
Minimizing Electricity Costs by Sharing Energy in Sustainable
Microgrids

Zhichuan Huang
University of Maryland, Baltimore

County

Ting Zhu
University of Maryland, Baltimore

County

Yu Gu
IBM Research-Austin

David Irwin
University of Massachusetts

Amherst

Aditya Mishra
University of Massachusetts

Amherst

Prashant Shenoy
University of Massachusetts

Amherst

Abstract
Buildings account for over 75% of the electricity consump-

tion in the United States. To reduce electricity usage and peak
demand, many utilities are introducing market-based time-of-use
(TOU) pricing models. In parallel, government programs that in-
crease the fraction of renewable energy are incentivizing residen-
tial consumers to adopt on-site renewables and energy storage.
Connecting on-site renewables and energy storage between homes
forms a sustainable microgrid capable of generating, storing, and
sharing electricity to balance local generation and consumption in
residential areas. In this paper, we investigate how to minimize
the costs of electricity from a utility for a microgrid under market-
based TOU pricing models. In particular, we (i) present a system
architecture for an energy-sharing microgrid; and (ii) develop op-
timal energy-sharing algorithms for homes within the microgrid.
We conduct an extensive evaluation under two typical TOU pricing
models that use data from more than 40 homes. Our results indicate
that our system reduces the costs of Alternating Current (AC) elec-
tricity by 20%, even for homes with similar energy usage patterns.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Systems—

Command and control

General Terms
Design, Measurement, Management
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1 Introduction
Buildings account for more than 75% of the United States’ elec-

tricity use [1], with the residential sector accounting for 54% of this
total. To reduce buildings’ energy consumption, researchers in the
sensor networks community have proposed multiple approaches.
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For example, a high-fidelity wireless building energy auditing net-
work has been built to analyze the energy consumption of a large
building to identify energy waste. The Smart Thermostat [17] has
been developed using occupancy sensors to save energy consump-
tion from heating and cooling. In the Human-Building-Computer
Interaction system [11], mobile sensors are deployed to interact
with users to optimize energy efficiency. In [6], sensors are used
to automatically turn off unused appliances (e.g., HVAC) to elimi-
nate energy waste.

To further reduce the energy demand from the traditional power
grid, homes are beginning to incorporate renewable energy sources.
Because electric conversion factors and transmission and distribu-
tion losses in 2010 were as high as 32.3% [1], researchers have
proposed distributed generation (DG) by deploying many small
on-site energy sources in individual buildings and homes. How-
ever, in practice, DG has drawbacks that have thus far prevented its
widespread adoption. For instance, DG uses solar panels that may
harvest more energy than a home can consume in the middle of the
day when no one is at home. As a result, today’s DG deployments
rely heavily on net metering, where consumers sell the unused en-
ergy they produce back to the utility company to offset their costs
relative to grid energy. DG is a much less attractive option where
net metering is not available. Even where net metering is avail-
able, states typically place caps on the total number of participating
customers and/or the total amount of energy contributed per cus-
tomer [2]. One reason for the strict laws limiting net metering’s
contribution is that injecting significant quantities of intermittent
power from renewables into the grid can result in grid instabilities,
which makes it difficult for utility companies to balance supply and
demand.

On the other hand, more widespread adoption of DG is critical
to meet existing goals for increasing the fraction of environmen-
tally friendly renewable energy sources. For example, the Renew-
ables Portfolio Standard targets 25% of electricity generation from
intermittent renewables [4], while California’s Executive Order S-
21-09 calls for 33% of generation from renewables by 2020 [3].
Given current laws, if DG becomes more widespread, residential
consumers will have to look beyond net metering to reduce costs
and balance onsite energy production and consumption. We envi-
sion consumers’ using a combination of on-site renewables, modest
on-site energy storage units, and the electric grid to satisfy energy
requirements. These on-site renewables and energy storage units
are connected and form a sustainable microgrid. In parallel, we en-
vision the adoption of market-based time-of-use (TOU) electricity
pricing for residential consumers, which provides an opportunity to
recoup the loss of net metering revenue, while also introducing new
financial incentives for DG where net metering is not available.
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Figure 1: Architecture of Microgrids: Interconnected homes with
renewable energy supply (e.g., solar panels)

In this work, we investigate how to minimize electricity costs
(i.e., Alternating Current (AC) costs)1 in a microgrid under differ-
ent market-based TOU pricing models. The focus of our work is to
study the theoretical, technical and economic feasibility of sustain-
able microgrids. Specifically, we build an energy-sharing microgrid
system, which uses three types of energy-sensing data: (i) energy
harvesting rate of solar panels; (ii) energy consumption rate of in-
dividual buildings; and (iii) battery charging and discharging rate.
Based on the sensing data and market-based TOU pricing, our sys-
tem decides how and when to share energy so that AC energy costs
in the whole microgrid are minimized. The main contributions of
this paper are summarized as follows:
• We design a general microgrid energy-sharing system architec-
ture that can accurately calculate the electricity cost of individual
houses under different energy consumption patterns and TOU pric-
ing models.
• To minimize the AC energy cost in the whole microgrid, we de-
velop (i) a spatial energy-sharing algorithm that maximizes energy
shared among homes; (ii) a temporal energy-sharing algorithm that
optimally stores energy in local batteries for future usage; and (iii)
an AC allocation optimization algorithm that minimizes redundant
AC transmission.
• To the best of our knowledge, this is the first in-depth work to
investigate the feasibility of minimizing AC energy costs on a com-
munity level (i.e., microgrid). Evaluation results indicate that our
system reduces (i) costs from AC lines by 20% under different TOU
price models and (ii) electricity costs even in homes with similar
energy usage patterns.

The paper is organized as follows. Overview of the system ar-
chitecture, detailed system design, and evaluation are provided in
§2, §3, and §4, respectively; related work and cost-benefit analysis
are discussed in §5 and §6; finally, we conclude our paper in §7.

