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Abstract— A camera sensor network is a wireless network of are based on the classical Tsai method—they require a set
cameras designed for ad-hoc deployment. The camera sensorspf reference points whose true locations are known in the
in such a network need to be properly calibrated by determin- v gical world and use the projection of these points on the
ing their location, orientation, and range. This paper presents . | to det . t D it
Snapshot an automated calibration protocol that is explicitly camera Image plane 1o de er,m'm? Ca_mera par.ame ers. e,Sp' e
designed and optimized for camera sensor networksSnapshot the wealth of research on calibration in the vision community,
uses the inherent imaging abilities of the cameras themselves for adapting these techniques to sensor networks requires us to pay

calibration and can determine the location and orientation of a careful attention to the differences in hardware characteristics
camera sensor using only four reference points. Our techniques and capabilities of sensor networks

draw upon principles from computer vision, optics, and geometry . N
and are designed to work with low-fidelity, low-power camera First, sensor networks employ low-power, low-fidelity cam-

sensors that are typical in sensor networks. An experimental €ras such _as_the _CMUcam _[_1_6] or Cyclops [11]_ that have
evaluation of our prototype implementation shows thatSnapshot coarse-grain imaging capabilities; at best, a mix of low-
yields an error of 1-2.5 degrees when determining the camera end and a few high-end cameras can be assumed in such
orientation and 5-10cm when determining the camera location. anyironments. Further, the cameras may be connected to nodes

We show that this is a tolerable error in practice since éSnapshot
calibrated sensor network can track rFr)wving objects to I\C/)vithin such as the Intel Motes or Intel Stargates that have two or three

11cm of their actual locations. Finally, our measurements indicate Orders of magnitude less computational resources than PC-
that Snapshotcan calibrate a camera sensor within 20 seconds, class workstations. Consequently, calibration techniques for
enabling it to calibrate a sensor network containing tens of camera sensor networks need to work well with low-resolution
cameras within minutes. cameras and should be feasible on low-end computational
l. INTRODUCTION platforms. Vision-based techniques that employ computation-
ally complex calibration algorithms are often infeasible on
sensor platforms. Instead, we must draw upon techniques that
Recent advances in embedded systems technologies haecomputationally-efficient and require only a few reference
made the design of camera sensor networks a reality. A camgeints for calibration.
sensor network is an ad-hoc wireless network of low-power Second, vision-based calibration techniques typically as-
imaging sensors that are connected to networked embeddathe that the location of all reference points is accurately
controllers. Today, available camera sensors range from tikyilown. In contrast, an automated procedure to calibrate cam-
low-power cameras such as Cyclops to “cell-phone-classfas in a sensor network will depend on a positioning system
cameras and from inexpensive webcams to high-resolutig®g., GPS or ultrasound) to determine the coordinates of
pan-tilt-zoom cameras. reference points. All positioning systems introduce varying
Typical applications of camera sensor networks includgmounts of error in the coordinates of reference points, and
active monitoring of remote environments and surveillana®nsequently, the calibration technique must determine the
tasks such as object detection, recognition, and tracking. Th@s@act of such errors on the computed camera location and
applications involve acquisition of video from multiple camerarientation. The impact of using imprecise reference point
sensors and real-time processing of this data for recognitidtications on calibration error has not been addressed in vision-
tracking, and camera control. Video acquisition and processased calibration techniques [8], [18], [21], [23], [24].
ing involves interaction and coordination between multiple Finally, a camera sensor network will comprise tens or
cameras, for instance, to hand-off tracking responsibilitiégindreds of cameras and any calibration technique must scale
for a moving object from one camera to another. Precise these large environments. Further, camera sensor networks
calibration of camera sensors is a necessary pre-requisite do¢ designed for ad-hoc deployment, for instance, in envi-
such coordination. Calibration of a camera sensor netwamhments with disasters such as fires or floods. Since quick
involves determining the location, orientation, and range deployment is crucial in such environments, it is essential
each camera sensor in three dimensional space as well astth&eep the time required for calibrating the system to a
overlap and spatial relationships between nearby cameras.minimum. Scalability and calibration latency have typically
Camera calibration is well studied in the computer visionot been issues of concern in vision-based methods.
community [8], [18], [21], [23], [24]. Many of these techniques Automated localization techniques are a well-studied prob-

A. Motivation



lem in the sensor community and a slew of techniques feasible to calibrate low-resolution cameras such as
have been proposed. Localization techniques employ beacons CMUcams without a significant loss in accuracy.
(e.g., IR [1], ultrasound [2], RF [3]) and use sophisticated 2) Accuracy: Our error analysis of Snapshot shows that
triangulation techniques to determine the location of a node. the calibrated parameters are more sensitive to random
Most of these techniques have been designed for general- errors in reference point locations than correlated errors.
purpose sensor networks, rather than camera sensor networks We experimentally show thabnapshotcan localize a
in particular. Nevertheless, they can be employed during camera to within few centimeters of its actual location
calibration, since determining the node location is one of  and determine its orientation with a median error of 1.3—
the tasks performed during calibration. However, localization 2.5 degrees. More importantly, our experiments indicate
techniques are by themselves not sufficient for calibration.  that this level of accuracy is sufficient for tasks such as
Cameras aralirectional sensors and camera calibration also object tracking. We show that a system calibrated with
involves determining other parameters such as the orientation Snapshotcan localize an external object to within 11
of the camera (where a camera is pointing) as well as its range centimeters of its actual location, which is adequate for
(what it can see). In addition, calibration is also used to de-  most tracking scenarios.
termine overlap between neighboring cameras. Consequenth3) Efficiency:We show that th&Snapshotlgorithm can be
calibration is a harder problem than pure localization. implemented on Stargate nodes and have running times

