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Abstract— A camera sensor network is a wireless network of
cameras designed for ad-hoc deployment. The camera sensors
in such a network need to be properly calibrated by determin-
ing their location, orientation, and range. This paper presents
Snapshot, an automated calibration protocol that is explicitly
designed and optimized for camera sensor networks.Snapshot
uses the inherent imaging abilities of the cameras themselves for
calibration and can determine the location and orientation of a
camera sensor using only four reference points. Our techniques
draw upon principles from computer vision, optics, and geometry
and are designed to work with low-fidelity, low-power camera
sensors that are typical in sensor networks. An experimental
evaluation of our prototype implementation shows thatSnapshot
yields an error of 1-2.5 degrees when determining the camera
orientation and 5-10cm when determining the camera location.
We show that this is a tolerable error in practice since aSnapshot-
calibrated sensor network can track moving objects to within
11cm of their actual locations. Finally, our measurements indicate
that Snapshotcan calibrate a camera sensor within 20 seconds,
enabling it to calibrate a sensor network containing tens of
cameras within minutes.

I. I NTRODUCTION

A. Motivation

Recent advances in embedded systems technologies have
made the design of camera sensor networks a reality. A camera
sensor network is an ad-hoc wireless network of low-power
imaging sensors that are connected to networked embedded
controllers. Today, available camera sensors range from tiny,
low-power cameras such as Cyclops to “cell-phone-class”
cameras and from inexpensive webcams to high-resolution
pan-tilt-zoom cameras.

Typical applications of camera sensor networks include
active monitoring of remote environments and surveillance
tasks such as object detection, recognition, and tracking. These
applications involve acquisition of video from multiple camera
sensors and real-time processing of this data for recognition,
tracking, and camera control. Video acquisition and process-
ing involves interaction and coordination between multiple
cameras, for instance, to hand-off tracking responsibilities
for a moving object from one camera to another. Precise
calibration of camera sensors is a necessary pre-requisite for
such coordination. Calibration of a camera sensor network
involves determining the location, orientation, and range of
each camera sensor in three dimensional space as well as the
overlap and spatial relationships between nearby cameras.

Camera calibration is well studied in the computer vision
community [8], [18], [21], [23], [24]. Many of these techniques

are based on the classical Tsai method—they require a set
of reference points whose true locations are known in the
physical world and use the projection of these points on the
camera image plane to determine camera parameters. Despite
the wealth of research on calibration in the vision community,
adapting these techniques to sensor networks requires us to pay
careful attention to the differences in hardware characteristics
and capabilities of sensor networks.

First, sensor networks employ low-power, low-fidelity cam-
eras such as the CMUcam [16] or Cyclops [11] that have
coarse-grain imaging capabilities; at best, a mix of low-
end and a few high-end cameras can be assumed in such
environments. Further, the cameras may be connected to nodes
such as the Intel Motes or Intel Stargates that have two or three
orders of magnitude less computational resources than PC-
class workstations. Consequently, calibration techniques for
camera sensor networks need to work well with low-resolution
cameras and should be feasible on low-end computational
platforms. Vision-based techniques that employ computation-
ally complex calibration algorithms are often infeasible on
sensor platforms. Instead, we must draw upon techniques that
are computationally-efficient and require only a few reference
points for calibration.

Second, vision-based calibration techniques typically as-
sume that the location of all reference points is accurately
known. In contrast, an automated procedure to calibrate cam-
eras in a sensor network will depend on a positioning system
(e.g., GPS or ultrasound) to determine the coordinates of
reference points. All positioning systems introduce varying
amounts of error in the coordinates of reference points, and
consequently, the calibration technique must determine the
impact of such errors on the computed camera location and
orientation. The impact of using imprecise reference point
locations on calibration error has not been addressed in vision-
based calibration techniques [8], [18], [21], [23], [24].

Finally, a camera sensor network will comprise tens or
hundreds of cameras and any calibration technique must scale
to these large environments. Further, camera sensor networks
are designed for ad-hoc deployment, for instance, in envi-
ronments with disasters such as fires or floods. Since quick
deployment is crucial in such environments, it is essential
to keep the time required for calibrating the system to a
minimum. Scalability and calibration latency have typically
not been issues of concern in vision-based methods.

Automated localization techniques are a well-studied prob-



lem in the sensor community and a slew of techniques
have been proposed. Localization techniques employ beacons
(e.g., IR [1], ultrasound [2], RF [3]) and use sophisticated
triangulation techniques to determine the location of a node.
Most of these techniques have been designed for general-
purpose sensor networks, rather than camera sensor networks
in particular. Nevertheless, they can be employed during
calibration, since determining the node location is one of
the tasks performed during calibration. However, localization
techniques are by themselves not sufficient for calibration.
Cameras aredirectional sensors and camera calibration also
involves determining other parameters such as the orientation
of the camera (where a camera is pointing) as well as its range
(what it can see). In addition, calibration is also used to de-
termine overlap between neighboring cameras. Consequently,
calibration is a harder problem than pure localization.

The design of an automated calibration technique that is
cost-effective and yet scalable, efficient, and quickly deploy-
able is the subject matter of this paper.

B. Research Contributions

In this paper, we proposeSnapshota novel wireless protocol
for calibrating camera sensor networks. We draw upon cali-
bration techniques from the vision community and develop a
variant that is particularly suited to the constraints and needs of
sensor networks.Snapshotrequires only four reference points
to calibrate each camera sensor and allows these points to
be randomly chosen. Both properties are crucial for sensor
networks, since fewer reference points and fewer restrictions
enable faster calibration and reduce the computational over-
head for subsequent processing. Further, unlike sensor local-
ization techniques that depend on wireless beacons,Snapshot
does not require any specialized positioning equipment on
the sensor nodes. Instead, it leverages the inherent picture-
taking abilities of the cameras and the onboard processing
on the sensor nodes to calibrate each node.Snapshotuses a
positioning system to calculate locations of reference points,
which in turn are used to estimate the camera parameters.
Since positioning technologies introduce error in the reference
point determination, we conduct a detailed error analysis to
quantify how the error in reference points impacts calibration
error.

