DARTS: Distributed Architecture for Real-Time, Resilient and
Al-Compressed Workflows

Ragini Gupta
University of Illinois at
Urbana-Champaign
Illinois, USA
raginig2@illinois.edu

Tianshi Wang
University of Illinois at
Urbana-Champaign
Illinois, USA
tianshi3@illinois.edu

Klara Nahrstedt
University of Illinois at
Urbana-Champaign
Illinois, USA
klara@illinois.edu

Prashant Shenoy
University of Massachusetts Amherst
Massachusetts, USA
shenoy@cs.umass.edu

Bo Chen
University of Illinois at
Urbana-Champaign
Illinois, USA
boc2@illinois.edu

Sandeep Singh Sandha
University of California, Los Angeles
California, USA
ssandha@ucla.edu

Tarek Abdelzaher
University of Illinois at
Urbana-Champaign
Illinois, USA
zaher@illinois.edu

Jeffrey A. Smith
DEVCOM Army Research Laboratory
Maryland, USA
jeffrey.a.smith1.civ@army.mil

Niranjan Suri
DEVCOM Army Research Laboratory
Maryland, USA
niranjan.suri.civ@army.mil

Shengzhong Liu
University of Illinois at
Urbana-Champaign
Illinois, USA
sl29@illinois.edu

Abel Souza
University of Massachusetts Amherst
Massachusetts, USA
asouza@cs.umass.edu

Mani Srivastava
University of California, Los Angeles
California, USA
mbs@ucla.edu

Maggie Wigness
DEVCOM Army Research Laboratory
Maryland, USA
maggie.b.wigness.civ@army.mil

ABSTRACT

IoT (Internet of Things) sensor devices are becoming ubiquitous in
diverse smart environments, including smart homes, smart cities,
smart laboratories, and others. To handle their IoT sensor data, dis-
tributed edge-cloud infrastructures are emerging to capture, distrib-
ute, and analyze them and deliver important services and utilities
to different communities. However, there are several challenges
for these IoT-edge-cloud infrastructures to provide efficient and
effective services to users: (1) how to deliver real-time distributed
services under diverse IoT devices, including cameras, meteorologi-
cal and other sensors; (2) how to provide robustness and resilience
of distributed services within the IoT-edge-cloud infrastructures to
withstand failures or attacks; (3) how to handle AI workloads are
in an efficient manner under constrained network conditions. To

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ApPLIED 22, July 25, 2022, Salerno, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9280-8/22/07...$15.00
https://doi.org/10.1145/3524053.3542742

address these challenges, we present DARTS, which is composed
of different IoT, edge, cloud services addressing application porta-
bility, real-time robust data transfer and Al-driven capabilities. We
benchmark and evaluate these services to showcase the practical
deployment of DARTS catering to application-specific constraints.

CCS CONCEPTS

« Computer systems organization — Distributed architec-
tures; Real-time system architecture; - Information systems
— Information systems applications; - Computing method-
ologies — Machine learning.

KEYWORDS

IoT, distributed infrastructure, real-time data transfer, computa-
tional offloading, video compression, anomaly detection

ACM Reference Format:

Ragini Gupta, Bo Chen, Shengzhong Liu, Tianshi Wang, Sandeep Singh
Sandha, Abel Souza, Klara Nahrstedt, Tarek Abdelzaher, Mani Srivastava,
Prashant Shenoy, Jeffrey A. Smith, Maggie Wigness, and Niranjan Suri.
2022. DARTS: Distributed Architecture for Real-Time, Resilient and Al-
Compressed Workflows . In Proceedings of the 2022 Workshop on Advanced
tools, programming languages, and PLatforms for Implementing and Evaluat-
ing algorithms for Distributed systems (ApPLIED °22), July 25, 2022, Salerno,

https://doi.org/10.1145/3524053.3542742

Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3524053.
3542742

1 INTRODUCTION

The rapid evolution of Internet-of-Things (IoT) has transformed
most Smart City applications to be distributed in nature with large
data streams from connected sensors, digital machines, communi-
cation devices and users. The data generated from the networked
subsystems require efficient management, real-time analytics and
processing for applications across diverse IoT driven communities;
smart transportation, smart buildings, smart grid, first responder
systems and military operations, to name a few. With the increas-
ing demand and growth of devices, most IoT applications require
interconnectivity among billions of heterogeneous services, which
makes scalability an important concern for the support of ultra
large numbers of IoT services [10; 22].