The design of an automated calibration technique that is in the order of a few seconds.
cost-effective and yet scalable, efficient, and quickly deploy- 4) Scalability: We show thatSnapshotcan calibrate a
able is the subject matter of this paper. camera sensor in about 20 seconds on current hardware.
Since only a few reference points need to be specified—
a process that takes a few seconds per senSoapshot

In this paper, we proposgnapshota novel wireless protocol can scale to networks containing tens of camera sensors.
for calibrating camera sensor networks. We draw upon cali-The rest of this paper is structured as follows. Section I
bration techniques from the vision community and developResents some background and the problem formulation. Sec-
variant that is particularly suited to the constraints and needsiefns |11, IV and V present the design Snapshoits instanti-
sensor networksSnapshotequires only four reference pointSation into a protocol and its use in an application. We present
to calibrate each camera sensor and allows these poiNt$HE error analysis of Snapshot, our prototype implementation
be randomly chosen. Both properties are crucial for sensgid our experimentation evaluation in Sections VI, VIl and

networks, since fewer reference points and fewer restrictiogfj. Section IX describes related work and Section X presents
enable faster calibration and reduce the computational ovg(yr conclusions.

head for subsequent processing. Further, unlike sensor local-
ization techniques that depend on wireless beac®napshot [I. PROBLEM FORMULATION

does not require any specialized positioning equipment ona camera sensor network is defined to be a wireless network
the sensor nodes. Instead, it leverages the inherent pictiecamera sensors, each connected to an embedded controller.
taking abilities of the cameras and the onboard processiagtypical realization of a camera sensor node consists of a
on the sensor nodes to calibrate each n(ﬁhzapshouses a |0W_power camera such as the CMUcam [16] or Cyc|ops [11]
positioning system to calculate locations of reference pointssnnected to an embedded sensor platform such as the Intel
which in turn are used to estimate the camera parameteyfte or the Intel Stargate.The sensor platform consists of a
Since positioning technologies introduce error in the referenggogrammable microprocessor, memory, and a wireless inter-
point determination, we conduct a detailed error analysis f§ce for communication. Not all cameras in the system are
quantify how the error in reference points impacts calibratidiomogeneous; in general, a small number of higher resolution
error. cameras may be deployed to assist the low-fidelity cameras in

Our techniques can be instantiated into a simple, quiglerforming their tasks.
and easy-to-use wireless calibration protocol—a wireless cal-consider an ad-hoc deployment df heterogeneous cam-
ibration device is used to define reference points for eaghy sensor nodes in an environment. An ad-hoc deployment
camera sensor, which then uses principles from geomei@jplies that cameras are quickly placed withaaitpriori
optics and elementary machine vision to calibrate itself. Whejlanning. Given such an ad-hoc deployment, the location,
more than four reference points are available, a sensor can geéntation and the range of each camera sensor needs to be
median filter and maximum likelihood estimation techniqu%tomaﬂca”y determined. The goal of our work is to design a
to improve the accuracy of its estimates. wireless protocol to automatically derive these parameters for

We have implementecsnapshoton a testbed of CMU- each camera node. Specifically, the calibration protocol needs
cam sensors connected to wireless Stargate nodes. We hagv@etermine thez, y, z) coordinates of each camera, which
conducted a detailed experimental evaluation Syfapshot s defined as the coordinates of the center of the camera lens.
using our prototype implementation. Our experiments yielthe protocol also needs to determine the camera orientation
the following key results: along the three axes, namely tipan «, tilt 3 androll ~

1) Feasibility: By comparing the calibration accuracies obf the camera respect to the left handed coordinate system.

low and high-resolution cameras, we show that it iBinally, the protocol needs to determine the field of view of

B. Research Contributions



each camera (i.e., what it can see) and the degree of overlap plane .
with neighboring cameras (i.e., the common regions visible to T G %0 2)
both cameras). q
Our work assumes that the focal lengthof camera lens

is known to the calibration protocol. This is a reasonable
assumption since lens parameters are typically published in
the camera specifications by the manufacturer or they can
be estimated offline for each camera prior to dePIOymemg. 1. Projection of reference points on the image plane through the lens.
[18]. Further, sensor nodes are assumed to lack specialized
positioning devices such as GPS receivers, which suffer from
5-15m locationing error. Instead, our goal is to devise a
protocol that exploits the inherent imaging abilities of each
camera and the onboard processing on each sensor node to
determine the above calibration parameters.

Ry
N (X2 - 2))
Camera center at
(X, y,2)

set of possible camera
es

location estmiat

3D surface representing
possible camera locations

Y L .
R1 R2 rotation

(a) Arc depicting (b) Football-like surface
Ill. SNAPSHOTDESIGN possible solutions of possible solutions
in two dimensions. in three dimensions.

Snapshot draws inspiration from a class of vision-based
techniques called extrinsic camera calibration (extrinsic cal-
ibration determines external camera parameters such as its
location and orientation, as opposed to intrinsic or interntle problem of finding the camera location reduces to finding
parameters such as focal length and distortion of the leng)point in space wheré?; and R, impose an angle of.