2 Problem Formulation
To minimize the AC energy costs of the microgrid, we propose

the system architecture for energy-sharing and describe the system
components and interactions between these components. Then we
analyze the model of energy-sharing to formulate the problem.

2.1 System Overview
To ensure compatibility with the traditional power grid, we

adopt the microgrid architecture (shown in Figure 1), which is simi-
lar to the one used in a traditional power grid. Just as the traditional

1We use the term “electricity costs”, or “AC costs”, to refer to the costs
of energy consumed from the utility company.

grid has a distribution network, our microgrid employs a similar
but separate distribution network across the community of homes
comprising the microgrid. Within this network, there is a power
meter and a switch between every home and the central controller.
The power meter is used to measure energy harvesting and con-
sumption, while the switch is used to control energy sharing with
other homes. Batteries are also deployed in each home to supply
energy when there is not enough energy sharing. A centralized de-
sign is chosen to optimize AC energy costs of the microgrid and
save most computation in homes. The central controller collects
energy-related data from homes, arranges energy transmissions and
determines the price of sharing energy among homes. Presently,
our microgrid distribution network assumes a DC-based network
for reasons of convenience and efficiency (e.g., to reduce conver-
sion losses). Our system architecture and design are also compati-
ble with an AC distribution network by considering the energy con-
version loss from AC to DC and vice versa. For the sake of clarity,
in the rest of the paper, we use DC distribution network to share re-
newable energy among homes and use traditional AC power line for
distributing energy from the utility company to homes. The design
goal is to minimize the cost from the AC line by optimally sharing
renewable energy under different pricing models.

To realize optimal energy sharing, we propose the system de-
sign as shown in Figure 2, which includes two components: home
controllers and a central controller. The home controllers have two
planes: an energy sensing plane and an execution plane. The energy
sensing plane senses the home’s real-time energy data and makes a
prediction, then forwards those data to the central controller, which
includes (i) current and future energy consumption data, (ii) current
and predicted energy harvesting data, and (iii) current amount of en-
ergy in the battery. For prediction of energy harvesting, we focus on
solar energy in our paper as it is the predominant renewable energy
source in residential DG deployment. To predict energy harvest-
ing, a weather forecast based prediction model similar to Sharma’s
approach [26] is adopted. At any time t, based on the sky con-
dition percentage C(t) released by the National Weather Service
(NWS), we predict the solar panel’s energy harvesting rate. For
prediction of home’s consumption, we use historical consumption
data to predict future energy consumption based on an Exponen-
tially Weighted Moving Average (EWMA). The EWMA exploits
the diurnal nature of a home’s consumption, while it also adapts to
seasonal variations. Note that more sophisticated models that con-
sider changing weekend activity patterns and weather conditions
can be used to improve our work. However, this is not our main
contribution and from evaluation results, the following prediction
models can already provide enough accuracy for our system.

In addition, homes convey their battery and solar panel capaci-
ties and cost data when they join the system. The above data will
be used by the central controller for energy allocation and price de-
cision purposes. After receiving energy-sharing instruction from
central controller, the home controller’s execution plane toggles the
power meter and a switch to transmit a certain amount of energy.
The switch controls energy flow from the following options: (i) use
energy from AC line to power appliances; (ii) charge battery from
AC line; (iii) charge battery from DC line; (iv) discharge battery to
DC line; and (v) discharge battery to power appliances.

The central controller contains only the energy-sharing plane,
which includes the spatial energy sharing, temporal energy sharing
and AC allocation.

The energy-sharing plane processes data needed during energy
sharing. It has three major modules: (i) the spatial energy-sharing
module that uses the individual home’s energy data and sharing ef-
ficiency to find energy-sharing home pairs (detailed in §3.1); (ii) the
temporal energy-sharing module that yields the optimal solution on
minimizing the AC energy costs of the microgrid based on TOU
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Figure 2: Overview of system architecture

prices and energy-sharing pairs of spatial sharing module (detailed
in §3.2); and iii) the AC allocation module that optimally calculates
the amount of energy each home should get from the AC line based
on data from both the spatial energy sharing and temporal energy
sharing module (detailed in §3.3).

In summary, our system works as follows: (i) home controllers
gather consumption, harvesting and battery information and send
it to central controller; (ii) central controller then decides energy-
sharing sequences and sharing price; (iii) homes discharge battery
to share energy to others based on central controller’s instruction;
and (iv) if a home still needs energy after sharing, it gets energy
from AC line.

2.2 Problem Definition
With the proposed system for energy sharing, we model the

energy-sharing process and formulate the problem. Because en-
ergy sharing takes time to transmit energy from one home to an-
other home, in our system, time is divided into time slots, and the
size of a slot is referred to as window size w. Then we can do
energy sharing at window n based on energy consumption and har-
vesting at window n+1 to reduce electricity cost. Let 4Ei(nw) =
EHi(nw)− ECi(nw) be the difference between harvested energy
EHi(nw) and consumed energy ECi(nw) for home i in the time in-
terval [nw,(n+ 1)w] and n ∈ [1,N]. To simplify the notation, we
will use n to represent nw in rest of the paper. Let Ei→ j(n) be the
amount of energy transmitted from home i to j in window n; and η ji
be the transmission efficiency between homes i and j. The amount
of surplus energy ESi(n) home i can get during energy sharing is as
follows:

ESi(n) = ∑
j
(E j→i(n) ·η ji−Ei→ j(n)) (1)

∑
j

E j→i(n) · η ji is the amount of energy home i receives from

other homes and ∑
j

Ei→ j(n) is the amount of energy that home i pro-

vides to other homes. Let Bi(n) and Ci be the battery level (amount
of energy in battery) of window n and battery capacity of home i re-
spectively. Table 1 summarizes the definition of parameters. Based
on information of window n, we can calculate Bi(n+1) as follows:

Bi(n+1) =


0 Bi(n)+4Bi(n)< 0
Ci Bi(n)+4Bi(n)>Ci

Bi(n)+4Bi(n) otherwise
(2)

Notation Definition
w Window size
Bi(n) Amount of energy in battery of home i in window n
Ci Battery’s capacity of home i
rc

i Battery charging rate of home i
rd

i Battery discharging rate of home i
ηi j Energy transmission efficiency between i to j
C(t) Sky condition percentage at time t
ECi(n) Consumed energy of home i in window n
EHi(n) Harvested energy of home i in window n
ÊCi(n) Predicted consumed energy of home i in window n
ÊH i(n) Predicted harvested energy of home i in window n
YAC(n) Price of AC line based on TOU in window n
4Ei(n) EHi(n)−ECi(n)
4Bi(n) Amount of energy gap of home i in window n
Ei→ j(n) Energy transferred from i to j in window n
EAi(n) Energy from AC line of home i in window n
ESi(n) Energy surplus by sharing of home i in window n

Table 1: Definition of notations

where 4Bi(n) represents the total amount of energy gap at home i
in window n, which includes the difference between harvested and
consumed energy, energy obtained from the AC line and energy
transmission between home i and other homes in the microgrid.
4Bi(n) can be calculated as follows:

4Bi(n) =4Ei(n)+EAi(n)+ESi(n) (3)

where 4Ei(n) is the difference between harvested and consumed
energy at home i in window n; EAi(n) and ESi(n) is the amount
of energy home i gets from the AC line and energy sharing in win-
dow n respectively; Based on the definition above, we can have the
following lemma:

Lemma 2.1 Home i does not have enough energy to consume if
Bi(n)+4Bi(n)< 0.

PROOF. The equation in lemma can be rewritten by using Equation
3 to separate the energy consumption and the energy sources as
follows:

ECi(n)> Bi(n)+EHi(n)+EAi(n)+ESi(n) (4)

In Equation 4, the energy consumption is larger than the energy
obtained from all sources, which will cause power shortages. Thus
that situation should always be avoided.

Similarly, we have the following lemma:

Lemma 2.2 Home i wastes energy if Bi(n)+4Bi(n)>Ci.

Lemma 2.2 happens when the battery in home i cannot store
extra energy due to its capacity limit. This situation should be
avoided, but may not be eliminated. Consider the case when in the
middle of a day, the harvesting overwhelms the consumption, the
battery may be charged to full capacity and extra harvested energy
would be wasted.

Let YAC(n) be the price of the AC line based on TOU in time
interval [n,(n+1)]. Given4Ei(n) and Bi(n), we can formulate our
design goal of minimizing the microgrid electricity cost from the
AC line as follows:



min ∑
n

(
YAC(n) ·∑

i
EAi(n)

)
s.t. 0≤ Bi(1)≤Ci (a)

EAi(n)≥ 0 (b)

∑
j

Ei→ j(n)−4Ei(n)−EAi(n)≤ rd
i ·w (c)

∑
i

Ei→ j(n) ·ηi j +4E j(n)+EA j(n)≤ rc
j ·w (d)

Bi(n)+4Bi(n)≥ 0 (e)

Constraint (a) ensures the initial battery energy level will always
be no less than zero and not greater than the battery capacity. Con-
straint (b) means a home can only get energy from AC line, but not
sell energy to utility company. Constraints (c) and (d) mean that
amount of energy can be transmitted from i to j is determined by
discharging rate of i, charging rate of j and window size. Constraint
(e) ensures every home can have enough energy during window n.
4Ei(n) and Bi(n) are determined by users’ power consumption. To
minimize the total AC energy cost, we can adjust ESi(n) by choos-
ing proper energy-sharing home pairs (i.e., home i shares Ei→ j(n)
amount of energy with j) and allocate the amount of energy EAi(n)
each home gets from the AC line over time. Thus we can rewrite
Constraint (e) by plugging in Equation (3) as follows:

ESi(n)+EAi(n)≥−Bi(n)−4Ei(n) (5)

The problem is a linear programming problem. However, for
constraints (b) to (e), it needs to be valid for all windows n, thus to-
tal number of constraints is huge when number of homes and total
time increases. Further, the objective function value for different
windows are correlated and cannot be decomposed. Thus in our pa-
per, we propose a spatial-temporal energy sharing design and prove
that our solution is a local optimal solution.

3 System Design
In this section, we describe the detailed system design, mainly

focusing on the central controller part in §3.1, §3.2 and §3.3.

3.1 Spatial Energy Sharing
The first part of central controller spatial energy sharing is in-

troduced in this section. The goal of spatial energy sharing is to
minimize AC transmission in a single window. Because in a single
window, EAi(n) is needed unless home i cannot get enough energy
from energy sharing, we have

EAi(n) =4Bi(n)−ESi(n)−4Ei(n) (6)

In window n, Bi(n) and 4Ei(n) are fixed values, the optimization
problem can be rewritten as follows:

max ∑
i

ESi(n)

s.t. ∑
j

Ei→ j(n)−4Ei(n)−EAi(n)≤ rd
i ·w (a)

∑
i

Ei→ j(n) ·ηi j +4E j(n)+EA j(n)≤ rc
j ·w (b)

Bi(n)+4Bi(n)≥ 0 (c)
ESi(n)≤4Bi(n)−4Ei(n) (d)

∑
i

ESi(n) is total amount of energy sharing in window n. To

maximize ∑
i

ESi(n), we need to address the following two chal-

lenges:
• Transmission Conflict. Take Figure 3 as an example in which
homes H1 and H3 need to provide energy to H2 and H4. Because
all the homes are connected to same distribution network, if we do
the energy sharing simultaneously, we cannot control the amount of
energy from H1 to H2. Then we cannot know what amount of en-
ergy is transmitted from home i to j and cannot calculate how much
j should pay to i for energy it receives. Thus, in our system, only
one to multiple and multiple to one energy transmission is allowed
at a time. If more transmissions are needed in microgrid, multiple
one-to-multiple or multiple-to-one transmissions can be executed
one by one.
• Transmission Efficiency. Because distances between homes are
different, energy transmission losses between homes are also dif-
ferent. Besides, energy sharing between homes may be discharged
from battery and charged to battery, which introduces battery con-
version loss. Thus we need to consider different transmission ef-
ficiency between homes when designing the energy sharing algo-
rithm. For example, transmission efficiency between H1, H3 and
H2, H4 given in Figure 3 (a) includes both transmission loss and
battery conversion loss.