Our techniques can be instantiated into a simple, quick
and easy-to-use wireless calibration protocol—a wireless cal-
ibration device is used to define reference points for each
camera sensor, which then uses principles from geometry,
optics and elementary machine vision to calibrate itself. When
more than four reference points are available, a sensor can use
median filter and maximum likelihood estimation techniques
to improve the accuracy of its estimates.

We have implementedSnapshoton a testbed of CMU-
cam sensors connected to wireless Stargate nodes. We have
conducted a detailed experimental evaluation ofSnapshot
using our prototype implementation. Our experiments yield
the following key results:

1) Feasibility: By comparing the calibration accuracies of
low and high-resolution cameras, we show that it is

feasible to calibrate low-resolution cameras such as
CMUcams without a significant loss in accuracy.

2) Accuracy: Our error analysis of Snapshot shows that
the calibrated parameters are more sensitive to random
errors in reference point locations than correlated errors.
We experimentally show thatSnapshotcan localize a
camera to within few centimeters of its actual location
and determine its orientation with a median error of 1.3–
2.5 degrees. More importantly, our experiments indicate
that this level of accuracy is sufficient for tasks such as
object tracking. We show that a system calibrated with
Snapshotcan localize an external object to within 11
centimeters of its actual location, which is adequate for
most tracking scenarios.

3) Efficiency:We show that theSnapshotalgorithm can be
implemented on Stargate nodes and have running times
in the order of a few seconds.

4) Scalability: We show thatSnapshotcan calibrate a
camera sensor in about 20 seconds on current hardware.
Since only a few reference points need to be specified—
a process that takes a few seconds per sensor—Snapshot
can scale to networks containing tens of camera sensors.

The rest of this paper is structured as follows. Section II
presents some background and the problem formulation. Sec-
tions III, IV and V present the design ofSnapshotits instanti-
ation into a protocol and its use in an application. We present
the error analysis of Snapshot, our prototype implementation
and our experimentation evaluation in Sections VI, VII and
VIII. Section IX describes related work and Section X presents
our conclusions.

II. PROBLEM FORMULATION

A camera sensor network is defined to be a wireless network
of camera sensors, each connected to an embedded controller.
A typical realization of a camera sensor node consists of a
low-power camera such as the CMUcam [16] or Cyclops [11]
connected to an embedded sensor platform such as the Intel
Mote or the Intel Stargate.The sensor platform consists of a
programmable microprocessor, memory, and a wireless inter-
face for communication. Not all cameras in the system are
homogeneous; in general, a small number of higher resolution
cameras may be deployed to assist the low-fidelity cameras in
performing their tasks.

Consider an ad-hoc deployment ofN heterogeneous cam-
era sensor nodes in an environment. An ad-hoc deployment
implies that cameras are quickly placed withouta priori
planning. Given such an ad-hoc deployment, the location,
orientation and the range of each camera sensor needs to be
automatically determined. The goal of our work is to design a
wireless protocol to automatically derive these parameters for
each camera node. Specifically, the calibration protocol needs
to determine the(x, y, z) coordinates of each camera, which
is defined as the coordinates of the center of the camera lens.
The protocol also needs to determine the camera orientation
along the three axes, namely thepan α, tilt β and roll γ
of the camera respect to the left handed coordinate system.
Finally, the protocol needs to determine the field of view of



each camera (i.e., what it can see) and the degree of overlap
with neighboring cameras (i.e., the common regions visible to
both cameras).

Our work assumes that the focal lengthf of camera lens
is known to the calibration protocol. This is a reasonable
assumption since lens parameters are typically published in
the camera specifications by the manufacturer or they can
be estimated offline for each camera prior to deployment
[18]. Further, sensor nodes are assumed to lack specialized
positioning devices such as GPS receivers, which suffer from
5-15m locationing error. Instead, our goal is to devise a
protocol that exploits the inherent imaging abilities of each
camera and the onboard processing on each sensor node to
determine the above calibration parameters.

III. SNAPSHOTDESIGN

Snapshot draws inspiration from a class of vision-based
techniques called extrinsic camera calibration (extrinsic cal-
ibration determines external camera parameters such as its
location and orientation, as opposed to intrinsic or internal
parameters such as focal length and distortion of the lens).
Our technique is similar in spirit to [8], [23], which use four
reference points to determine extrinsic camera parameters;
however, the technique used inSnapshothas been adapted
to the specific needs of sensor networks. The basicSnapshot
protocol involves taking pictures of a small randomly-placed
calibration device. To calibrate each camera, at least four
pictures of the device are necessary, and no three positions
of the device must lie along a straight line. Each position of
the device serves as a reference point; the coordinates of each
reference point are assumed to be known and can be automat-
ically determined by equipping the calibration device with a
locationing sensor (e.g., ultra-sound Cricket receiver). Next,
we describe howSnapshotuses the pictures and coordinates
of the calibration device to estimate camera parameters. We
also discuss how the estimates can be refined when additional
reference points are available.

A. Camera Location Estimation

We begin with the intuition behind approach. Without
loss of generality, we assume all coordinate systems are left
handed, and the z-axis of the camera coordinate system is
co-linear with the camera’s optical axis. Consider a camera
sensorC whose coordinates need to be determined. Suppose
that four reference pointsR1, R2, R3 andR4 are given along
with their coordinates for determining the camera location. No
assumption is made about the placement of these points in the
three dimensional space, except that these points be in visual
range of the camera and that no three of them lie along a
straight line. Consider the first two reference pointsR1 and
R2 as shown in Figure 1. Suppose that point objects placed
at R1 and R2 project an image ofP1 and P2, respectively,
in the camera’s image plane as shown in Figure 1. Further,
let θ1 be the angle incident by the the reference points on the
camera. Sinceθ1 is also the angle incident byP1 andP2 on
the camera lens, we assume that it can be computed using
elementary optics (as discussed later). Givenθ1, R1 andR2,
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Fig. 1. Projection of reference points on the image plane through the lens.
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Fig. 2. Geometric representation of possible camera locations.