Our technique is similar in spirit to [8], [23], which use fourWith only two reference points, there are infinitely many points
reference points to determine extrinsic camera parametéWtere?; and R, impose an angle df;. To see why, consider
however, the technique used Bnapshothas been adaptedFigure 2(a) that depicts the problem in two dimensions. Given
to the specific needs of sensor networks. The b&sigpshot 1 and R, the set of possible camera locations lies on the
protocol involves taking pictures of a small randomly-place@rc 1C Ry of a circle such that?, R, is a chord of the
calibration device. To calibrate each camera, at least fotircle andd, is the angle incident by this chord on the circle.
pictures of the device are necessary, and no three positidiigm elementary geometry, it is known that a chord of a circle
of the device must lie along a straight line. Each position ##scribes a constant angle on any point on the corresponding
the device serves as a reference point; the coordinates of edh Since we have chosen the circle such that chioret,
reference point are assumed to be known and can be autori¥icribes an angle af, on it, the camera can lie on any point
ically determined by equipping the calibration device with &n the arcR; C'R». This intuition can be generalized to three
locationing sensor (e.g., ultra-sound Cricket receiver). Neximensions by rotating the af¢, C R, in space with the chord
we describe howSnapshouses the pictures and coordinategt1 /22 as the axis (see Figure 2(b)). Doing so yields a three
of the calibration device to estimate camera parameters. Wgensional surface of possible camera locations. The nature
also discuss how the estimates can be refined when additiopfdihe surface depends on the valué/gfthe surface is shaped

Fig. 2. Geometric representation of possible camera locations.

reference points are available. like a football whenf; > 90°, is a sphere whef; = 90°,
and a double crown whefy, < 90°. The camera can lie on
A. Camera Location Estimation any point of this surface.

We begin with the intuition behind approach. Without Next, consider the third reference poift;. Considering
loss of generality, we assume all coordinate systems are le@ints ?; and R3, we obtain another surface that consists of
handed, and the z-axis of the camera coordinate systengligoossible locations such th&y B3 impose a known anglé;
co-linear with the camera’s optical axis. Consider a came®a all points of this surface. Since the camera must lie on both
sensorC whose coordinates need to be determined. Suppagéfaces, it follows that the set of possible locations is given
that four reference point&;, R,, R and R, are given along by the intersection of these two surfaces. The intersection of
with their coordinates for determining the camera location. Nw/o surfaces is a closed curve and the set of possible camera
assumption is made about the placement of these points in ipeations is reduced to any point on this curve.
three dimensional space, except that these points be in visudfinally, if we consider the pair of reference poirfgs and
range of the camera and that no three of them lie alongRa, we obtain a third surface of all possible camera locations.
straight line. Consider the first two reference poifts and The intersection of the first surface and the third yields a
Ry as shown in Figure 1. Suppose that point objects placedcond curve of possible camera locations. The camera lies
at R, and R, project an image of?, and P, respectively, on the intersection of these two curves, and the curves can
in the camera’s image plane as shown in Figure 1. Furthartersect in multiple points. The number of possible camera
let 6, be the angle incident by the the reference points on thazations can be reduced further to at madby introducing
camera. Sincd; is also the angle incident b¥, and P, on the fourth reference poink,. Although 4 reference points
the camera lens, we assume that it can be computed ugiige us up to4 possible camera locations, we observe that,
elementary optics (as discussed later). Gi¥enR; and R, in reality, only one of these locations can generate the same



A non-linear solver can be used to numerically solve for these
unknowns.

Estimating 0, through 6s: We now present a technique
to compute the angle between any two vectoysand vj.
Consider any two reference poinfg; and R, as shown in
Figure 3 (a). Figure 3 (b) shows the projection of these points
through the camera lens onto the image plane. The image
plane in a digital camera consists of a CMOS sensor that
takes a picture of the camera view. L&t and P, denote
Fig. 3. Vector representation of reference points and their projections.the projections of the reference points on the image plane as

Front shown in the Figure 3(b), and legt denote the focal length
of the lens. For simplicity, we define all points with respect
to the camera’s coordinate system: the center of the lens is
assumed to be the origin in this coordinate system. Since
the image plane is at a distangefrom the lens, all points
on the image plane are at a distantdrom the origin. By
taking a picture of the reference points, the coordinates of
P, and P, can be determined. These are simply the pixel
coordinates where the reference points project their image on
the CMOS sensor; these pixels can be located in the image

projections as?;, R», R3, and R, on the image plane. Using UsSing a simple vision-based object recognition techniguet
elementary optics, it is easy to eliminate the false solutiofde resulting coordinates d, and P, be (—pz1, —py1, —f)
and determine the true and unique location of the camera.and(—px2, —pys, — f) respectively. We define vectorg and
With this intuition, we now present the details of ours as lines joining the camera (i.e., the origin C) to the points
technique. Consider a camer@ placed at coordinates P, and P,. Then, the anglé); between the two vectors;

x,y, z), and four reference poin®,, ..., 4 with coordinates anq.;; can be determined by taking the dot product of them.
Z1,Y1,21) - - - (T4, Y4, z4). The line joining the camera C with

each reference point defines a vector. For instance, as shown in uy - b

Figure 3(a), the line joining” and R, defines a vecto€ Ry, cos(fr) = 1423 |[1d3]
denoted bysi. The components of; are given by
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Fig. 4. Relationship between object location and its projection.

