: (a) impact of the privacy attack on
different spatial scales; (b) impact of degree of mobility on privacy; and (c) impact of mobility predictability on privacy.

intensive and is performed in the cloud, transfer learning is
much less compute intensive and can be performed on devices
that are resource constrained [3]. This phase also involves
adding privacy preserving enhancements to the LSTM model
(as discussed in Section V-B).

3) Model Deployment: Once the model has been person-
alized using transfer learning, it is ready for deployment in
the mobile service. Since mobile services can vary in their
characteristics, the model can be deployed in two ways.

The first approach is local on-device deployment where the
model executes on the device for making predictions. This
approach is suitable for mobile services that run largely on
devices (e.g., smartphone mobile apps with a lightweight cloud
component). Local deployment avoids network latency to the
cloud for AI inference and ensures that the model stays on the
user’s device minimizing the amount of information known by
the service provider and consequently enhancing privacy.

The second approach is to deploy the personalized model in
the cloud. This approach is suitable for cloud-based services
and enables the service to invoke the model in the cloud to
provide context-aware service to the user. In this case, even
though the model runs in the cloud, its privacy enhancements
prevent model inversion attacks (see Section V-B).

4) Model Updates: It is common for production services
to periodically re-train the ML model to update it with new
training data as it becomes available. In our case, as new
personal data becomes available, the transfer learning process
can be re-invoked to update the parameters of the personalized
model, after which it is redeployed for use by the service.

The framework also allows the general model to be updated
in the cloud periodically, but this requires re-running the
transfer learning process on the device to re-personalize the
model for each user. Due to the higher overheads of doing
so, updates to the general model are done infrequently while
updates to the personalized model can be done frequently.

B. Privacy Enhancements to Personalized Models

We now present our privacy enhancement to the LSTM
model during model personalization that is designed to thwart
inversion attacks. Our goal is to protect training data privacy

such that adversaries cannot reverse-engineer a black-box
personalized model to learn historical mobility patterns.

The proposed attack thrives on the adversary’s ability to
access the model’s output and confidence scores. The enhance-
ment aims to satisfy the following requirements:

1) The personalized model can be accessed by the service
provider in a black-box manner. This allows the service
provider to query the model.

2) The service provider can access model outputs to get
context-aware predictions. The service provider can also
access confidence scores to compute the top-k locations.

3) The service provider cannot determine historical mobility
patterns by reverse engineering the model.

The proposed enhancement is based on modification of
the confidence scores such that the attack space reduces
tremendously. Our approach introduces a new layer into the
LSTM model between the linear layer and softmax layer
that changes the distribution of the confidence scores without
compromising model accuracy. This layer takes as input the
raw probabilities from the linear layer. Before applying the
softmax function to normalize these raw probabilities, this
layer scales the probabilities by dividing them with a value
T . Note, this is similar to using temperature scaling, a single
parameter extension of Platt scaling [24], in deep learning.
Temperature is a hyperparameter often used to control the
randomness in the predictions (see Equation 1).

In our work, we use the notion of temperature as a pri-
vacy tuner to change the sensitivity to the different outputs
at inference time only. As the temperature tends to 0, the
confidence of the sample with the highest probability tends
to 1. Intuitively, this makes the attack more difficult because
the confidence scores will be highly insensitive (i.e., close
to 0 or 1). With sharper confidence values, the attack space
will reduce and adversaries will not be able to reconstruct
historical mobility patterns meaningfully. Note, since the order
of the confidence values do not change during scaling, the
model’s accuracy will remain unaffected as long as appropriate
precision is used in storing the confidence values.

The enhancement is designed as a user-centric mechanism;
we use this parameter as a value that can be determined by the
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user. The user can pick a small or large value depending on
how much privacy (i.e., insensitivity to the confidence scores)
they prefer. We assume the value of the privacy tuner is kept
private from the service provider.

C. System Evaluation

1) Prototype and Experimental Setup: To evaluate Peli-
can, we employ the same campus-scale WiFi dataset, next-
location prediction task and top-k measure as described in
Section IV-A. The system prototype is implemented in Python
and all deep learning models are built using PyTorch. The
general model in the cloud-based initial training follows
the architecture presented in Figure 1a and is implemented
using PyTorch’s nn.LSTM, nn.Dropout and nn.Linear
layers. The transfer learning-based feature extraction method
is implemented using PyTorch’s nn.Sequential container,
whereas the transfer learning-based fine tune method involved
re-training part of the general model. We assume that the
model is deployed in a location-aware application. For model
updates, we initialize the model parameters to that of the
trained personalized model and re-invoke the transfer learning
process with more data to update the model’s parameters. The
privacy enhancement is only employed during inference and
does not interfere with the training of the model.