the problem of finding the camera location reduces to finding
a point in space whereR1 and R2 impose an angle ofθ1.
With only two reference points, there are infinitely many points
whereR1 andR2 impose an angle ofθ1. To see why, consider
Figure 2(a) that depicts the problem in two dimensions. Given
R1 and R2, the set of possible camera locations lies on the
arc R1CR2 of a circle such thatR1R2 is a chord of the
circle andθ1 is the angle incident by this chord on the circle.
From elementary geometry, it is known that a chord of a circle
inscribes a constant angle on any point on the corresponding
arc. Since we have chosen the circle such that chordR1R2

inscribes an angle ofθ1 on it, the camera can lie on any point
on the arcR1CR2. This intuition can be generalized to three
dimensions by rotating the arcR1CR2 in space with the chord
R1R2 as the axis (see Figure 2(b)). Doing so yields a three
dimensional surface of possible camera locations. The nature
of the surface depends on the value ofθ1: the surface is shaped
like a football whenθ1 > 90◦, is a sphere whenθ1 = 90◦,
and a double crown whenθ1 < 90◦. The camera can lie on
any point of this surface.

Next, consider the third reference pointR3. Considering
pointsR1 andR3, we obtain another surface that consists of
all possible locations such thatR1R3 impose a known angleθ2

on all points of this surface. Since the camera must lie on both
surfaces, it follows that the set of possible locations is given
by the intersection of these two surfaces. The intersection of
two surfaces is a closed curve and the set of possible camera
locations is reduced to any point on this curve.

Finally, if we consider the pair of reference pointsR2 and
R3, we obtain a third surface of all possible camera locations.
The intersection of the first surface and the third yields a
second curve of possible camera locations. The camera lies
on the intersection of these two curves, and the curves can
intersect in multiple points. The number of possible camera
locations can be reduced further to at most4 by introducing
the fourth reference pointR4. Although 4 reference points
give us up to4 possible camera locations, we observe that,
in reality, only one of these locations can generate the same
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projections asR1, R2, R3, andR4 on the image plane. Using
elementary optics, it is easy to eliminate the false solutions
and determine the true and unique location of the camera.

With this intuition, we now present the details of our
technique. Consider a cameraC placed at coordinates
(x, y, z), and four reference pointsR1, ..., R4 with coordinates
(x1, y1, z1) . . . (x4, y4, z4). The line joining the camera C with
each reference point defines a vector. For instance, as shown in
Figure 3(a), the line joiningC andR1 defines a vector

−−→
CR1,

denoted by~v1. The components ofv1 are given by

~v1 =
−−→
CR1 = {x1 − x, y1 − y, z1 − z}

Similarly, the vector~vi joining pointsC andRi is given as

~vi =
−−→
CRi = {xi − x, yi − y, zi − z} 1 ≤ i ≤ 4

As shown in Figure 3(a), letθ1 denote the angle between
vectors ~v1 and ~v2. The dot product of vectors~v1 and ~v2 is
given as

~v1 · ~v2 = |~v1||~v2| cos θ1 (1)

By definition of the dot product,

~v1 · ~v2 = (x1−x)(x2−x)+(y1−y)(y2−y)+(z1−z)(z2−z) (2)

The magnitude of vector~v1 is given as

|~v1| =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

The magnitude of~v2 is defined similarly. Substituting these
values into Equation 2,we get

cos(θ1) =
~v1 · ~v2

|~v1| · |~v2|
(3)

Let θ2, throughθ6 denote the angles between vectors~v1 and
~v3, ~v1 and ~v4, ~v2 and ~v3, ~v2 and ~v4 and ~v3 and ~v4 respectively.
Similar expressions can be derived forθ2, θ3, . . . θ6.

The anglesθ1 throughθ6 can be computed using elementary
optics and vision, as discussed next. Given these angles and the
coordinates of the four reference points, the above expressions
yield six quadratic equations with three unknowns:x,y andz.

A non-linear solver can be used to numerically solve for these
unknowns.

Estimating θ1 through θ6: We now present a technique
to compute the angle between any two vectors~vi and ~vj .
Consider any two reference pointsR1 and R2 as shown in
Figure 3 (a). Figure 3 (b) shows the projection of these points
through the camera lens onto the image plane. The image
plane in a digital camera consists of a CMOS sensor that
takes a picture of the camera view. LetP1 and P2 denote
the projections of the reference points on the image plane as
shown in the Figure 3(b), and letf denote the focal length
of the lens. For simplicity, we define all points with respect
to the camera’s coordinate system: the center of the lens is
assumed to be the origin in this coordinate system. Since
the image plane is at a distancef from the lens, all points
on the image plane are at a distancef from the origin. By
taking a picture of the reference points, the coordinates of
P1 and P2 can be determined. These are simply the pixel
coordinates where the reference points project their image on
the CMOS sensor; these pixels can be located in the image
using a simple vision-based object recognition technique.1 Let
the resulting coordinates ofP1 andP2 be (−px1,−py1,−f)
and(−px2,−py2,−f) respectively. We define vectors~u1 and
~u2 as lines joining the camera (i.e., the origin C) to the points
P1 and P2. Then, the angleθ1 between the two vectors~u1

and ~u2 can be determined by taking the dot product of them.

cos(θ1) =
~u1 · ~u2

| ~u1|| ~u2|

The inverse cosine transform yieldsθ1, which is also the angle
incident by the original reference points on the camera.

Using the above technique to estimateθ1–θ6, we can then
solve our six quadratic equations using a non-linear optimiza-
tion algorithm [5] to estimate the camera location.