Today, there are various wired and wireless communication
protocols to support ubiquitous connectivity within disparate IoT
services such as Wi-Fi, LTE, Bluetooth, Ethernet, etc. However,
interoperability among these subsystems still remains a challenge
due to the lack of global standardization in a large networked sys-
tem of systems, which results in siloed applications. The multiple
dimensions of scalability such as horizontal scalability to add or
remove IoT nodes [5; 29] and vertical scalability to increase or
decrease access to computational resources for a given IoT node
[2; 6; 23] have been well-studied in the literature. However, scalabil-
ity in terms of the wide-scale connectivity among IoT services and
applications is still under explored. Additionally, since most IoT
applications are deployed in resource constrained environments, ex-
isting architectures are strictly customized for specific IoT use-cases
[1;9; 12; 13; 25-27], which limits their re-usability and adaptability
to diverse applications.

In a typical IoT architecture, IoT devices like communication
devices and sensors collect and communicate data to a centralized
I0T cloud, which processes the data to render services for different
consumer applications. These sensors are required to ensure data
integrity along with equally reliable transfer of the data to the cloud.
At the communication level of the IoT paradigm, message oriented
event streaming protocols such as Kafka, MQTT (Message Queuing
Telemetry Transport), CoAP (Constrained Application Protocols),
XMPP (Extensible Messaging and Presence Protocol), AMQP (Ad-
vanced Message Queuing Protocol) and the classic HTTP [7; 20]
are utilized for IoT applications to provide large scale connectiv-
ity. These protocols are lightweight and are well-suited for latency
critical applications and for resource constrained environments of
IoT with limited network bandwidth. However, the interoperability
of these protocols for specific application requirements in IoT is
under explored.

Similarly, technologies such as containers (e.g. Docker) are pre-
vailing today as solutions to provide better portability and scalabil-
ity for software deployment. These technologies can be leveraged
in distributed IoT services to reduce the load of IoT deployment
and ensure better reliability. Moreover, machine learning centric
approaches have been well studied in the existing literature [3; 16],
which can be utilized for efficient communication in IoT paradigms
to reduce a significant amount of transferred data in unreliable

and constrained network scenarios. While these technologies are
well-explored in isolation, a unified platform that integrates these
loosely coupled components is yet to be designed to make a some-
what decentralized architecture for IoT that is not limited by specific
constraints of a single application. Due to these requirements, in
this paper we propose a new distributed IoT architecture, called
DARTS, designed for real-time, resilient and Al compressed work-
flows.

DARTS is an [oT edge-cloud infrastructure consisting of different
services: (i) Cross-domain application deployment service (portabil-
ity), (i) Distributed data transfer service for client IoT data streams,
and (iii) AI-Compressed workflow services (computational offload-
ing, video compression, and data integrity). We analyze different
alternative design choices for each of these services and present a
learning experience in designing an end-to-end IoT infrastructure.
We experiment and benchmark each service showing the expected
application overheads, message transfer delays, and throughput
achieved under different scenarios. Through DARTS, our goal is to
highlight the challenges in developing scalable IoT infrastructure
along with different design choices to shape the next generation of
IoT applications.

The contributions of this paper are as follows:

e We propose, in detail, the requirements of a distributed ro-
bust infrastructure for IoT applications.

o To satisfy the requirements, we present DARTS, an architec-
ture consisting of different services that address individual
requirements. We study in detail each service with alterna-
tive choices.

e We benchmark the introduced services to highlight their
pros and cons in real deployments.

The rest of the paper is organized as follows: Section 2 provides
an overview of different requirements for the infrastructure includ-
ing the data computation model and the distributed model. Section
3 introduces the DARTS architecture with it’s integral components
and services. Experimental setup, datasets used in evaluation and
evaluations results are discussed in Section 4. Section 5 presents
the conclusion.

2 REQUIREMENTS

An IoT network refers to network-enabled sensors on devices such
as autonomous cars, weather monitoring systems, smart appli-
ances, wearable and surveillance equipment, that communicate
with other devices without the need for human intervention. Due
to heterogeneity of devices and their sensing modalities, applica-
tions running over these infrastructures have several requirements.
Given its distributed nature, high scalability, real-time processing
(guaranteed response times), reliability, and zero downtime are
the representative characteristics for heterogeneous applications
in dynamic smart city environments. This can be facilitated with
the help of decentralized sense-compute-action infrastructure that
provides end-to-end uninterrupted services, ubiquitous network
connectivity among different subsystems, and highly available ser-
vices.