The inverse cosine transform yields, which is also the angle
incident by the original reference points on the camera.
Similarly, the vectory; joining pointsC' and R; is given as Using the above technique to estimé@tefs, we can then
solve our six quadratic equations using a non-linear optimiza-
tion algorithm [5] to estimate the camera location.

U1 =CR1 ={z1 —z,y1 —y,21 — 2}

0; =CR; ={a; —x,ys —y,z — 2} 1<i<A4

As shown in Figure 3(a), lef; denote the angle betweenB. Camera Orientation Estimation
vectorsv; and vz. The dot product of vectors; and v3 is We now describe the technique employed Siyapshoto
given as determine the camera’s orientation along the three axes. We
o assume that the camera location has already been estimated
By definition of the dot product, using the technique in the previous section. Given the camera
- location (z, y, z), our technique uses three reference points to
W = (v1—x) (@2 —2) + (11 —Y) (12 —y) + (21 —2) (2 —2) (2 T2 - .
v (m_ @)(@2~2) (yl_ y).(yZ Y+ (e =2)(z2=2) (2) determine the pan, tilt, and roll of the camera. Intuitively, given
The magnitude of vecto#; is given as the camera location, we need to align the camera in space so
. that the three reference points project an image at the same
— _ 2 _ 2 _ 2
01 = V@1 =2 + @ =y + (21— 2) location as the pictures takes by the camera. Put another way,
The magnitude of» is defined similarly. Substituting theseconsider a ray of light emanating from each reference point.

7 - vz = |v1]|v3] cos 6, )

<

values into Equation 2,we get The camera needs to be aligned so that each ray of light pierces
7 the image plane at the same pixel where the image of that
01) = ——— 3) S - -
cos(61 [01] - |v3] reference point is located. One reference point is sufficient to

determine the pan and tilt of the camera using this technique
o o S ° . - - and three reference point are sufficient to uniquely determine
us, ui anduy, v andus, v; andvi andv; andv; respectively. oy yhree parameters: pan, tilt and roll. Our technique uses
Similar expressions can be derived iy, 03, ... 0. the actual coordinates of three reference points and the pixel

The angled, throughfs can be computed using elemem""r)(:?]ordinates: of their corresponding images to determine the
optics and vision, as discussed next. Given these angles and the

c_oordlr_1ates of th_e four re_ferenc_e paints, the above expressiong, Snapshotthe calibration device contains a colored LED and the vision-
yield six quadratic equations with three unknowmg} andz. based recognizer must locate this LED in the corresponding image.

Let 65, throughfg denote the angles between vectofsand



unknown rotation matrixR that represents the pan, tilt andcompute the pan, tilt and roll for each computed location using
roll of the camera. three reference points. The fourth reference point is then used
Assume that the camera is positioned at coordin@teg, z) to eliminate false solutions as follows: for each computed
and that the camera has a a pan cofdegrees, a tilt of location and orientation, we project the fourth reference point
(8 degrees, a roll ofy degrees. The composite 3x3 matrixonto the camera’s image plane. The projected coordinates are
corresponding to matrices representing the pan, tilt and rdtlen matched to the actual pixel coordinates of the reference
rotations of the camera is denoted By point in the image. The projected coordinates will match the
If an object is located dtx;, y;, ;) in the world coordinates, pixel coordinates only for the true camera location. Thus, the
the object’s location in the camera coordinates y;, z;) can three false solutions can be eliminated by picking the solution
be computed via Equation 4. with the smallest re-projection error. The chosen solution is
, always guaranteed to be the correct camera location.

’ PR
2 zi — 2

x; XTi— X
y, | =R x [ Yi — Y ] (4) C. Determining Visual Range and Overlap

Once the location and orientation of each camera have been
estimated, the visual range of cameras and the overlap between
Heighboring cameras can be determined. Overlap between

equations (see rI]Equatlﬁjn 5) V\ijhéﬂﬁ’ y ’fflz’ (@2, 2, Z?)' and d cameras is an indication of the redundancy in sensor coverage
(3, y3, 23) are the world coordinates Gfreference points, and 4 can also be used to localize and track moving objects.

(21,91, 21), (%2, 42, 25), @N(x3, 3, 23) are the corresponding e yisyal range of a camera can be approximated as a
camera coordinates to estlmzRg and then gstlme}te, B, an.d olyhedron. The apex of the polyhedron is the location of
y from R The th_ree set; Of_ linear equauons In _Equat|o_n e camera’s lens center and height of the pyramid is the
have unique solution foR" (since the right-hand-side matriX, . ~vimum viewable distance of the camera. An object in

is non-singular). the volume of the polyhedron is in the visual range of the
camera. The viewable range of an camera is assumed to be

Intuitively, we can construct and solve a set of line

/ ’ /

TI—T Y1 —Y 21—2 . S | finite to avoid distant objects appearing as point objects in
T2—x Y-y 22—z | XR = Ty Yo 2 () images, which are not useful for detection and recognition
Ta—% Ys—Y B2 T3 ys 23 tasks. After determining the camera location and orientation

o _ o using Snapshatthe polyhedron visual range of each camera
As shown in Figure 4, an object's location in the camergan be determined and computational geometry techniques for
coordinates and the projection of the object on the image plgsgiyhedron intersection can be used to determine the overlap

have the fOIIOWing relation: between cameras.
Ty D, pTi D. lterative Refinement of Estimates
C == x i 6 . . . .
‘Z D, pjﬁ ©) While Snapshotequires only four reference points to cali-
! brate a camera sensor, the estimates of the camera location and
where: orientation can be improved if additional reference points are
D; = \/(:rf, —x)?2+ (yi —y)? + (z: — 2)? and available. Suppose thatreference points; > 4, are available
Dy = /px} +py? + f? for a particular sensor node. Théh) unique subsets of four