B. Camera Orientation Estimation

We now describe the technique employed bySnapshotto
determine the camera’s orientation along the three axes. We
assume that the camera location has already been estimated
using the technique in the previous section. Given the camera
location(x, y, z), our technique uses three reference points to
determine the pan, tilt, and roll of the camera. Intuitively, given
the camera location, we need to align the camera in space so
that the three reference points project an image at the same
location as the pictures takes by the camera. Put another way,
consider a ray of light emanating from each reference point.
The camera needs to be aligned so that each ray of light pierces
the image plane at the same pixel where the image of that
reference point is located. One reference point is sufficient to
determine the pan and tilt of the camera using this technique
and three reference point are sufficient to uniquely determine
all three parameters: pan, tilt and roll. Our technique uses
the actual coordinates of three reference points and the pixel
coordinates of their corresponding images to determine the

1In Snapshotthe calibration device contains a colored LED and the vision-
based recognizer must locate this LED in the corresponding image.



unknown rotation matrixR that represents the pan, tilt and
roll of the camera.

Assume that the camera is positioned at coordinates(x, y, z)
and that the camera has a a pan ofα degrees, a tilt of
β degrees, a roll ofγ degrees. The composite 3x3 matrix
corresponding to matrices representing the pan, tilt and roll
rotations of the camera is denoted byR.

If an object is located at(xi, yi, zi) in the world coordinates,
the object’s location in the camera coordinates(x

′

i, y
′

i, z
′

i) can
be computed via Equation 4. x

′
i

y
′
i

z
′
i

 = R×

[
xi − x
yi − y
zi − z

]
(4)

Intuitively, we can construct and solve a set of linear
equations (see Equation 5) where(x1, y1, z1), (x2, y2, z2), and
(x3, y3, z3) are the world coordinates of3 reference points, and
(x

′

1, y
′

1, z
′

1), (x
′

2, y
′

2, z
′

2), and(x
′

3, y
′

3, z
′

3) are the corresponding
camera coordinates to estimateR, and then estimateα, β, and
γ from R. The three sets of linear equations in Equation 5
have unique solution forRT (since the right-hand-side matrix
is non-singular).

[
x1 − x y1 − y z1 − z
x2 − x y2 − y z2 − z
x3 − x y3 − y z3 − z

]
×RT =

 x
′
1 y

′
1 z

′
1

x
′
2 y

′
2 z

′
2

x
′
3 y

′
3 z

′
3

 (5)

As shown in Figure 4, an object’s location in the camera
coordinates and the projection of the object on the image plane
have the following relation: x

′
i

y
′
i

z
′
i

 =
Di

Dp
×

[
pxi

pyi

f

]
(6)

where:
Di =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 and

Dp =
√

px2
i + py2

i + f2

Di and Dp represent the magnitude of the object to camera
center vector and the projection on image plane to camera
center vector respectively.

Therefore, we can compute the location of an object in
the camera coordinate system using Equation 6. The actual
location of each reference point and its location in the camera
coordinates can then be used in Equation 5 to determine the
rotation matrixR. Given R, we we can obtain panα, tilt β,
and roll as follows:

α =

{
arctan(

r31
r33

) + 180◦ if r31
cos(β) < 0 and r33

cos(β) < 0

arctan(
r31
r33

)− 180◦ if r31
cos(β) >= 0 and r33

cos(β) < 0

arctan(
r31
r33

) otherwise

β = arcsin(r32) (7)

γ =

{
arctan(

r12
r22

) + 180◦ if r12
cos(β) < 0 and r22

cos(β) < 0

arctan(
r12
r22

)− 180◦ if r12
cos(β) >= 0 and r22

cos(β) < 0

arctan(
r12
r22

) otherwise

Eliminating False Solutions: Recall from Section III-A
that our six quadratic equations yields up to four possible
solutions for the camera location. Only one of these solutions
is the true camera location. To eliminate false solutions, we

compute the pan, tilt and roll for each computed location using
three reference points. The fourth reference point is then used
to eliminate false solutions as follows: for each computed
location and orientation, we project the fourth reference point
onto the camera’s image plane. The projected coordinates are
then matched to the actual pixel coordinates of the reference
point in the image. The projected coordinates will match the
pixel coordinates only for the true camera location. Thus, the
three false solutions can be eliminated by picking the solution
with the smallest re-projection error. The chosen solution is
always guaranteed to be the correct camera location.

C. Determining Visual Range and Overlap

Once the location and orientation of each camera have been
estimated, the visual range of cameras and the overlap between
neighboring cameras can be determined. Overlap between
cameras is an indication of the redundancy in sensor coverage
and can also be used to localize and track moving objects.

The visual range of a camera can be approximated as a
polyhedron. The apex of the polyhedron is the location of
the camera’s lens center and height of the pyramid is the
maximum viewable distance of the camera. An object in
the volume of the polyhedron is in the visual range of the
camera. The viewable range of an camera is assumed to be
finite to avoid distant objects appearing as point objects in
images, which are not useful for detection and recognition
tasks. After determining the camera location and orientation
using Snapshot, the polyhedron visual range of each camera
can be determined and computational geometry techniques for
polyhedron intersection can be used to determine the overlap
between cameras.

D. Iterative Refinement of Estimates

While Snapshotrequires only four reference points to cali-
brate a camera sensor, the estimates of the camera location and
orientation can be improved if additional reference points are
available. Suppose thatn reference points,n ≥ 4, are available
for a particular sensor node. Then

(
n
4

)
unique subsets of four

reference points can be constructed from thesen points. For
each subset of four points, we can compute the location and
orientation of the camera using the techniques outlined in the
previous sections. This yields

(
n
4

)
different estimates of the

camera location and orientation. These estimates can be used
to improve the final solution using the median filter method.

This method calculates the median of each estimated param-
eter, namely location coordinatesx, y, z, panα, tilt β, and roll
γ. These median values are then chosen as the final estimates
of each parameter. The median filter method can yield a final
solution that is different from all

(
n
4

)
initial solutions (since the

median of each parameter is computed independently, the final
solution need not correspond to any of the initial solutions).
The median filter method is simple and cost-effective, and
performs well whenn is large.