To address the above challenges, we introduce maximum trans-
mission speed of homes. We divide homes into an energy supplier
set S and a demander set D according to whether the energy dif-
ference is positive or negative. Then we consider maximum trans-
mission speed for two types of energy-sharing home pairs: (i) one
demander with multiple suppliers in which the transmission speed
is limited only by the demander’s battery charging rate when there
are enough suppliers; and (ii) one supplier with multiple deman-
ders in which the transmission speed is determined by not only the
supplier’s discharging rate, but also by transmission loss between
demanders and the supplier.

Assuming home i shares energy with home j, the discharging
rate for i is rd

i , the charging rate for j is rc
j , and the transmission

efficiency is ηi j, then the energy transmission rate ri j during energy
sharing is as follows:

ri j = min(rd
i ·ηi j,rc

j) (7)

If multiple suppliers share energy to home j, the maximum
transmission speed is determined by minimum value of its charg-
ing rate and total energy transmission rate available from suppliers.

r j = min(∑
k

rk j,r
c
j) (8)

If home i shares energy with multiple demanders, the maximum
transmission speed is determined by discharging rate and transmis-
sion efficiency between i and demanders. To maximize transmis-
sion speed, we select demander with highest transmission efficiency
until we reach discharging rate of i. Assume the demander set for
maximum transmission speed is M = {m1,m2, ...}, ηimi > ηim j if
i < j. Then we have maximum transmission speed of i as follows:

ri = ∑
k∈M

rik, s.t. ∑
k∈M

rik/ηik ≤ rd
i (9)

An example of spatial energy sharing is shown in Figure 3.
Homes are divided into an energy supplier set S and a demander set
D according to whether the energy difference is positive or negative.
Homes H2 and H4 are in the demander set. Figures 3(a) and 3(b)
show two steps of energy sharing, respectively. Figure 3(a) shows
charging rate of demanders, discharging rate of suppliers and trans-
mission efficiency between demanders and suppliers. For example,
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Figure 3: An example of energy sharing between demander set D
{H1, H3} and supplier set D {H2, H4}.

discharging rate of supplier H1 rd
1 is 3kW, charging rate of deman-

der H2 rc
2 is 2kW, and transmission efficiency from H1 to H2 is 0.5.

Then maximum transmission speed for four homes is calculated and
energy-sharing order is determined. Because H2 has highest energy
intake speed, H2 will be the first home to do the sharing. The shar-
ing process follows the sharing order of Figure 3(a). Figure 3(b)
shows energy difference of four homes and energy-sharing results.

Then we propose our spatial energy-sharing algorithm based on
maximum transmission speed to maximize total energy transmis-
sion in a single window. The detail of algorithm is described as
follows: The maximum transmission speed for every home is cal-
culated at first. For demander i it is rc

i , and for suppliers it is ob-
tained from 9 by iterating over a list of supplier or demanders sorted
by transmission efficiency ηi j . We then fetch home i with highest
transmission speed for energy sharing (Line 2). If i ∈ S, we start
energy sharing with home j ∈ D, which maximizes transmission
efficiency ηi j (Lines 3-5). Otherwise, we start energy sharing with
home j ∈ S, which maximizes transmission efficiency η ji (Lines 6-
9). Then energy difference of home i and j will be updated (Line
10). The energy-sharing process will continue until all homes finish
energy sharing (Line 11).

The time complexity for Algorithm 1 is as follows: To calculate
the maximum transmission rate, we need O(n2) where n is the num-
ber of homes. Then it costs O(nlgn) to sort according transmission
rate. For the energy-sharing process, the time complexity is at most
O(n2). Note that the sorting of ηi j can be done once at a cost of
O(n2), and we will reuse the result in the following algorithms. So
all altogether, the time complexity is about O(n2).
Remark. Here we give a brief description to demonstrate that Al-
gorithm 1 maximizes amount of energy sharing in a single win-
dow. Because we allow only one-to-multiple and multiple-to-one
energy transmission, the energy transmission sequences will be like
K = {s1,d2, ...,sk}, si and d j are the only supplier or demander in
transmission. Suppose there is a optimal sequence K

′ 6= K with

Algorithm 1 Spatial Energy Share Algorithm

Input: Supplier set S and demander set D with homes’ rc
i , rd

i ,
Bi(n) and4Ei(n); Transmission efficiency ηi j.
Output: Energy sharing results Ei→ j(n).

1: Calculate the maximum transmission rate for every home;
2: Fetch home i from S

⋃
D that has the maximum ri;

3: if i ∈ S then
4: Fetch home j that ηi = max

j∈D
(ηi j);

5: Ei→ j(n) = min(|4E j(n) + Bi(n)|, |(4Ei(n) + Bi(n)) ·
ηi j|,rc

j ·w);
6: else
7: Fetch home j that ηi = max

j∈D
(η ji);

8: E j→i(n) = min(|4Ei(n) + Bi(n)|, |(4E j(n) + Bi(n)) ·
ηi j|,rc

i ·w);
9: end if

10: Update4Ei(n),4E j(n);
11: Go to Line 2 if4Ei(n) == 0, otherwise go to Line 3.

maximum amount of energy sharing. According to Algorithm 1
sk has lowest maximum transmission speed, there must be a home
si ∈ K

′
, si /∈ K with higher transmission speed. Then Algorithm 1

does not select si but sk, which contradicts that it always selects the
home with highest transmission speed.