2.1 Data Computation Model

In a typical smart city deployment, heterogeneous sensing modali-
ties on distributed sensors are collaboratively utilized to perceive

https://doi.org/10.1145/3524053.3542742
https://doi.org/10.1145/3524053.3542742

the physical surroundings, spanning from 1D time-series sensing
data (e.g., temperature, humidity, seismic, acoustic data), 2D image
data, to 3D videos. At more complex environments, an actual de-
ployment will have many of such sensors, with 2D and/or 3D grids
of data (i.e., tensors). The information contained in different sensing
modalities are known to complement each other, thus achieving
more comprehensive understanding of the physical state. To simul-
taneously meet the efficacy, efficiency, and resilience requirements,
the following key problems need to be addressed.

e Information Fusion: To maximally utilize the complemen-
tary information from heterogeneous sensing modalities,
effective sensor data fusion needs to be performed [14; 21].
Considering the Al workload and distributed sensing nature,
the fusion can happen at different processing levels (e.g., in-
put data, latent feature, decision), and at multiple places (e.g.,
sensor, edge server, end user). Further, the fusion mechanism
needs to be resilient such that a reasonable decision can still
be made when only part of the sensed data are available.

o Computation Scheduling: Scheduling decisions should be
made about when and where to process each type of sensor
data to optimize the efficacy-efficiency tradeoff. The data
can either be processed locally at the sensor, offloaded to
the edge/cloud server, or processed in a distributed manner
between IoT-edge-cloud. There exists a tradeoff between the
computation and communication cost.

e Data Transmission: For sensor data that needs to be trans-
mitted to the edge/cloud, effective data compression tech-
niques (e.g., video codecs) should be applied to save the
bandwidth consumption, and corresponding adaptation al-
gorithms should be deployed to handle the network dynam-
ics, such that the response efficiency on the sensor data is
optimized under limited and dynamic network connections.
When using the Al models as the end data consumer, the
optimization objective can be different for the compression
and adaptation algorithms, compared to conventional use
cases where humans play the role of the data consumer.

2.2 Distributed Model

Real-time and resilient data distribution from a large number of
heterogeneous sensors to consumer applications demands careful
adoption of underlying services. Decoupling sensors and consumer
applications is the key for scalability. To that end, publish-subscribe
communication protocols represent an ideal choice.

As a special network, smart city networks are widely distributed
across different industries. As mentioned, these networks are used
to sense, analyze and take decisions in real-time with strict perfor-
mance and data constraints. Due to these requirements, a hierar-
chical network topology can be used to securely connect sensing
devices to edge and larger cloud sites hosting databases, machine
learning (ML) models, and dashboards for data visualization and
discovery.

Modern distributed applications no longer use monolithic ar-
chitectures that scale only by replicating the whole application on
multiple servers. Given the geographical distribution, developers
prefer to architect software as a set of microservices that sepa-
rate the functionality of the application into different services, like
caching and database services. As an example, we can mention

Distributed Inference and Machine Learning. These workloads can
be modeled as microservices composed of multiple stages that can
be split in different microservices and be deployed over multiple in-
frastructural layers. For instance, training can happen in the cloud
where more resources are available, and inference (predictions)
can execute at the edge due to lower latency. That is even more
important in distributed IoT platforms, because of the dynamicity
on the resources available to these applications. To tackle these
problems, we present an architecture to improve and perform tests
and experiments in a distributed IoT network testbed.

3 DARTS

DARTS consists of multiple services to enable distributed IoT in-
frastructure linking hundreds of sensing devices across multiple
geographical locations to applications. The services in DARTS are
(i) cross-domain application deployment, (ii) distributed real-time
data transfer, and (iii) AI-compressed application workflows consti-
tute the integral part of the DARTS infrastructure. These services
are designed and implemented to meet the IoT requirements dis-
cussed in Section 2. Next, we elaborate on each of these services in
detail.