IV. A SELF-CALIBRATION PROTOCOL

In this section, we describe how the estimation techniques
presented in the previous section can be instantiated into a



simple wireless protocol for automatically calibrating each
camera sensor. Our protocol assumes that each sensor node
has a wireless interface that enables wireless communication to
and from the camera. The calibration process involves the use
of a wireless calibration device which is a piece of hardware
that performs the following tasks. First, the device is used
to define the reference points during calibration—the location
of the device defines a reference point, whose coordinates
are automatically determined by equipping the device with
a positioning sensor (e.g., ultrasound-based Cricket). Second,
the device also also serves as a point object for pictures
taken by the camera sensors. To ensure that the device can
be automatically detected in an image by vision processing
algorithms, we equip the device with a bright LED sensor
(which then serves as the point object in an image). Third, the
devices serves as a “wireless remote” for taking pictures during
the calibration phase. The devices is equipped with a switch
that triggers a broadcast packet on the wireless channel. The
packet contains the coordinates of the device at that instant and
includes a image capture command that triggers a snapshot at
all camera sensors in its wireless range.

Given such a device, the protocol works as follows. A
human assists the calibration process by walking around with
the calibration device. The protocol involves holding the de-
vice at random locations and initiating the trigger. The trigger
broadcast a packet to all cameras in the range with a command
to take a picture (if the sensor node is asleep, the trigger first
wakes up a node using a wakeup-on-wireless algorithm). The
broadcast packet also includes the coordinates of the current
position of the device. Each camera then processes the picture
to determine if the LED of the calibration device is visible to
it. If so, the pixel coordinates of the device and the transmitted
coordinates of the reference point are recorded. Otherwise
the camera simply waits for the next trigger. When at least
four reference points become available, the sensor node then
processes this data to determine the location, orientation and
range of the camera. These parameters are then broadcast
so that neighboring cameras can subsequently use them for
determining the amount of overlap between cameras. Once a
camera calibrates itself, a visual cue is provided by turning on
an LED on the camera so that the human assistant can move
on to other sensors.

V. A N OBJECTTRACKING APPLICATION

In general, the accuracy desired from the calibration phase
depends on the application that will subsequently use this
calibrated sensor network. To determine how calibration errors
impact application accuracy, we consider a simple object local-
ization and tracking example. This scenario assumes that the
calibrated sensor network is used to detect external objects and
track them as they move through the environment. Tracking is
performed by continuously computing the coordinates of the
moving object. A camera sensor network can employ triangu-
lation techniques to determine the location of an object—if an
object is simultaneously visible from at least two cameras,
and if the locations and orientations of these cameras are
known, then the location of the object can be calculated by

D2D1

C1

C2

Image
plane

Image
plane

φ

θ θ
2 1

12D

Object O

Camera

Camera

v
v

1

2

Fig. 5. Object localization using two cameras.

taking pictures of the object and using its pixel coordinates to
compute its actual location.

To see how this is done, consider Figure 5 that depicts an
object O that simultaneously visible in camerasC1 and C2.
Since both cameras are looking at the same object, the lines
connecting the center of the cameras to the object, should
intersect at the objectO. Since the locations of each camera
is known, a triangleC1OC2 can be constructed as shown in
the figure. LetD1 and D2 denote the distance between the
object and the two cameras, respectively, and letD12 denote
the distance between the two cameras. Note thatD12 can be
computed as the Euclidean distance between the coordinates
C1 and C2, while D1 and D2 are unknown quantities. Let
θ1, θ2 and φ denote the internal angles of the triangle as
shown in the figure. Then the Sine theorem for a triangle from
elementary trigonometry states that

D1

sin(θ1)
=

D2

sin(θ2)
=

D12

sin(φ)
(8)

The anglesθ1 and θ2 can be computed by taking pictures
of the object and using its pixel coordinates as follows.
Suppose that the object projects an image at pixel coordinates
(−px1,−py1) at cameraC1, Let f1 denote the focal length of
cameraC1. Then projection vector~v1 = (px1, py1, f) is the
vector joining the pixel coordinates to the center of the lens
and this vector lies along the direction of the object from the
camera center. If~v is the vector along the direction of line
connected the two cameras, the the angleθ1 can be calculated
using the vector dot product:

~v. ~v1 = |~v| × |~v1| × cos(θ1) (9)

The angleθ2 can be computed similarly and the angleφ is
next determined as(180− θ1 − θ2).

Given θ1, θ2 andφ and the distance between two cameras
D12, the values ofD1 andD2 can be computed using the Sine
theorem as stated above.

Given the distance of the object from the cameras (as given
by D1 andD2) and the direction along which the object lies (as
defined by the projection vectors~v1 and~v2), the object location
can be easily computed. Note that the orientation matrices of
the cameras must also be accounted for when determining the
world coordinates of the object using each camera. In practice,
due to calibration errors, the object location as estimated by
the two cameras are not identical. We calculate the mid–point
of the two estimates as the location of the object.

Thus, two overlapping cameras can coordinate with one
another to triangulate the location of an external object. We
will use this object localization application in our experiments



(a) Calibration Device (b) CMUcam+Stargate

Fig. 6. Snapshothardware components.

to quantify the impact of calibration errors on the application
tracking error.

VI. SNAPSHOTERRORANALYSIS

As described in Section IV, locations of reference points are
estimated using a positioning system (ultrasound based Cricket
locationing system) which are further used for calibration. The
estimated locations of reference points have uncertainties due
to errors in ultrasound based range estimates. The average
location error using Cricket (measured in terms of Euclidean
distance) is empirically estimated to be 3-5 cm. The error
in reference point locations impacts the calculated calibration
parameters and we study the sensitivity of calibrated param-
eters to these errors. Consider four reference points with true
locations(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and(x4, y4, z4)
which estimate the location of the camera as(xc, yc, zc) and
orientation angles asα, β and γ. Further, we assume that
the error in each dimension of the reference point location is
specified by a normal distributionN (0, σ2), with zero mean
and varianceσ2. Givenn reference points, an error component
is added to each reference point(xi, yi, zi) as follows,

x′
i = xi + e1; y′

i = yi + e2; z′
i = zi + e3;

where,ei is randomly sampled from the normal distribution
N . The

(
n
4

)
updated reference point subsets are then used

to compute the camera location(x′c, y
′
c, z

′
c) and orientation

parametersα′, β′, γ′. The relative error in calibration as result
of the error in reference point locations is measured as,

locerr =
√

(x′
c − xc)2 + (y′

c − yc)2 + (z′
c − zc)2 (10)

panerr = ||α′ − α|| (11)

tilterr = ||β′ − β|| (12)

rollerr = ||γ′ − γ|| (13)

where,locerr is the relative location error, measured as the
Euclidean distance between the estimated camera locations
and panerr, tilterr and rollerr are the relative orientation
errors of pan, tilt and roll angles respectively.