3.2 Temporal Energy Sharing
With the spatial energy-sharing results, TOU model and battery

capacity data, we introduce the temporal energy sharing algorithm
in this section. The temporal energy sharing algorithm gathers the
energy difference data and makes its charging decision in the cur-
rent window to store energy for future higher price window usage.
Based on the spatial energy-sharing results, for home i and window
n, we can easily calculate the energy difference of i after energy
sharing as4E

′
i (n):

4E
′
i (n) = Bi(n)+4Ei(n)+ESi(n) (10)

If 4E
′
i (n) < 0, it means home i still does not have enough en-

ergy for its usage after energy sharing, then it has to obtain energy
from AC line. Then the goal of temporal energy sharing can be
formulated as follows:

min ∑
n

(
YAC(n) ·EAi(n)

)
s.t. 0≤ Bi(1)≤Ci (a)

Bi(n)+4E
′
i (n)+EAi(n)≥ 0 (b)

EAi(n)≥ 0 (c)

To minimize the cost of AC energy over time, the key idea is
to charge battery at windows with lower AC price and discharge
battery at windows at higher AC price. To anticipate the exact
amount of energy needed at window n, it is important to know how
many windows to look forward. Therefore, we propose an approach
called Look Forward Window. The next window that has a lower
TOU price is the end of the look forward window, as getting energy
at that time can reduce costs more than at the current window.

An example of the look forward window is shown in Figure 4.
First, it looks forward to the windows in the future until it finds a
window whose price of the AC line is lower than the current price
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Figure 4: An example of using a look forward window to shift an
energy request to a low price period to reduce cost: Energy needed
from window 1-5 is shifted to window 0.

(window 6) in (a). Then it aggregates energy differences of homes
before that window in (b)-(c). Finally, it shifts all the energy needed
from the AC line in the future to the current window. Aggregate
energy AGGi(k) can be calculated by summing up4E

′
i (n):

AGGi(k) = ∑
n≤l≤k

4E
′
i (l) (11)

With AGGi(k), we then find the maximum energy needed be-
tween current window and look forward window, which is window
5 in Figure 4 (c). Note that AGGi(k) are normally negative value
because homes normally need energy. In Figure 4 (c), we show
the absolute value of AGGi(k), which is amount of energy needed.
Then we have maximum energy we need to charge for future at
window n:

E−max(i) =− max
k∈[n,m]

(−AGGi(k)) (12)

However, we also need to consider two other factors: limited
battery capacity and peak energy demands. If the energy obtained
from the AC line after shift exceeds the battery capacity, part of the
energy will be wasted. Thus, our algorithm will allow the home to
obtain energy only from the AC line to fill the battery. Then the
maximum energy we can charge to avoid energy waste at window
n is as follows:

E+
max(i) =Ci− max

l∈[n,k]
(AGGi(l)) (13)

In a TOU model that same price spans over multiple windows;
if the system requests all the energy it needs in the first window,
there may be a peak energy demand from the AC line. To address
this issue, our algorithm will distribute the energy requests evenly
among these same price windows, so the energy peaks from the AC
line can be smoothed out, which results in minimum impact to the
grid.

The detail of the temporal energy-sharing algorithm is shown in
Algorithm 2. First, it finds the look forward window m according to
the TOU price (Lines 1-2). Then it computes the aggregated energy
difference for windows between n and m (Lines 3-5). The maxi-
mum energy needed E−max(i) is given (Line 6) and the maximum
energy that the homes can charge due to battery capacity is calcu-
lated in window n (Line 7). Then it finds the number of windows
with same price of AC after window n (Line 8). At last, energy
from AC line EAi(n) for home i is calculated by minimum value
specified by constraint (b) in the problem formulation (Lines 9-10).

Algorithm 2 Temporal Energy Sharing Algorithm
Input: Spatial energy share results Ei→ j(t) and 4Ei(t),
t ∈ [n,n+24]; battery level Bi(n); TOU AC price.
Output: Energy from AC line EAi(n).

1: for each home i do
2: Find first window m(m > n) that YAC(m)< YAC(n)
3: for every window t from current window n to m do
4: Get the AGGi(t)
5: end for
6: Find window k that E−max(i) =− max

k∈[n,m]
(−AGGi(k));

7: E+
max(i) =Ci− max

l∈[n,k]
(AGGi(l));

8: Find the number of windows num that have same price with
current window

9: EAi(n) = min(E+
max(i)/num, |E−max(i)|/num,rc

i ·w).
10: end for
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Figure 5: An example of optimization of AC allocation

The time complexity for Algorithm 2 is quite straight forward.
Given the fact that we look forward at most 24 hours, the loop body
in Lines 2-9 can be regarded as a constant time. Then multiplying
the number n of homes, we get the total time complexity as O(n).

Theorem 3.1 Algorithm 2 minimizes cost of AC energy over time
for a single home.

Remark. For a single home, based on Equation (10) and (11),
Algorithm 2 enables homes to charge as much energy as possible
to battery for future windows. Look forward window ensures that
homes only charge battery at low AC price for energy usage at win-
dows with higher AC price. Thus Algorithm 2 minimizes cost of
AC energy over time for a single home.