D, and D, represent the magnitude of the object to cameraference points can be constructed from thegmoints. For
center vector and the projection on image plane to camerach subset of four points, we can compute the location and
center vector respectively. orientation of the camera using the techniques outlined in the

Therefore, we can compute the location of an object 2%t—fvious sections. This yield§;) different estimates of the

the camera coordinate system using Equation 6. The ac ; . ) .
location of each reference point and its location in the camera@mera location and orientation. These estimates can be used

coordinates can then be used in Equation 5 to determine themprove the final solution using the median filter method.

;%tgtir%ﬂ ransa]tcgﬁé%- S(_Biven R, we we can obtain pan, tilt 5, This method calculates the median of each estimated param-
W i ] eter, namely location coordinatesy, z, pana, tilt 3, and roll
arctan( ;) +180% f gty < 0 and o5y <0 7. These median values are then chosen as the final estimates
a = arczarf@; — 180 Ztrféf"(ﬁg:: 0 and 55ty <0 of each parameter. The median filter method can yield a final
arctan( —=- . . . « ey . .
5 in(rsz) 733 - solution that is different from aIQZ’) initial solutions (since the
= arcsin(r, . . . .
32 o o median of each parameter is computed independently, the final
arctan(r12 ) + 180 if COSI(QE) < 0 and Co%z/j) <0 . . . .
_ arctan(T2) — 180°  if 112 >= 0 and "5 solution need not correspond to any of the initial solutions).
Y= (B cos(B) 7~ cos(B) . . . . .
arctan(£12) otherwise The median filter method is simple and cost-effective, and

performs well whem is large.
Eliminating False Solutions: Recall from Section IlI-A
that our six quadratic equations yields up to four possible IV." A SELF-CALIBRATION PROTOCOL
solutions for the camera location. Only one of these solutionsin this section, we describe how the estimation techniques
is the true camera location. To eliminate false solutions, vpeesented in the previous section can be instantiated into a



Object O

simple wireless protocol for automatically calibrating each
camera sensor. Our protocol assumes that each sensor node
has a wireless interface that enables wireless communication to
and from the camera. The calibration process involves the use
of a wireless calibration device which is a piece of hardware @
that performs the following tasks. First, the device is used o

Fig. 5. Object localization using two cameras.

to define the reference points during calibration—the location

of the device defines a reference point, whose coordinates
are automatically determined by equipping the device withying pictures of the object and using its pixel coordinates to

a positioning sensor (e.g., ultrasound-based Cricket). Seco@é’mpute its actual location.

the device also also serves as a point object for picturesy, qeq how this is done, consider Figure 5 that depicts an
taken by th.e camera Sensors. T(.) ensure th_at_ the dev'ce.SﬁféctO that simultaneously visible in cameras and Cs.

be automatically detected in an image by vision processigg, o noth cameras are looking at the same object, the lines
algorithms, we equip the device with a bright LED SensQ,ronnecting the center of the cameras to the object, should

(which then serves as the point object in an image). Third, tn"ﬁersect at the objeaD. Since the locations of each camera
devices serves as a “wireless remote” for taking pictures duripg, nown. a triangleC; OC, can be constructed as shown in

the ca_libration phase. The devices is equ_ipped with a swi figure. LetD; and D, denote the distance between the
that triggers a broadcast packet on the wireless channel. ect and the two cameras, respectively, andlet denote

packet contains the coordinates of the device at that instant 304 distance between the two cameras. Note hat can be

|n"cludes aimage ca.ptlljre cprr;mand that triggers a Snapsm&ﬁ%puted as the Euclidean distance between the coordinates

all camera Sensors In Its wireless range. (Ch and Cy, while D, and D, are unknown quantities. Let
Given such a device, the protocol works as follows. A ' 4. and ¢ denote the internal angles of the triangle as

human assists the calibration process by walking around Wghown in the figure. Then the Sine theorem for a triangle from
the calibration device. The protocol involves holding the d%1ementary trigonometry states that

vice at random locations and initiating the trigger. The trigger

broadcast a packet to all cameras in the range with a command D, D, D1 ®)

to take a picture (if the sensor node is asleep, the trigger first sin(1)  sin(fy)  sin(e)

wakes up a node using a wakeup-on-wireless algorithm). Th . .
broadcast packet also includes the coordinates of the curre]n T]e antgles% ar&d 92_can.be cprr;puted dt.)y taking p|fct|L|Jres
position of the device. Each camera then processes the pict ret e object an using 't.S pIxel - coor mate; as Toflows.
to determine if the LED of the calibration device is visible tg*/PPOS€ that the object projects an image at pixel coordinates
it. If so, the pixel coordinates of the device and the transmitted PL1: —Py1) at camerdly, Let f, dfnote the focal length of
coordinates of the reference point are recorded. OtherwfgdMeraCi. Then projection vectoni = (px1, pys, f) is the

the camera simply waits for the next trigger. When at lea¥pctor joining the pixel coordinates to the center of the lens

four reference points become available, the sensor node tﬁ@ﬁi this vecttor “I%S. aI;)hng thetd|re(I:t|on ?r]: thde_ Objt.eCt fr?rp the
processes this data to determine the location, orientation Werat Cj?her't IS the vectrc:r ;ong Ie |rbec '0? OI tmde
range of the camera. These parameters are then broadf3gfiected the two cameras, the the afglean be calculate

so that neighboring cameras can subsequently use them Y39 the vector dot product:
determining the an_10unt of _overlap bfatweer? cameras. ane a 707 = |¥] x |01] x cos(6:) )
camera calibrates itself, a visual cue is provided by turning on
an LED on the camera so that the human assistant can md¥® angled, can be computed similarly and the angleis
on to other sensors. next determined a6l80 — 6, — 65).