The sensitivity of the calibration parameters is estimated
by measuring the relative location and orientation errors for
different (increasing) variances of the error distribution. We
test sensitivity forrandom error—errors in each dimension
of every reference point are randomly sampled andcorrelated
error—errors for each dimension are sampled randomly but
are same for all reference points. We present the experimental
results of the sensitivity analysis in Section VIII.

VII. SNAPSHOT IMPLEMENTATION

This section describes our prototype implementation.

A. Hardware Components

The Snapshotwireless calibration device is a Mote-based
Cricket ultrasound receivers equipped with a LED that turns
itself on during calibration (see see Figure 6(a)). We assume
that the environment is equipped with Cricket reference bea-
cons, which are used by a Cricket receiver to compute its
location coordinates during calibration [13].

We use two types of camera sensors in our experiments: the
CMUcam vision sensor [16] and a Sony webcam. The CMU-
cam comprises of a OV6620 Omnivision CMOS camera and
a SX52 micro–controller and has a resolution of 176x255. In
contrast, the Sony webcam has a higher resolution of 640x480.
We use the high resolution webcam to quantify the loss in
accuracy when calibrating low-resolution cameras such as the
CMUcam. Although beyond the scope of the current paper, our
ongoing work focuses on calibrating a second low-resolution
camera sensor, namely the Cyclops [11]. All camera sensors
are connected to Intel Stargates (see Figure 6(b)), which
is a PDA-class sensor platform equipped with a 400MHz
XScale processor and running the Linux operating system.
Each Stargate also has a Intel Mote connected to it for wireless
communication with our Mote-based calibration device.

Finally, we use a digital compass, Sparton 3003D, to
quantify the orientation error during calibration. The compass
has resolution of 0.1 degrees and accuracy of 0.3 degrees.

B. Software Architecture

Our Mote-based calibration device runs TinyOSwith the
Cricket toolkit. TheSnapshotsoftware on the Mote is simple:
each human-initiated trigger causes the Mote to determine its
coordinates using Cricket, which are then embedded in an
“image-capture” trigger packet that is broadcast to all nodes.
using the wireless radio.

Camera Calibration Tasks: Every time a trigger packet is
received from the calibration device, the Stargate sends a set
of commands over the serial cable to capture an image from
the CMUcam. The image is processed using a vision-based
recognition algorithm; our current prototype uses background
subtraction and a connected components algorithm [15] to
detect the presence of the calibration device LED. If the device
is found, the pixel coordinates of the LED and the Cricket
coordinates of the Mote are stored as a new reference point.
Otherwise the image is ignored.

Once four reference points become available, the Stargate
estimates location, orientation and range of the camera. A
non–linear solver based on the interior–reflective Newton
method [5], [6] is used to estimate the camera location. We
use the methods discussed in Section III to eliminate false
solutions, and iteratively refine the location estimate.

Object Localization and Tracking: Finally, we implement
our object localization and tracking (described in Section V)
application on the Stargates. If an object is simultaneously
viewed by two cameras, the cameras exchange their param-
eters, location and orientation, and the objects projection
coordinates on its image place. This information is used by
each camera to localize the object and estimate its location.



Continuous localization can be used at each node to track an
object of interest.

VIII. E XPERIMENTAL EVALUATION

In this section, we evaluate the efficacy of Snapshot, quan-
tify the impact of using Cricket, and the evaluate the impact
of Snapshot on our object tracking application.

A. Experimental Setup

The setup to evaluate the accuracy and sensitivity to system
parameters ofSnapshotconsisted of placing the two types
of cameras, CMUcam and the Sony MotionEye webcam, at
several locations. To simplify accurate location measurements
we marked a grid to place the position sensor objects. Each
camera took several pictures to estimate the parameters. The
difference between the estimated parameter value and the
actual value is reported as the measurement error. The Cricket
sensors on the objects received beacons from a set of pre–
calibrated Cricket sensor nodes placed on the ceiling of a
room. The digital compass was attached to the two cameras
in order to measure the exact orientation angles.

B. Camera Location Estimation Accuracy

To evaluateSnapshot’s performance with camera location
estimation, we place tens of reference points in the space, and
take pictures of these reference points at different locations
and orientations. We measure the location of these reference
points by hand (referred as without Cricket) which can be
considered as the object’s real location and by Cricket [13]
(referred as with Cricket) where we observed a 2–5cm error.

For each picture, we take all the combinations of any four
reference points in view (not any 3 points in the same line),
and estimate camera’s location accordingly. We consider the
distance between the estimated camera’s location and the real
camera’s location as the location estimation error.

As shown in Figure 7(a), our results show: (i) the median
errors using webcam without Cricket and with Cricket are
4.93cm and 9.05cm, respectively; (ii) the lower quartile and
higher quartile errors without Cricket are3.14cm and7.13cm;
(iii) the lower quartile and higher quartile errors with Cricket
are 6.33cm and 12.79cm; (iv) the median filter (referred
as M.F.) improves the median error to3.16cm and 7.68cm
without Cricket and with Cricket, respectively.

Figure 7(b) shows: (i) median errors using CMUcam with-
out Cricket and with Cricket are6.98cm and12.01cm, respec-
tively; (ii) the lower quartile and higher quartile errors without
Cricket are5.03cm and10.38cm; (iii) the lower quartile and
higher quartile errors with Cricket are8.76cm and15.97cm;
(iv) the median filter improves the median error to5.21cm
and10.58cm without Cricket and with Cricket, respectively.