3.3 Optimization of AC Allocation
In §3.2, we determined an initial amount of energy needed from

the AC line. The reason we need to do optimization of energy from
the AC line is that spatial sharing and temporal sharing are exe-
cuted separately, which may cause some unnecessary energy shar-
ing among homes and energy requests from the AC line. In this
way, we can reduce the microgrid level energy costs from the AC
line.An example is shown in Figure 5. Assume the transmission ef-
ficiency between home i and j is 0.5. At the beginning, both i and j
have no energy in the battery (shown in green box); at window 1 and
2, the energy difference (shown in yellow box) between harvested
and consumed is calculated for energy sharing (shown in blue box);
if after energy sharing, the home still does not have enough energy,
it needs to get energy from the AC line (shown in yellow box).
Without optimization, home i will first transmit 4kWh energy to
home j at window 1 with Algorithm 1. Then home i needs to get



2kWh energy from the AC line at window 2. With Algorithm 2,
because the look forward window always has a higher AC price
than the current window, home i will get 2kWh energy from the
AC line at window 1. With optimization, home i will transmit only
2kWh energy to home j at window 1. Then only home j needs
to get 1kWh energy from the AC line at window 1. Overall, this
optimization approach can save 1kWh energy from the AC line.

Here we give the condition that we should do optimization of
AC allocation for home i.

Lemma 3.1 Optimization of Home i at window n can save the cost
of AC energy if ∃ j, Ei→ j(n)> 0, EAi(n+1)> 0 and ηi j <YAC(n+
1)/YAC(n).

PROOF. Before optimization, home i needs EAi(n+1) energy from
AC line and the cost of AC energy is EAi(n+1)∗YAC(n+1). After
optimization, home i does not need energy from AC line, but ; home
j needs EAi(n+ 1) ·ηi j energy from AC line and cost is EAi(n+
1) ∗ ηi j ∗YAC(n). Then if ∃ j, Ei→ j(n) > 0, EAi(n + 1) > 0 and
ηi j <YAC(n+1)/YAC(n), then we have EAi(n+1)∗ηi j ∗YAC(n)<
EAi(n+1)∗ (YAC(n+1)/YAC(n))∗YAC(n) = EAi(n+1)∗YAC(n+
1). Thus, optimization of home i at window n can save the cost of
AC energy.

With the Lemma 3.1, we only need to find all the scenarios that
fulfill Lemma 3.1 in sharing results from temporal and spatial en-
ergy sharing to minimize the electricity cost. The detail of algo-
rithm is described in Algorithm 3. For each home i ∈ S, it checks
if it both shares energy with its neighbors and gets energy from the
AC line at window n (Lines 1-2). If yes, it finds home j ∈ D that
with the smallest energy transmission efficiency ηi j (Line 3). Then
it checks if there is energy transmitted from i to j (Line 4). If yes, it
cancels energy transmission that causes redundant AC transmission
of i (Lines 5-13).

The time complexity for Algorithm 3: If we implement the data
structure for storing the energy-sharing results properly, either as a
dictionary or as a union-set or individual lists by using home as
key/index, then the checking for whether home i shares energy to
other homes just takes constant time. We could reuse the sorting
result in the previous algorithm for Line 3, so that Lines 3-10 also
have constant time. Then the total time is O(n).
Summary. In the above three sections §3.1-§3.3, we first bal-
ance energy usage of different homes in the microgrid by a spatial
energy-sharing algorithm. Then based on a TOU model, energy

Algorithm 3 AC Allocation Optimization Algorithm
Input: Energy share and AC transmission results Ei→ j(n) and
EAi(n) from Algorithm 1 and 2.
Output: Optimized Ei→ j(n) and EAi(n).

1: for each home i ∈ S do
2: if EAi(n)> 0 & ∃ j Ei→ j(n) 6= 0 then
3: Find home j that min

j∈D
(ηi j)

4: if Ei→ j(n)> 0 & ηi j > YAC(n+1)/YAC(n) then
5: if EAi(n)> Ei→ j(n) then
6: EAi(n)−= Ei→ j(n), Ei→ j(n) = 0;
7: else
8: Ei→ j(n)−= EAi(n), EAi(n) = 0;
9: end if

10: remove j from D;
11: end if
12: end if
13: end for

(a) Solar Panel (b) Energy Measurement

(c) Battery (d) Inverter (e) Battery Measurement

Figure 6: Experiment setup
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Figure 7: Sensing Data in One Home

needed from the AC line is balanced by a temporal energy-sharing
algorithm. Finally, combined with two-dimensional energy-sharing
results, total AC energy costs in the microgrid are minimized over
time. The total time complexity for all the three algorithms is
around O(n2).

Theorem 3.2 The solution obtained from the above algorithms is
a local optimal solution.

Remark. As in our algorithms, EAi(n) and Ei→ j(n) are determined
at every window. According to Constraint (b), only EAi(n) and
Ei→ j(n) can be adjusted to reduce the total AC costs. Thus, we can
prove that if any EAi(n) decreases, it will be always more expensive
to fulfill Constraints (d). Due to limited space, detailed proof will
not be discussed in this paper.

4 Implementation and Evaluation
In this section, we evaluate the performance of our system. We

collect empirical data of (i) energy harvesting from solar panels,
(ii) energy consumption from 40 homes, and (iii) charging and dis-
charging power of a battery. We evaluate our system under two
types of real world TOU price models in §4.3; we also validate that
our system can work with homes with similar harvesting and con-
sumption models.

4.1 Experiment Setup
We collect the energy consumption data of 40 homes [5]. We

add current transducers (CTs) around each leg of a home’s split-
phase input power from the grid (shown in Figure 6(b)) to monitor
all the circuits inside a home every second. Figure 7(b) shows the
aggregated energy consumption data within one day in a deployed
home.