Given 61, 6, and ¢ and the distance between two cameras
D15, the values ofD; and D, can be computed using the Sine

In general, the accuracy desired from the calibration phaeorem as stated above.
depends on the application that will subsequently use thisGiven the distance of the object from the cameras (as given
calibrated sensor network. To determine how calibration errdyg D; andD-) and the direction along which the object lies (as
impact application accuracy, we consider a simple object locaefined by the projection vectors andvs), the object location
ization and tracking example. This scenario assumes that t@ be easily computed. Note that the orientation matrices of
calibrated sensor network is used to detect external objects #imel cameras must also be accounted for when determining the
track them as they move through the environment. Trackingvsrld coordinates of the object using each camera. In practice,
performed by continuously computing the coordinates of tlthue to calibration errors, the object location as estimated by
moving object. A camera sensor network can employ triangthe two cameras are not identical. We calculate the mid—point
lation techniques to determine the location of an object—if arf the two estimates as the location of the object.
object is simultaneously visible from at least two cameras, Thus, two overlapping cameras can coordinate with one
and if the locations and orientations of these cameras amother to triangulate the location of an external object. We
known, then the location of the object can be calculated lwill use this object localization application in our experiments

V. AN OBJECTTRACKING APPLICATION



A. Hardware Components

The Snapshotwireless calibration device is a Mote-based
Cricket ultrasound receivers equipped with a LED that turns
itself on during calibration (see see Figure 6(a)). We assume
that the environment is equipped with Cricket reference bea-
cons, which are used by a Cricket receiver to compute its

(a) Calibration Device (b) CMUcam+Stargate location coordinates during calibration [13].
We use two types of camera sensors in our experiments: the
Fig. 6. Snapshohardware components. CMUcam vision sensor [16] and a Sony webcam. The CMU-

cam comprises of a OV6620 Omnivision CMOS camera and
] SX52 micro—controller and has a resolution of 176x255. In
contrast, the Sony webcam has a higher resolution of 640x480.
We use the high resolution webcam to quantify the loss in
accuracy when calibrating low-resolution cameras such as the
As described in Section 1V, locations of reference points a@Ucam. Although beyond the scope of the current paper, our
estimated using a positioning system (ultrasound based Crick@ifoing work focuses on calibrating a second low-resolution

locationing system) which are further used for calibration. T%%mera sensor, namely the Cyclops [11]. All camera sensors
estimated locations of reference points have uncertainties die ' '

to errors in ultrasound based range estimates. The averafe connected to Intel Stargates (see Figure 6(b)), which
location error using Cricket (measured in terms of Euclidea® a PDA-class sensor platform equipped with a 400MHz
distance) is empirically estimated to be 3-5 cm. The erra{Scale processor and running the Linux operating system.
in reference point locations impacts the calculated calibratigrach Stargate also has a Intel Mote connected to it for wireless
parameters and we study the sensitivity of calibrated Parafglmmunication with our Mote-based calibration device

eters to these errors. Consider four reference points with trueF. L X
locations(z1, y1, 21), (22, Y2, 22), (23,3, 23) and (24, ya, 24) mglly, we use a digital compass, Sparton 3003D, to
which estimate the location of the camera(as, y., z.) and quantify the orientation error during calibration. The compass
orientation angles a&, § and v. Further, we assume thathas resolution of 0.1 degrees and accuracy of 0.3 degrees.
the error in each dimension of the reference point location is

specified by a normal distributio®/(0, 02), with zero mean Software Architecture

and variancer?. Givenn reference points, an error componenl?'

is added to each reference point;, y;, 2;) as follows, Our Mote-based calibration device runs TinyOSwith the
Cricket toolkit. TheSnapshosoftware on the Mote is simple:

each human-initiated trigger causes the Mote to determine its

where,e; is randomly sampled from the normal distributiorfoordinates using Cricket, which are then embedded in an
N. The (Z) updated reference point subsets are then uséahage-capture” trigger packet that is broadcast to all nodes.
to compute the camera locatioix’, y., z,) and orientation using the wireless radio.

parameters/’, 3’, 7. The relative error in calibration as result Camera Calibration Tasks: Every time a trigger packet is
of the error in reference point locations is measured as,  rgcejved from the calibration device, the Stargate sends a set

to quantify the impact of calibration errors on the applicatio
tracking error.