1) Effect of Iteration on Estimation Error:As our protocol
proceeds, the number of available reference points increases.
As a result, the number of combinations of any four reference
points also increases, and we have more location estimations
available for the median filter. Consequently, we can eliminate
tails and outliers better. In this section, we study the effect
of the iterations of our protocol’s runs on camera location
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Fig. 7. Empirical CDF of error in estimation of camera location.
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estimation error by plotting the median versus the number of
available reference points.

Figure 8 shows: (i) the median errors using webcam drop
from 4.93cm to 2.13cm and from9.05cm to 6.25cm as the
number of reference points varies from4 to 16 for without
and with Cricket, respectively; (ii) the median errors using
CMUcam drop from6.98cm to 2.07cm and from12.01cm to
9.59cm as the number of reference points varies from4 to 16
for without and with Cricket, respectively. The difference in
the location estimation errors (with and without Cricket) are
due to the position error estimates in Cricket and also due to
errors in values of camera intrinsic parameters.

C. Camera Orientation Estimation Error

Next, we evaluateSnapshot’s accuracy with estimation of
camera orientation parameters. We used the two cameras,
the CMUcam and the Sony MotionEye webcam, to capture
images of reference points at different locations and different
orientations of the camera. We used estimated location of
the camera based on exact locations on reference points and
Cricket–reported locations of reference points to estimate the
orientation parameters of the camera. The orientation of the
camera was computed using the estimated camera location. We
compared the estimated orientation angles with the measured
angles to calculate error. Figure 9(a) shows the CDF of the
error estimates of the pan, tilt and roll orientations respectively
using the CMUcam camera. Figure 9(b) show the CDF of
the error of the three orientations using Cricket for location
estimation. The cumulative error plots follow the same trends
for each of the orientation angles. The median roll orientation
error using Cricket and without Cricket for camera location
estimations is 1.2 degrees. In both cases, the 95th percentile
error is less than 5 degrees for the pan and tilt orientation
and less than 3 degrees for the roll orientation. The slight
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Fig. 9. Empirical CDF of error in estimating orientations with the CMUcam.

discrepancies in the error measurement of the two cases is
due to the use the digital compass to measure the orientation
of the camera.

Thus, we conclude the Cricket’s positioning errors do not
add significant errors in estimation of camera orientation
parameters. In our experiments, we find that a median location
estimation error of 11cm does not affect the orientation
estimation significantly.

D. Sensitivity Analysis

As described in Section VI, we evaluate the sensitivity
of calibrated parameters to uncertainty in reference point
locations. We varied the standard deviation of the error distri-
bution in each dimension from1cm to 8cm and numerically
computed its impact on the calibration parameters. As shown
in Figure 10(a), the estimated locations are less sensitive to the
correlated error, but are highly sensitive to the random error.
Further, the results in Figure 10(b) shows that: (i) orientation
estimation is insensitive to the correlated error, the mean error
is always very close to zero; and (ii) the orientation estimation
is very sensitive to the random error, the mean error increases
by a factor of four as the standard deviation increases from
1cm to 8cm. The calibrated parameters are less sensitive to
correlated errors as all reference points have the same error
magnitudes and the camera location shifts in the direction
of the error without affecting the estimated orientation. With
random errors in each dimension of the reference points,
all reference points shift to different directions by different
offsets, and as a result, calibration errors are larger. However,
the error in a real Cricket system is neither correlated nor
random, it is somewhere between these two cases, and has
intermediate sensitivity. The previous experimental results
verify this hypothesis.

E. Object Localization

In this section, we study the performance of object local-
ization usingSnapshot. We useSnapshotto estimate camera
locations and their orientations, and then in turn use the
calibrated parameters to triangulate an object via the technique
described in Section V. Similar to Section VIII-B, we use the
empirical CDF of object’s location estimation error to measure
the performance. Our results (see Figure 11) show that: (i)
the median localization error using webcams is4.94cm and
5.45cm without and with Cricket, respectively; (ii) the median
localization error using CMUcams is11.10cm and 11.73cm
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without and with Cricket, respectively; (iii) localization with-
out Cricket outperforms localization using Cricket for all
cameras; and (iv) localization using webcams outperforms that
with the CMUcams due to its higher fidelity.

F. Runtime Scalability

Task Duration(ms)

Snap Image 178± 2
Recognize Object Location 52± 0.1

Location Estimation 18365± 18

Fig. 12. Runtime of different calibration tasks.

Using our prototype implementation of we measure the
runtime of theSnapshotprotocol. Figure 12 reports runtime of
different tasks of theSnapshotcalibration protocol executing
on the Intel Stargate platform with the camera attached to a
USB connector (the transfer of an image on the serial cable
with the CMUcam requires additional time). As seen from
the table, the location estimation task which uses a non–linear
solver, has the highest execution time. The time to calibrate an
individual camera is, 4× (178 ms + 52 ms) – time to snap four
images and recognize the location of object in each and 18365
ms for the location and orientation estimation, which is total
time of 19.285 seconds. Thus, with a time of approximately
20 seconds to calibrate a single camera,Snapshotcan easily
calibrate tens of cameras on the scale of a few minutes.

IX. RELATED WORK

Camera calibration using a set of known reference points
is well studied in the computer vision community. Methods
developed in [8], [18], [23], [24] are examples of techniques
that estimate both the intrinsic and extrinsic parameters of a
camera using a set of known reference points. These efforts
present techniques to estimate the complete set of twelve
parameters and also for a partial set (extrinsic parameters) of



camera parameters.Snapshot, designed to estimate only the
extrinsic parameters, draws inspiration from these techniques
and extends them to suit resource-constrained sensor network
environments and works with uncertainty in reference point
locations. A recent effort [21] also estimates only the extrinsic
parameters with four reference points, with the requirement
that three out of the four are co-linear.Snapshotis a more
general technique and does not impose such a requirement.
Further, unlike [21], we demonstrate the feasibility of our
approach through a detailed experimental evaluation.