We also collect energy-harvesting data from solar panels. The
solar panels we use are Grape Solar 75-Watt Monocrystalline PV
Solar Panels (shown in Figure 6(a)). We collect six days’ worth
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Figure 8: Battery Charging

of energy-harvesting data shown in Figure 7(a). In a day, the solar
panel begins to harvest energy at around 7 a.m., the energy peaks
around 12 p.m., and the harvesting ends around 8 p.m. However,
the harvested energy on different days varies, which may be due
to the varying weather conditions. Because the energy-harvesting
pattern from solar panels is similar in a single area, we use the trace
to produce energy-harvesting data of other homes with some ran-
domness. Harvesting data is collected hourly. The weather forecast
data we use is from the NWS (National Weather Service). The
consumption data of homes consist of energy information collected
every minute over six days. With empirical data, we calculate the
predicted energy harvesting and consumption data over six days for
our simulations.

The energy storage unit we deploy is UB12100-S Universal Bat-
tery and Xantrex PowerHub 84053 shown in Figure 6(c) and 6(d),
which is a combination of an inverter/charger module capable of
delivering up to 1800 watts of household power. It can work as a
backup power solution to operate with solar inputs. We use iMe-
ter Solo (an INSTEON power meter) to measure the battery energy
charging and discharging rate in real time (shown in Figure 6(e)).
The power consumption for charging a battery is shown in Figure 8.
The average power for charging the battery is around 160W, which
implies that within a one-hour window, only a limited amount of en-
ergy can be transmitted. Therefore, our design addresses the chal-
lenge of the limited energy transmission speed in § 3.1. We also
verify the charging efficiency of battery. At the beginning of charg-
ing, the efficiency is relatively low. However, efficiency increases
quickly with time and after 30 minutes, the efficiency is more than
95%.

4.2 Evaluation Baseline
To verify the efficiency of our system, we compare our design,

which is referred to as GSC (Global Sharing and Charging) in
latter evaluation results, with (i) Oracle, which uses the same en-
ergy charging and sharing algorithm as GSC but assumes real en-
ergy consumption and harvesting data in the future is available; (ii)
Individual smart charge(ISC) [19], which only allows homes to
take advantage of TOU individually with no energy sharing; and
(iii) Collective sharing (GES) [29], which aims to share energy
among homes, but not take advantage of TOU.

4.3 Evaluation Results
In this section, we will evaluate the effectiveness of our system,

which includes the efficiency of our system under two kinds of TOU
models. All results are simulated with the six days’ empirical data
of energy harvesting and consumption introduced in Section 4.1.
The battery loss rate we use is 15% [25]; the average AC and DC
transmission loss rate is around 22.6% and 7.6%, which varies with
different distances among homes [15].
Different TOU Models: We ran our system under two different
TOU models: TOU in Ontario and TOU in New England, as shown
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Figure 9: Different TOU models
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Figure 10: Total AC energy cost of different TOU models

in Figures 9(a) and 9(b), respectively. These two models are care-
fully selected to represent a wide range of TOU models: (i) a higher
price for daytime use per day (shown in Figure 9(a) for TOU in On-
tario), and (ii) price dynamic changes every hour based on demand,
which is also referred to as Realtime Pricing Model (RTP) in other
papers (shown in Figure 9(b) for TOU in New England).
Total Cost of AC Energy: Figure 10(a) shows total cost of AC
line for four different algorithms under TOU in Ontario. In all four
algorithms, the total cost of the AC line generally increases with the
number of homes, which is quite obvious. However, in Oracle, the
total cost decreases when the number of homes increases from 25 to
30 and 35 to 40, which is due to those five additional homes having
more energy surplus. Because the other algorithms do not have
accurate energy information, prediction error causes the increase
in total cost. Our algorithm outperforms GES by 22% and is less
than Oracle by only 9.2%. ISC performs worst, which shows the
importance of energy sharing among homes.

Figure 10(b) shows total cost of AC line for four different algo-
rithms under TOU in New England. Similar to the previous TOU
model, the total cost of the AC line generally also increases with the
number of homes. Our algorithm outperforms GES by 37.9% and
is less than Oracle by only 6.6%, which is even better than the TOU
model in Ontario. The main reason for the better performance is
that with the higher dynamic of the AC price, our temporal-sharing
algorithm can take advantage of the TOU model more efficiently.
Because the AC price changes vary frequently, the looking forward
window could be relatively small, which does not need prediction
for a long period. Thus, our algorithm is closer to Oracle.
Transmission Over AC Line: We also show the detailed energy
transmission over the AC line per hour under TOU in Ontario in
Figure 11(a). All three energy-sharing algorithms are compared to
GES. For Oracle, homes seldom need energy from the AC line ex-
cept when the harvested energy from a solar panel is not enough
in day 3 (Hour 48 to 72). Also, because the initial battery is not
fully charged, homes need to get energy from the AC at the begin-
ning. Our algorithm is close to Oracle, in which for nearly 10 hours
of one day, homes do not need to obtain energy from the AC line.
However, homes need to get more energy from the AC line with
ISC. For some particular time, transmission over the AC line has
large peaks. That is because homes take advantage of TOU individ-
ually. If the price of the AC line is the same for every home, then all
homes will try to charge at the time with the lowest TOU price. Be-
cause energy information of all homes can be achieved with GSC,
central controller can simply avoid this phenomenon to reduce the
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Figure 11: Transmission over AC, DC line and battery usage in Ontario (red dashed line in all figures is the transmission or battery usage of
GES)