VI. SNAPSHOTERRORANALYSIS

/ / /
Ty =Ti+ el Y =Yi+tex; 2z = zi+es;

_ ; ; ; of commands over the serial cable to capture an image from
locerr = \/Ex T @)t (e —we + (2 (A0 " eMUcam, The image is processed using a vision-based
panerr = HO‘/ — e (11) recognition algorithm; our current prototype uses background
tilterr = || =7 (12)  subtraction and a connected components algorithm [15] to
rollerr = |V =1l (13)  detect the presence of the calibration device LED. If the device

. : . is found, the pixel coordinates of the LED and the Cricket
where, locer, IS the relative location error, measured as th@oordinates of the Mote are stored as a new reference point
Euclidean distance between the estimated camera locati Rerwise the image is ignored '
and pancrr, tilterr and rolle, are the relative orientation o o reference points become available, the Stargate
errors of han, F'It and roll an.gles- respectively. . . estimates location, orientation and range of the camera. A

The sensitivity of the calibration parameters is eSt'mat%%n—linear solver based on the interior-reflective Newton

by measuring the relative location and orientation errors f ethod [5], [6] is used to estimate the camera location. We

:ilff?rent (ltnq:ea:cS|ng) (;/arlances of the ?‘”Of dlr]st:putlon: tse the methods discussed in Section Ill to eliminate false
est sensiiivity forrandom EIToF—errors in each dimension solutions, and iteratively refine the location estimate.

of every reference point are ra_ndomly sampled eadelated Object Localization and Tracking: Finally, we implement
error—errors for each dimension are sampled randomly but

are same for all reference points. We present the experimer?tuT object localization and tracking (described in Section V)

aa lication on the Stargates. If an object is simultaneousl
results of the sensitivity analysis in Section VIII. PP 9 ' ) y

viewed by two cameras, the cameras exchange their param-
eters, location and orientation, and the objects projection
coordinates on its image place. This information is used by
This section describes our prototype implementation.  each camera to localize the object and estimate its location.

VIl. SNAPSHOTIMPLEMENTATION



Continuous localization can be used at each node to track an
object of interest. 09

VIIl. EXPERIMENTAL EVALUATION

Probability
o
&
Probability
°
&
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A. Experimental Setup

The setup to evaluate the accuracy and sensitivity to system (a) Webcam (b) CMUcam
parameters ofSnapshotconsisted of placing the two types
of cameras, CMUcam and the Sony MotionEye webcam, at Fig. 7. Empirical CDF of error in estimation of camera location.
several locations. To simplify accurate location measurements 16 MUt i
we marked a grid to place the position sensor objects. Each 4 webcamne Gridkel v
camera took several pictures to estimate the parameters. The 2, e
difference between the estimated parameter value and the
actual value is reported as the measurement error. The Cricket
sensors on the objects received beacons from a set of pre—
calibrated Cricket sensor nodes placed on the ceiling of a
room. The digital compass was attached to the two cameras 24 o8 0ot ol
in order to measure the exact orientation angles.

Median Error (cm)

. ) . Fig. 8. Effect of number of reference points on location estimation error.

B. Camera Location Estimation Accuracy

To evaluateSnapshds performance with camera location=>"" )
estimation, we place tens of reference points in the space, &Ygilable reference points. _
take pictures of these reference points at different locationstigure 8 shows: (i) the median errors using webcam drop
and orientations. We measure the location of these referef@M 4.93¢m to 2.13cm and from9.05¢m to 6.25¢m as the
points by hand (referred as without Cricket) which can b@umbe_r of r_eference pom_ts varies fromto 15 for W|thout_
considered as the object’s real location and by Cricket [18[d With Cricket, respectively; (i) the median errors using
(referred as with Cricket) where we observed a 2—-5cm errdgMUcam drop from6.98¢m to 2.07¢m and from12.01em to

For each picture, we take all the combinations of any fodr29¢m as the number of reference points varies fromo 16
reference points in view (not any 3 points in the same lind or wnhoyt and.W|th' Cricket, respectlvely. _The dlﬁgrence in
and estimate camera’s location accordingly. We consider t location es'tl'matlon errors (Wlth.and 'WI'[hOUt Cricket) are
distance between the estimated camera’s location and the Ak to the position error estimates in Cricket and also due to
camera’s location as the location estimation error. errors in values of camera intrinsic parameters.

As shown in Figure 7(a), our results show: (i) the median . . L
errors using webcam without Cricket and with Cricket ary- Camera Orientation Estimation Error
4.93cm and 9.05¢m, respectively; (i) the lower quartile and Next, we evaluateSnapshds accuracy with estimation of
higher quartile errors without Cricket aBel4cm and7.13cm; camera orientation parameters. We used the two cameras,
(iii) the lower quartile and higher quartile errors with Crickethe CMUcam and the Sony MotionEye webcam, to capture
are 6.33cm and 12.79c¢m; (iv) the median filter (referred images of reference points at different locations and different
as M.F.) improves the median error 80l6¢m and 7.68cm  orientations of the camera. We used estimated location of
without Cricket and with Cricket, respectively. the camera based on exact locations on reference points and

Figure 7(b) shows: (i) median errors using CMUcam withCricket-reported locations of reference points to estimate the
out Cricket and with Cricket aré.98cm and12.01c¢m, respec- orientation parameters of the camera. The orientation of the
tively; (ii) the lower quartile and higher quartile errors withoutamera was computed using the estimated camera location. We
Cricket are5.03cm and 10.38cm; (iii) the lower quartile and compared the estimated orientation angles with the measured
higher quartile errors with Cricket a&76cm and 15.97¢m;  angles to calculate error. Figure 9(a) shows the CDF of the
(iv) the median filter improves the median error i®1lcm  error estimates of the pan, tilt and roll orientations respectively
and 10.58cm without Cricket and with Cricket, respectively. using the CMUcam camera. Figure 9(b) show the CDF of