Several studies have focused on the design and implemen-
tation of camera sensor networks. SensEye [12] is a multi-tier
camera sensor network that exploits heterogeneous cameras
sensors and computing platforms to provide benefits over
single-tier camera sensor networks. Panoptes [19] is an exam-
ple of video sensor node that implements power-efficient video
delivery mechanisms and techniques to handle long periods
of disconnections. Panoptes nodes can be incorporated in the
SensEye architecture and can also be used in design of single-
tier networks [9]. [20] presents an architecture to quickly
compose sensor networks incorporating multi-modal sensors
(along with video sensors) with optimized application-specific
algorithms.Snapshotcan be used to automatically calibrate
camera sensors used in the networks described above. Several
other efforts [10], [14] have also studied the problem of video
surveillance but without considering resource constraints of
camera sensor networks.

Localization is well studied in the sensor networks commu-
nity [7], [17], [22]. All these techniques assume a sensor node
capable of position estimation. For example, a temperature
sensor can use its RF wireless communication link to send
and receive beacons for location estimation.Snapshotdoes
not require any position estimation capability on the nodes
and directly uses the imaging capability of the cameras for
localization and calibration.

Several positioning and self-localization systems have been
proposed in the literature. Active Badge [1] is a locationing
system based in IR signals, where badges emit IR signals
are used for location estimation. A similar successor system
based on ultrasound signals is the Active Bat [2] system.
Several other systems use RF signal strength measurements,
like RADAR [3], for triangulation based localization. While
most of these techniques are used indoors, GPS [4] is used
for outdoor localization. While any of these methods can be
used by theSnapshotcalibration device instead of the Cricket,
each has its own advantages and disadvantages. Based on
the environment and desired error characteristics a suitable
positioning system can be chosen.

X. CONCLUSIONS

In this paper, we presentedSnapshot, an automated cal-
ibration protocol that is explicitly designed and optimized
for sensor networks. Our techniques draw upon principles
from vision, optics and geometry and are designed to work
with low-fidelity, low-power camera sensors that are typical
in sensor networks. Our experiments showed thatSnapshot
yields an error of 1-2.5 degrees when determining the camera

orientation and 5-10cm when determining the camera location.
We argued that this is a tolerable error in practice since a
Snapshot-calibrated sensor network can track moving objects
to within 11cm of their actual locations. Finally, our measure-
ments showed thatSnapshotcan calibrate a camera sensor
within 20 seconds, enabling it to calibrate a sensor network
containing tens of cameras within minutes.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation grants EEC-0313747, CNS-0219520, CNS-052072
and EIA-0098060.

REFERENCES

[1] Andy Harter and Andy Hopper. A Distributed Location System for the
Active Office. IEEE Network, 8(1), January 1994.

[2] Andy Ward and Alan Jones and Andy Hopper. A New Location
Technique for the Active Office. IEEE Personal Communications,
4(5):42–47, October 1997.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user
location and tracking system. InINFOCOM, pages 775–784, 2000.

[4] R. Bajaj, S. L. Ranaweera, and D. P. Agrawal. Gps: Location-tracking
technology.Computer, 35(4):92–94, March 2002.

[5] T. F. Coleman and Y. Li. On the convergence of reflective newton
methods for large-scale nonlinear minimization subject to bounds.
Mathematical Programming, 67(2):189–224, 1994.

[6] T. F. Coleman and Y. Li. An interior, trust region approach for non-
linear minimization subject to bounds.SIAM Journal on Optimization,
6(2):418–445, 1996.

[7] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-Free
Localization Schemes in Large Scale Sensor Networks. InMOBICOM,
2003.

[8] B. K. P. Horn. Robot Vision. The MIT Press, first edition, 1986.
[9] L.Jiao and Y. Wu and G. Wu and E. Y. Chang and Y. F. Wang.

The Anatomy of a Multi-camera Security Surveillance System.ACM
Multimedia System Journal Special Issue, October 2004.

[10] M. Chu and J. E. Reich and F. Zhao. Distributed Attention for Large
Video Sensor Networks. InIDSS, 2004.

[11] M. Rahimi and D. Estrin and R. Baer and H. Uyeno and J. Warrior.
Cyclops, Image Sensing and Interpretation in Wireless Networks. In
SenSys, 2004.

[12] P. Kulkarni and D. Ganesan and P. Shenoy. SensEye: A Multi-tier
Camera Sensor Network. InACM Multimedia, 2005.

[13] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. InMobiCom, 2000.

[14] R. Collins and A Lipton and T. Kanade. A System for Video Surveillance
and Monitoring. InANS 8th International Topical Meeting on Robotics
and Remote Systems, 1999.

[15] A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital Picture
Processing.J. ACM, 13(4):471–494, 1966.

[16] A. Rowe, C. Rosenberg, and I. Nourbakhsh. A Low Cost Embedded
Color Vision System. InIROS, 2002.

[17] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. InMOBICOM, 2001.

[18] R. Y. Tsai. A Versatile Camera Calibration Technique for High-Accuracy
3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and
Lenses.IEEE T-RA, 3(4):323–344, August 1987.

[19] W. Feng and B. Code and E. Kaiser and M. Shea and W. Feng and L.
Bavoil. Panoptes: A Scalable Architecture for Video Sensor Networking
Applications. InACM Multimedia, 2003.

[20] W. Feng and N. Bulusu and W. Feng. Dissecting the Video Sensing
Landscape. InACM NOSSDAV, 2005.

[21] F. Y. Wang. A Simple and Analytical Procedure for Calibrating Extrinsic
Camera Parameters.IEEE T-RA, 20(1):121–124, February 2004.

[22] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in
Sensor Networks. InWSNA, 2002.

[23] J.-C. Yuan. A general photogrammetric method for determining object
position and orientation.IEEE T-RA, 5(2):129–142, 1989.

[24] Z. Y. Zhang. A Flexible New Technique for Camera Calibration.IEEE
TPAMI, 22(11):1330–1334, November 2000.