Edge Devices

r—‘_.
/\ (roquests
g | % f
))E.
|||| 0
6@
=4
-

Figure 1: Cross-domain deployment of applications in
DARTS

3.1 Cross-domain Application Deployment
Service (Portability)

Figure 1 presents our tiered distributed IoT architecture. It can en-
hance distributed applications by retrieving more powerful cloud
resources nearer to resource-constrained low-end devices at the
edge, and by offloading compute tasks from end devices to the edge.
Although not all applications can directly benefit from this archi-
tecture, the general and main end result is lower latency and higher
bandwidth to client applications and end users that are directly in-
terested in faster solution times. The architectural topology follows
an hierarchy structure, depicting cloud sites with larger processing
power to the right, and edge sites with low to medium processing
capabilities in the middle (e.g., Edge-1). On the far left, there are the
sensors and the edge devices, possessing lower — but local - com-
puting capacities and some hard physical constraints (e.g., battery
powered devices and low bandwidth intermittent network connec-
tions). Microservices located in all layers can communicate with
one another, besides having the capabilities to offload processing to
nearby edge or cloud sites, and onload when latency is important.

This topology is ideal for orchestrators like Kubernetes that use
container systems such as Docker to run applications on behalf of
users. Containers provide a lightweight method of packaging and
deploying applications uniformly and consistently across different
types of infrastructures because scaling from local to distributed set-
ting is straightforward. This isolation mechanism used by systems
such as Kubernetes leverage Linux kernel features, e.g., names-
paces and cgroups, and at the same time they provide a uniform
view of the underlying infrastructure. However, this infrastructure
also comes with its own challenges, such as state management,
placement, and performance variability.

Figure 1 shows different applications, where each has differ-
ent needs — home, cars, wearable, weather, etc. — and different
geographical locations. Thus, portability in processing and data
communication/exchange are very important characteristics. With
containerization, applications and algorithms are enhanced to work
as services, enabling portability and configuration of complex and
distributed workflows. This portability is important in terms of the
development process and infrastructural compatibility. It also offers
many notable benefits, like fault isolation, ease of management and
security.

3.2 Distributed Real-time Data Transfer Service

To enable data transfer from hundreds of sensors across multiple
geographical locations in DARTS, we adopt a publish-subscribe
(Pub-sub) communication pattern. Pub-sub pattern decouples the
producers (sensors) and consumers (applications), making them
agnostic, which is key for scalability in diverse smart environments.
Many different pub-sub protocols are proposed by researchers,
such as Apache Kafka [11] and MQTT [4], which are widely used
for real-time data distribution services among various endpoints,
wherein the consumers are connected to publishers via brokers.
These protocols primarily structure messages through communi-
cation channels called topics. However, it is challenging to select
a particular protocol since each of them explicitly handles differ-
ent use cases. MQTT is built for IoT use cases with many sensors,
lightweight constrained devices, low delays, and high scalability.
MQTT is typically used for streaming data from edge devices in a
constrained network of tens of thousands of IoT clients. Apache
Kafka provides long-term storage and buffering of messages, re-
processing of messages, and distributed brokers to provide high
availability. Apache Kafka is used for data persistence in order to
build highly scalable data pipelines and data integration across mul-
tiple subsystems and applications. Thus, there is no one-size-fits-all
pub-sub protocol for distributed message delivery in a connected
network of Smart-X (X: city, home, transportation) applications.
In DARTS, we adopt a heterogeneous pub-sub architecture built
over MQTT and Apache Kafka, as shown in Fig 2. Fig 2 shows
different smart city meteorological sensors (such as atmospheric
temperature, humidity, pressure, and wind speed) sensing a region
of interest, communicating sensor data via unified MQTT-Kafka
API to the cloud applications using time-series database InfluxDB
[19], and and web-based visualization dashboard Grafana [8] to
store and monitor data respectively. Our goal via heterogeneous
pub-sub architecture is to provide the best of MQTT and Apache
Kafka based on specific use-case scenarios and to provide data com-
munication even in the case of a single protocol failure. DARTS

provides a unified API that allows users to select either MQTT or
Apache Kafka for real-time data transfer. For use-cases where persis-
tent data storage is preferred, developers can select Apache Kafka,
whereas, for other workflows, MQTT is an ideal choice. Further,
for Apache Kafka, we adopt distributed brokers across different
geographical sites. In case a single protocol failure occurs, DARTS
API uses the available working protocol. Distributed Apache Kafka
can internally handle broker failures automatically. This resilience
to failures is a critical requirement since computing nodes or a net-
work partition can compromise communication among different
endpoints of the system, making the end applications unresponsive.

loT Sensors and Edge Devices Unified API

Distributed Client Locations

Distributed Cloud Applications

Timeseries DB
(InfluxDB)

survelllance cameras)

Figure 2: DARTS with MQTT-Kafka integration

3.3 Al-Compressed Workflow Services

DARTS provides AI-Compressed workflow services that offload
the computation at run-time based on available resources, reduce
the amount of data transferred in constrained networks and enable
data integrity. Next, we discuss each of these capabilities in detail.