1) Effect of Iteration on Estimation ErrorAs our protocol the error of the three orientations using Cricket for location
proceeds, the number of available reference points increasetimation. The cumulative error plots follow the same trends
As a result, the number of combinations of any four referenéer each of the orientation angles. The median roll orientation
points also increases, and we have more location estimati@nsor using Cricket and without Cricket for camera location
available for the median filter. Consequently, we can eliminagstimations is 1.2 degrees. In both cases, the 95th percentile
tails and outliers better. In this section, we study the effeetror is less than 5 degrees for the pan and tilt orientation
of the iterations of our protocol’s runs on camera locatioand less than 3 degrees for the roll orientation. The slight

estimation error by plotting the median versus the number of
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Fig. 9. Empirical CDF of error in estimating orientations with the CMUcam.
Fig. 10. Sensitivity of estimation to uncertainty in reference point location.

discrepancies in the error measurement of the two cases is ‘ -
due to the use the digital compass to measure the orientation 0o | :

0.8

of the camera. 07
Thus, we conclude the Cricket's positioning errors do not o8
add significant errors in estimation of camera orientation

Probability

0.4
03

parameters. In our experiments, we find that a median location o2 R
estimation error of 11cm does not affect the orientation ol Glilcam Criket
. . . . pe 0 5 10 15 20 25 30 35 40 45 50
estimation significantly. Error (om)
D. Sensitivity Analysis Fig. 11. Empirical CDF of error in estimation of object’s location.

As described in Section VI, we evaluate the sensitivityitqyt and with Cricket, respectively: (iii) localization with-
of calibrated parameters to uncertainty in reference poigl; cricket outperforms localization using Cricket for all

locations. We varied the standard deviation of the error distfiz meras; and (iv) localization using webcams outperforms that
bution in each dimension fromicm to 8cm and numerically \yith the CMUcams due to its higher fidelity.

computed its impact on the calibration parameters. As shown
in Figure 10(a), the estimated locations are less sensitive to fhieRuntime Scalability
correlated error, but are highly sensitive to the random error.

. . . . . [ Task [ Duration(ms) |
Further, the results in Figure 10(b) shows that: (i) orientation Snap Image 781 2
estimation is insensitive to the correlated error, the mean error Recognize Object Locatio] 52 £ 0.1
is always very close to zero; and (i) the orientation estimation Location Estimation | 18365+ 18
is very sensitive to the random error, the mean error increases Fig. 12. Runtime of different calibration tasks.

by a factor of four as the standard deviation increases from
lem to 8cm. The calibrated parameters are less sensitive to

correlated errors as all reference points have the same ef ks of thes hotalibrati | .
magnitudes and the camera location shifts in the directi erent tasks of the&snapshotalibration protocol executing

of the error without affecting the estimated orientation. witR" the Intel Stargate platiorm with .the camera attached o a
random errors in each dimension of the reference poin%?B connector (the transfer of an image on the serial cable

all reference points shift to different directions by differenfItn the CMUcam requires additional time). As seen from
offsets, and as a result, calibration errors are larger. Howe table, the location estimation task which uses a non—linear

the error in a real Cricket system is neither correlated naplver, has the highest execution time. The time to calibrate an

random, it is somewhere between these two cases, and Hgdvidual camerais, 4« (178 ms + 52 ms) —time to snap four

intermediate sensitivity. The previous experimental resul{§ades and recognize the !ocatlc_)n of Ot.)JeCt. n each anq 18365
verify this hypothesis. ms for the location and orientation estimation, which is total

time of 19.285 seconds. Thus, with a time of approximately
E. Object Localization 20 seconds to calibrate a single came3aapshotan easily
In this section, we study the performance of object loca¢alibrate tens of cameras on the scale of a few minutes.
ization usingSnapshatWe useSnapshoto estimate camera
locations and their orientations, and then in turn use the
calibrated parameters to triangulate an object via the techniqgu&€amera calibration using a set of known reference points
described in Section V. Similar to Section VIII-B, we use thés well studied in the computer vision community. Methods
empirical CDF of object’s location estimation error to measuideveloped in [8], [18], [23], [24] are examples of techniques
the performance. Our results (see Figure 11) show that: {lijat estimate both the intrinsic and extrinsic parameters of a
the median localization error using webcamsti84cm and camera using a set of known reference points. These efforts
5.45¢m without and with Cricket, respectively; (ii) the mediarpresent techniques to estimate the complete set of twelve
localization error using CMUcams isl.10cm and 11.73cm  parameters and also for a partial set (extrinsic parameters) of

Using our prototype implementation of we measure the
time of theSnapshoprotocol. Figure 12 reports runtime of

IX. RELATED WORK



camera parameter&napshaqtdesigned to estimate only theorientation and 5-10cm when determining the camera location.
extrinsic parameters, draws inspiration from these techniqu&e argued that this is a tolerable error in practice since a
and extends them to suit resource-constrained sensor netwsnlapshotalibrated sensor network can track moving objects
environments and works with uncertainty in reference poit within 11cm of their actual locations. Finally, our measure-

locations. A recent effort [21] also estimates only the extrinsiments showed thaBnapshotcan calibrate a camera sensor

parameters with four reference points, with the requiremewithin 20 seconds, enabling it to calibrate a sensor network
that three out of the four are co-line@napshotis a more containing tens of cameras within minutes.

general technique and does not impose such a requirement.
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