peak of AC line.
Transmission Over DC Line: Transmission over the DC per hour
under TOU in Ontario is shown in Figure 11(b). Oracle and our
algorithm share more energy among homes to reduce AC energy
cost when the price of the AC line is relatively high. Thus, their
transmission of DC would be higher. Because ISC does not allow
energy sharing among homes, there is no transmission over DC line.
Battery Charging and Discharging: Battery usage includes bat-
tery charging from AC or DC line and discharging to DC line and
appliances’ usage. Battery usage per hour under TOU in Ontario is
shown in Figure 11(c). Even Oracle and our algorithm share more
energy through DC line, the total battery usage of Oracle, GSC and
GES is close. That means the main difference among three algo-
rithms is the way of utilizing TOU and renewable energy but not
battery. Because ISC does not allow energy sharing among homes,
battery usage is only for charging from AC line and discharging
to appliances’ usage. Thus the curves of battery usage and AC
transmission in ISC are similar. The peak demand from AC line is
mainly to charge energy to battery, but not for current appliances’
usage.
Summary of Different TOU Models: We have evaluated our sys-
tem under two TOU models. Due to the limited space, we only
show AC, DC transmission and battery usage under Ontario TOU
model while the results under New England TOU model is similar.
In all these scenarios, our system outperforms GES and ISC. The
key observations are as follows: (i) Oracle and GSC need less AC
transmission and cost compared to GES and ISC; and (ii) Oracle
and GSC may cause some little peaks of AC transmission if periods
with lowest price of AC are short. However, peaks of Oracle and
GSC are much lower than ISC.

5 Cost-Benefit Analysis
The previous section shows that our system can reduce AC en-

ergy cost of the whole microgrid by more than 20%. In this section,
we discuss our system’s return on investment.

TOU Ontario New England
Algorithm Oracle GSC GES Oracle GSC GES

Cost ($105) 3.51 3.51
Benefit ($105/yr) 0.79 0.71 0.59 0.77 0.72 0.52
Years for Return 4.44 4.94 5.95 4.56 4.86 6.75

Table 2: Cost and Benefit

In many instances, homes already have the necessary infrastruc-
ture to implement energy sharing. More and more homes will be
equipped with solar panels and batteries to generate renewable en-
ergy. To implement energy sharing microgrid, the main expense

is to construct lines for distribution network, use solar panels and
a larger battery to harvest and store energy. For the battery, the
price is around $200/kWh. For solar panels, the price is around
$0.6/Watt. The price of other equipment, such as inverter, cabling
and energy monitor, is also included in total investment cost. Fi-
nally, we estimate two weeks’ labor at $4000 for installation. The
benefit realized with our system design is mainly due to the savings
of energy transmission over AC lines. We use two types of empir-
ical TOU price models (i.e., Ontario and New England). Based on
the above pricing data, our analysis of benefit and cost is shown in
Table 3. In general, our system can return the investment in less
than five years. We note that the AC price is based on current TOU
prices. Given the increase in electricity price, we expect that the
number of years for return will be even fewer.

6 Related Work
Our work is related to three areas of previous work: energy har-

vesting and energy efficient systems and building energy.
• Energy harvesting. The renewable energy sources have become
an alternative way to consume power and reduce electricity bills.
However, they have limits in some instances when harvested en-
ergy availability typically varies with time in a non-deterministic
manner and power systems surpass the consumption or vice-versa,
which results in a mismatch [16]. To manage renewable energy,
Deborah et al. [23] propose a method to exploit robotic mobility
by having energy producers be mobile nodes. In [13], the authors
designed perpetual environmentally powered sensor networks. Our
work follows the simple idea where we build an energy sharing mi-
crogrid system in an entire community to reduce the AC energy
cost, which uses the energy sensing data and market-based TOU
price to decide when and who to share energy with.
• Energy-efficient systems. Our work is also related to energy-
efficient systems [7] [27]. In energy efficient systems, researchers
mainly focus on i) energy management in data centers [10] and
leveraging renewable energy with carbon-aware in data centers [8],
(ii) developing models to balance performance measures and en-
ergy consumption in wireless networks [9]; iii) energy management
in web search by understanding the query complexity and its impli-
cations for energy-efficient web search [24]; (iv) mobile devices by
empowering developers to estimate app energy, end to end energy
management [22]; (v) energy-aware dispatching of parallel queues,
efficient virtual machine scheduling in computer architecture [18].
• Building energy. This research mainly focuses on (i) energy au-
diting [14] [12] and design of control algorithms to reduce energy
consumption inside a single building [11]; (ii) reducing the energy
usage of building-wide heating, energy-efficient building automa-
tion, ventilation, and air conditioning [17] [20]; (iii) investigation



on the integration of renewable energy into power grid [31] [30];
and (iv) applying stochastic network calculus to analyze the power
supply reliability with various renewable energy configurations and
store that energy into very large scale batteries [21]; and v) taking
model predictive control approach to schedule the workload to re-
duce the energy cost in the buildings [28]. Our work takes a differ-
ent approach to reduce energy cost by sharing the renewable energy.
Unlike these other approaches, our work opens up new approach
where energy can be gained efficiently and used smartly.

Our work is built on previous works, but homes with renew-
able devices and small batteries are the main research focus. Most
related work is [29], which tries to minimize energy transmission
loss in microgrid. In this paper, we propose a holistic approach to
minimize community AC cost under different TOU models. Specif-
ically, we designed spatial and temporal energy sharing algorithms,
and developed optimal AC allocation algorithm to minimize elec-
tricity cost.

7 Conclusion
In this work, we attempt to investigate how to minimize AC en-

ergy costs in a sustainable microgrid under different market-based
TOU price models by exploring three types of energy sensing data:
(i) sensing data of solar panels’ energy-harvesting rate; (ii) sensing
data of individual homes’ energy consumption rate; and (iii) sens-
ing data of battery charging and discharging patterns. Specifically,
we build an energy-sharing microgrid system, which decides the
energy-sharing home pairs and when to share energy based on the
sensing data and market-based TOU price so that AC energy costs
in the whole microgrid are minimized. We evaluate our system
using empirical traces of harvested solar energy and home energy
consumption. Through extensive simulations, we verify that our
system can reduce AC energy costs of the whole microgrid by more
than 20% under different TOU price models and can still reduce AC
energy costs even when homes have similar energy consumption
patterns.
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