The cloud-based initial training of the general model is
performed on a server with a NVIDIA Titan-X GPU with
64GB memory with the same setup as mentioned in Section
IV-A.

For device-based personalization, we compare four methods
on personal user data:

1) Reuse: reusing the general model without modifications
to do personalized predictions (baseline)

2) LSTM: training a 1-layer LSTM with dropout1

3) TL Feature Extract (FE): employing transfer learning-
based feature extraction on the general model

4) TL Fine Tune (FT): employing transfer learning-based
fine tuning on the general model

As before, we train individual personalized models for 100
unique and distinct users on a low-end CentOS Linux 7
machine with a 2.20GHz Intel CPU and 8GB RAM. The

1Since there is limited personal user training data, a single layer LSTM
model with dropout is a sufficient baseline.

TABLE III: Aggregate train and test accuracy (%) of dif-
ferent personalization methods on 100 individual users. Re-
sults demonstrate that transfer learning-based personalization
methods employed in Pelican increase test accuracy where the
feature extraction (FE) method is least prone to overfitting.

Location Method Train (%) Test (%)
top-1 top-2 top-3

Building

Reuse 52.16 53.02 60.09 63.68
LSTM 70.26 60.00 72.03 78.62
TL FE 67.81 61.19 72.62 79.05
TL FT 76.47 60.70 73.16 79.61

AP

Reuse 27.02 28.01 32.18 34.42
LSTM 51.39 44.35 57.60 63.36
TL FE 60.56 48.45 61.94 66.52
TL FT 68.38 47.91 62.26 67.36

computing power mimics a resource-constrained mobile de-
vice. All personalized models perform grid search using 3-fold
time-series cross validation for hyperparameter selection.

2) Overhead of Model Personalization: We compare the
overheads of the cloud-based initial training and the device-
based personalization phases in Pelican with the goal that the
latter is much less compute intensive than the former since
it runs on mobile devices. Our results demonstrate general
model training uses approximately 43,000 billion CPU cycles
and takes 4.55 hours, whereas personalized modeling uses
on average 15 and 14 billion CPU cycles and takes 6.62
and 5.92 seconds for TL FE and TL FT personalization
methods respectively (aggregated for 100 users). These results
show that while the general model training requires cloud
servers, personalization can be done on low-end mobile or
edge devices.

3) Efficacy of Device-based Personalization: Table III con-
tains the aggregate results of the personalization methods at
building and AP-level locations for 100 distinct users. The
reuse method performs the worst in both cases. From the
results, we can conclude that the TL FE method performs
the best by almost doubling the baseline accuracy for AP
predictions and being less prone to overfitting to the personal
data compared to the LSTM and TL FT methods. We define
overfitting as the discrepancy between train and test accuracy.

The personalized models in Table III are trained with 8
weeks of personal data (note this is equivalent doing device-
based personalization followed by iterative model updates in
Pelican). We further examine the efficacy of Pelican with
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Fig. 5: Results of the proposed privacy enhancement: (a) impact of the privacy enhancement on personalized models; (b)
impact of varying the privacy parameter; and (c) impact of the privacy enhancement on spatial levels.

TABLE IV: Aggregate train and test accuracy (%) of 100
individual users with different training data sizes. Results
demonstrate that transfer learning-based personalization meth-
ods employed in Pelican are efficient even with less training
data whereas the LSTM method is highly prone to overfitting.

Train Data Method Train (%) Test (%)
Length top-1 top-2 top-3

2 weeks
LSTM 86.76 46.92 59.67 67.44
TL FE 67.72 49.87 61.45 67.96
TL FT 72.99 51.29 61.71 68.97

4 weeks
LSTM 91.63 52.16 65.57 72.73
TL FE 68.90 56.64 68.16 74.97
TL FT 78.41 56.83 69.85 76.34

6 weeks
LSTM 91.79 54.12 67.34 74.13
TL FE 69.03 58.34 70.11 76.72
TL FT 77.73 58.90 71.90 78.37

8 weeks
LSTM 70.26 60.00 72.03 78.62
TL FE 67.81 61.19 72.62 79.05
TL FT 76.47 60.70 73.16 79.61

differing training data sizes. As mentioned earlier, one of
the advantages of the transfer learning-based approaches em-
ployed in Pelican is the ability to use small amounts of training
data for learning personalized models. The results of training
with differing training data sizes are shown in Table IV for
building-level locations. Both the transfer learning personaliza-
tion approaches perform similarly with only a slight degrade
in performance with smaller training data sizes. However, the
TL FT and LSTM methods are prone to overfitting with a
higher impact on the LSTM performance.