3.3.1 Computational offloading. This service is responsible for of-
floading part of the computation from the IoT devices to the edge
server for better efficiency. To achieve this in DARTS, we adopt the
compressive offloading technique proposed in [31], which, in gen-
eral, is an asymmetric autoencoder network for data/intermediate
feature compression. It consists of two parts: (1) A lightweight en-
coder that runs fast on the IoT device to convert the input data
into latent feature maps with reduced spatial dimensions. (2) A
heavyweight decoder that runs on the edge server to reconstruct
the original input by gradually expanding the dimension of the en-
coded feature map. The encoding latency on the IoT device is traded
for saving data transmission delay after compression. Compressive
offloading integrates compressive sensing theory into the neural
network design, which greatly increases the compression ratio
while incurring negligible downstream DNN accuracy degradation.

Specifically, the proposed DARTS infrastructure focuses on com-
pression services for image compression and computational offload-
ing. As shown in Fig. 3, when an IoT device (e.g., the client) captures
an image, it runs the compressive offloading encoder to compress
the image into a feature map with smaller size. Then the feature
map is transmitted through the network to a more powerful edge
server equipped with a GPU. The edge server runs the compressive
offloading decoder and reconstructs the compressed feature map
back to the image. Finally, the downstream neural network (e.g.
an object detection neural network) consumes the reconstructed
image and finishes the application task.

3.3.2 Video Compression. Inrecent years, end-to-end learned video
codecs have been getting more attention by outperforming tradi-
tional video codecs in terms of coding efficiency. Nevertheless, the

-

&' Original Compressive Compressed Compressive Reconstructed Downstream H
Image Offloading Encoder Feature Map Offloading Decoder Image Neural Network

Machine with GPU
(Server)

loT Device (Client) Network

Figure 3: The compression service to compress data on the
client side and decompress data on the server side

Edge Device

LSVC Encoder

Figure 4: The video compression service, LSVC, compresses
video streams on the edge device with the LSVC encoder and
decompresses video streams on the cloud server with the
LSVC decoder

encoding speed of existing learned video codecs is far from support-
ing live streaming due to the slow forward propagation problem.

In DARTS, a compression service, called LSVC, is implemented
that encodes live video sources with a speed that supports live
streaming and guarantees state-of-the-art coding efficiency. As
shown in Figure 4, a live video streaming session involves an edge
device, where the LSVC encoder compresses the raw video into
a bitstream, and a cloud server, where the LSVC decoder decom-
presses the bitstream and the reconstructed video is presented to
the human viewer.

LSVC slices a video into multiple group of pictures (GOP). In each
GOP, there are an I-frame compressed by the image codec, Better
Portable Graphics (BPG), and multiple P-frames compressed by a
deep neural network. The compression network is based on a novel
tree-based compression scheme, which allows parallelization in
compression and trading GPU utilization for encoding speed. LSVC
improves the coding efficiency with a space-time-aware entropy
module that fully exploits spatiotemporal features during video
compression.

3.3.3 Visualization and Anomaly Detection. DARTS extends the
real-time sensor data monitoring and visualization capabilities as
a service for the end users. In order to implement visualization
and monitoring services, Grafana framework is used for real-time
sensor data visualization in the cloud, as shown in Fig. 2. This web-
based visualization platform allows the clients to gain meaningful
insights from real-time sensor data in the cloud [9]. Grafana is
connected to a time-series database in the cloud, InfluxDB, that
stores multi-modal, time-stamped sensor data. In addition to sensor
data visualization, we leverage monitoring capabilities for the users
by providing anomaly detection services in the cloud. It is worth
mentioning that weather applications rely on sensors that are de-
ployed in rural areas under harsh atmospheric conditions which
makes them highly prone to breakage and malfunctioning. This
may cause erroneous measurements at the data collection site or
data corruption during the transmission process, which can eventu-
ally misinform the consumer applications. In order to ensure sensor
data integrity and data quality, anomaly detection methods using
unsupervised machine learning is applied to proactively identify
irregularities and deviations in the real-time sensor data. Due to

the lack of ground truth labels for meteorological sensors, we apply
Isolation Forest Method [17], an unsupervised machine learning
algorithm to filter out anomalies from the sensor data.