These results also reinforce the complexity of mobility
applications [10], [11]. Predicting mobility is difficult and
varies by the range of user mobility and correlation between
mobility patterns.

4) Privacy Leakage: We perform an evaluation on the
reduction in privacy leakage by applying the enhancements
presented in Section V-B during attacks for the same set
of users in Section IV-B. Without loss of generality, all
experiments are performed on adversary A1 using the TL FE
personalization method and true p unless otherwise stated. All
reported reduction in leakages are aggregated over 100 users.

Impact of privacy layer on personalized models. Results in
Figure 5a show the impact of the attack for transfer learning-

based personalization methods. The proposed solution is able
to reduce privacy leakage by 46-54% for transfer learning
methods. The reduction in privacy leakage is higher for
transfer learning-based fine tuning and decreases as k increases
in both types of models. Since the confidence of the most
probable location tends to 1 with the privacy enhancement,
the attack becomes solely dependent on the prior information
for k = 1. Thus, the reduction in privacy leakage is higher
for k = 1 before decreasing slightly for k = 2 and increasing
again.

Impact of varying the privacy parameter. Results in Fig-
ure 5b demonstrate the impact of changing the temperature
(privacy parameter) during inference. As the temperature de-
creases, the privacy leakage decreases eventually flattening
out. Note, this will differ for each user and spatial scales.

Impact of spatial level. Figure 5c contains the results of
applying the proposed defense mechanism on different spatial
levels. As can be noted, the reduction in privacy leakage is
higher for low-level spatial scales than high-level spatial scales
for k > 1. For the top-1 prediction, the reduction in privacy
leakage is bounded at 0.

Key Takeaways: Pelican is able to thwart privacy attacks in
personalized models with up to 75.41% reduction in leakage
while achieving state-of-the-art performance. The privacy en-
hancement offers a user-centric design to allow users to control
the degree of privacy and lowers the ability of the attack to the
extent that it is incomprehensible (< 40% attack efficacy for
top-5 predictions) without compromising on model accuracy.

VI. RELATED WORK

Prior defenses against model inversion attacks have been
limited and problem specific [20], [27], [28], [37]. Zhao et al.
presented a general attribute obfuscation framework using ad-
versarial representation learning to protect sensitive attributes
[28]. Yang et al. recently proposed an autoencoder-based pre-
diction purification system to defend against model inversion
attacks by minimizing the dispersion in output confidence
scores [37]. The purifier is trained by minimizing the inversion
attack accuracy and does not coincide with model training.
Other defenses that have been proposed to prevent membership



TABLE V: Prior work relevant to defending against attribute-inference attacks.

Phase Category Edge Friendly Model I/O Accessible Personalized Protection

Data Processing
Artificial data [25], [26] - X X
Data obfuscation [27]–[29] X - X
Light-weight encryption [30] X - X

Training
Distributed training [20], [31], [32] X - X
Secure enclaves [33], [34] - X X
Differential privacy perturbation [35] X X -

Inference Output perturbation [17], [36], [37] - X X
Pelican (this paper) X X X

inference attacks may be relevant to model inversion attacks
as well. We summarize these in Table V.

Existing defense methods that require changes to the data,
such as data obfuscation [28], [29] or encryption [30], do
not apply in this application since the output needs to be
accessible to the honest-but-curious service provider. Ad-
ditionally, existing differential privacy-based solutions only
apply to multi-user models. In this work, we focus on post-
hoc privacy preserving methods that are independent of the
trained personalized models. Prior work in this domain [36],
[37] induce additional complexity of training noise induction
models and are less feasible in applications where the model
is on a resource-constrained mobile device.

VII. CONCLUSION

In this work, we examined the privacy implications of per-
sonalized models in distributed mobile services by proposing
time-series based model inversion attacks. Our results demon-
strated that such attacks can be used to recover historical
mobility patterns that may be considered private by the user.
We proposed a distributed framework, Pelican, that learns and
deploys transfer learning-based personalized ML models in a
privacy preserving manner on resource-constrained mobile de-
vices. In Pelican, we introduced a novel privacy enhancement
to thwart model inversion attacks. Our evaluation of Pelican
using real world traces for location-aware mobile services
showed that Pelican reduces privacy leakage substantially.
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