4 EXPERIMENTAL EVALUATION

In this section, we elaborate on the experimental designs, datasets,
and metrics used for multiple application scenarios to evaluate
the proposed services of DARTS. For distributed real-time data
transfer services, a cluster of distributed broker nodes with increas-
ing number of producer-consumer applications is implemented
to take measurements for network latency and throughput. For
visualization and anomaly detection service, we demonstrate the
performance of the anomaly detection method under different levels
of anomaly distribution in the time-series sensor data. For compu-
tational offloading services, the proposed scheme is compared with
existing compression algorithms with respect to evaluation metrics
such as encoding-decoding time, network transmission latency, and
end-to-end latency. For video compression services, the presented
algorithm is evaluated with various baseline approaches in Wifi and
Wifi (lossy) conditions, to compute the performance with respect
to the rebuffering rates.

Finally, these application services were containerized using Docker
(20.10) containers, so portability among the edge sites is assured.
By using containers, we guarantee consistency and isolated envi-
ronment for all workloads, besides repeatability and automation
while running the experiments. Given the nature of some of these
applications, containers allow for easier collaboration, modular-
ity, and scalability. With such features, applications are ready to be
deployed in distributed orchestrators such as Kubernetes. This char-
acteristic is key when running heterogeneous application services
and limited number of resources are available.

4.1 Experimental Setup

Distributed Real-time Data Transfer Services. We benchmark
the performance of heterogeneous pub-sub architecture by simulat-
ing parallel producers and consumers, which applies to the scenario
of having multiple sensors and processing applications. For Apache
Kafka, we used v2.14, and for MQTT, we used Mosquitto message
broker v1.3. To measure performance for a single broker, we sim-
ulate producers and consumers on a Intel Core 19-9820X CPU @
3.30GHz server machine having 20 cores running Linux.

Video Compression. We validate the effectiveness of our ap-
proach by pushing video streams to the cloud server from the edge
device over wireless networks. The edge device runs the video
encoder on a Linux laptop with an Intel Core i9-8950HK CPU @
2.90GHz and one NVIDIA GeForce GTX 1080 GPU. The cloud server
runs the video decoder on a Linux desktop equipped with an Intel
Core i7-9700K CPU @ 3.60GHz and two NVIDIA GeForce RTX 2080
Ti GPU. We use TCP to transmit the bitstream generated by differ-
ent codecs naively. The frame rate of the video stream is configured
to 30 fps. The edge and the cloud are placed inside two campus
buildings. The edge device is connected to the network through
WiFi while the client is connected via a 1Gbps Ethernet cable.
Computational Offloading. We deploy the encoder part of the
compressive offloading framework on a Raspbery Pi 4 and the
decoder part on a desktop with an Intel 19-9960X CPU 3.10GHz and
a Nvidia GTX 2080 Ti GPU. We conduct the experiments under the

network between the MSA testbed (see details in Sec. 4.2.1) and
UIUC (around 1,000 miles distance).

4.2 Datasets

4.2.1 Sensor Data for visualization. Meteorological data sets were
provided by the Atmospheric Science Center through the U.S. Army
Combat Capabilities Development Command Army Research Labo-
ratory Multipurpose Sensing Area (MSA), with cooperation from
the USDA- Agricultural Research Service Jornada Experimental
Range. Real time sensor data is collected from the MSA testbed
real-time visualization, monitoring and anomaly detection service.
The dataset consists of time-stamped weather parameters collected
for a period of 1 month from sensors such as temperature, humid-
ity, barometric pressure, sonic anemometer, soil temperature and
solar irradiance sensor. These sensors are deployed at multiple lo-
cations within the New Mexico region. In the scope of this work,
we limit our study to a subset of the collected sensor data i.e., at-
mospheric temperature and humidity. The sampling frequency of
these atmospheric sensors is 1 Hz.

4.2.2 Image for vehicle recognition. We place 3 cameras across
a field in a state park near UIUC. We also deploy 5 Raspberry
Shakes which are equipped with seismic sensors in that field and
collect the sensor recordings. The sensor recordings are processed
by the Raspberry Shakes to perform vehicle recognition. A positive
detection triggers the nearby camera to take a photo and then
offload the photo to the edge server (a laptop) which runs YOLOv5
for image-based vehicle recognition. We collect data of 3 different
types of vehicles, including a compact sedan, a sports car, and a
mid size SUV.

4.2.3 Video for live streaming. We evaluate the presented video
compression approach on the UVG dataset [18] containing 16 ver-
satile 4K test video sequences captured at 50/120 fps.

4.3 Metrics

Distributed Real-time Data Transfer. The objective of the per-
formance evaluation for distributed streaming was to compare the
performance of the two IoT protocols, i.e., MQTT and Kafka with
respect to metrics such as network throughput and end-to-end
latency (in ms) for sending and receiving messages between the
publishers-subscribers. Network throughput, on the other hand, is
computed as the ratio of the total number of messages communi-
cated per unit period of time among the distributed clients.
Video Compression. In video compression, we consider metrics
of video quality measured by Peak-Signal-to-Noise Ratio (PSNR),
encoding throughput calculated as the ratio of the bits per pixel
used in compression to the frame rate of streaming, rebuffering
ratio and frame rate.

Computational offloading. We evaluate the end-to-end latency
as the metric, which includes the computation latency on the client
side, network transmission latency and the computation latency on
the server side.

4.4 Results

Distributed Real-time Data Transfer Service. We first bench-
mark the delay in messages as they transfer through the pub-sub
system. The results for transferring 100 messages (of size 1 MB

each) for a single publisher-subscriber are shown in Fig 5. These
delays are measured on a machine discussed in Section 5.4. The
publisher and subscriber clients are running locally on the server
machine itself. Hence, these delays do not measure the network
variations and allow users to directly compare Apache Kafka and
MQTT protocols in the same settings. Average Apache Kafka delays
(~3ms) are higher than the average MQTT delays (~1.2 ms). This
is because Apache Kafka stores each message persistently on the
disk as well, which contributes to the extra delay.

To benchmark the delays in distributed Apache Kafka brokers,
we set up two brokers running on separate machines. The round-
trip delay in publishing and receiving a message from a particular
topic is dependent on the network delays between the publisher,
subscriber clients, and the broker elected as the leader to store the
topic partitions. To have a topic stored across brokers, we create
a distributed topic. We measure delays for both wired and Wi-Fi
connectivity between brokers. The results are shown in Fig. 6. As
seen, the average delays are smaller with LAN connectivity, and
with Wi-Fi connectivity, the delay spread has a long tail. These
delays are very much dependent on the network characteristics.
The distributed fault tolerance pub-sub system such as Apache
Kafka comes at an extra cost for the network delays between the
leader broker and the clients.

Next, we benchmark the throughput variation on both MQTT
and Apache Kafka as the number of publisher-subscribers is varied.
We increase the number of publishers and subscribers from 1 to 100
and measure throughput as the number of messages transferred by
each publisher per second. In these experiments, we use a single bro-
ker for Apache Kafka, and the publisher and subscriber clients are
running locally on the server machine itself. The results are shown
in Fig. 7. As the number of publishers and subscribers increases,
the average throughput per publisher decreases. This happens as
the broker resources are throttled with increasing messages.

Further, we see that MQTT has a higher throughput initially, as
the messages are not permanently stored as done by Apache Kafka.
However, as the number of publisher-subscriber increased beyond
50, we see similar throughput in both protocols. These experiments
show that the persistence storage of messages in Apache Kafka
comes with a cost of more delays and less throughput in comparison
to MQTT. Thus, our heterogeneous pub-sub architecture allows
users to select their ideal choice for different use-cases. To handle
protocol failures, we depend on the availability of another protocol.
We adopt a timeout based on expected network delay and switch
to a different protocol if message transfer does not succeed using

the current protocol.
Visualization and Anomaly Detection Services.Real-time vi-

sualization application is implemented with Grafana for environ-
mental monitoring using atmospheric sensors. Grafana provides
web-based monitoring capabilities as shown in Fig. 8, which il-
lustrates the real-time weather telemetry for temperature and hu-
midity sensors collected over a span of few hours on one day. We
leverage these visualization capabilities by integrating real-time
anomaly detection application for the clients. Isolation Forest [17]
algorithm is used for detecting anomalies by filtering out anomaly
samples that are characterized as rare and different in the collected
time-series data. Since the variability in real-time humidity and tem-
perature sensor data is limited, we generate synthetic deviations in

o 14 i 12 1
512 [ﬁm " |
210 | 2
" . n 8
£ 8 | B £
- 6 s 6
° | | ° a
2, gl ER

2, 2

o 2 4 6 8 10 0.0 05 10 15 20 25 3.0

Message delay (ms) Message delay (ms)

(a) Apache Kafka Delays (b) MQTT Delays

Figure 5: Apache Kafka and MQTT delays for a single broker

1 50
v 20 n |I
& I & 40
15 i Pl 1
[v
£10 1 £ ||.
4 N
2 MM Y

0 L1 0

0 2 4 6 8 10 0 5 10 15 20 25 30

Message delay (ms) Message delay (ms)

(a) Apache Kafka Delays on LAN (b) Apache Kafka Delays on Wi-Fi

Figure 6: Apache Kafka delays for two distributed brokers

3000 Il Kafka
Em MQ

2500 ||

o

2

£2000-

[=2]

3 I II

2 1500+

=

IS

1 10 70 80 90 100

20 30 40 50 60
Number of Publisher-Subscriber Clients
Figure 7: Throughput vs. number of publisher-subscriber
clients for Apache Kafka and MQTT

the dataset to study anomalies emerging from sensor malfunction,
incorrect operation or failures in data collection pipelines. These
synthetic anomalies are injected in 10% of the sensor data using
Gaussian noise distribution, with varying levels of noise parameters
for mean (¢) and standard deviation (o) as illustrated in Fig. 9. Fig.
10 demonstrates the accuracy of the Isolation Forest algorithm for
different values of noise mean and standard deviation. The results
indicate that the algorithm performs well with an accuracy of above
85% for noise distribution with higher standard deviation (and noise
spread), that is, for noise mean and standard deviation values above
1.5. Moreover, the accuracy of the algorithm converges at 91% for
the noise mean and standard deviation values above 2.7. This indi-
cates that the algorithm is efficient for identifying anomalies that
exhibit large amount of variation in the time-series data, and af-
ter reaching a convergence point the algorithm becomes robust to
higher levels of anomaly distribution in the dataset.

Computational offloading. We compare compressive offloading,
for computational offloading, to JPEG, which is a commonly used

44

42

40

) g
98 382.
£ % 2
: ;
£ 38 T
S 6

32
5

30

N N 0 N N]
BN N T N L

Time

Figure 8: Temperature and humidity sensor data distribution

Noise Distribution p=0.5, 0=0.01 Noise Distribution p=2.0, 0=0.01

44 « anomalous points 0] * 5 « anomalous points
. normal points ’ « normal points
a2{ &
_ 40
=
38
2
B 36 S,
£ '«
T3 w ¥
-
fo gt
3 ; A
&) v,
30 - Fon L
275
4 5 6 7 8 9 0 11 a 6 8 10 12
Temperature (in C) Temperature (in C)
Noise Distribution p=0.0, 6=0.5 Noise Distribution p=0.0, 0=2.0
a4 . « anomalous points | 45.0 + « anomalous points
2 normal points X3 .+ normal points
42 425 .
407 .-~ 40.0
s 3
c38 £375
2 2
5 36 5 35.0
£ 13
5
234 T35
32 £ 30.0
0 1 275
PR 6 7 8 o 10 11 2 a 6 8 10 12 14 16

Temperature (in C) Temperature (in C)

Figure 9: Gaussian noise-contaminated anomalies on sensor
data

—— 4, 0=0.01
=== 0,u=0.00 -

¢} ©
w o

Accuracy
[e:]
o

05 10 15 20 25 30
Noise parameters

Figure 10: Accuracy of Isolation Forest Algorithm for varying
noise parameters (¢ and o)

lossy image compression codec. We profiled the time cost of each
step as well as the compressed image size and provide results in
Table 1. The results show that compressive offloading can save
the encoding and decoding time cost compared with JPEG. As

compressive offloading has the asymmetric encoder-decoder design
which enables the client device (a low-end IoT device) to run a very
light-weight encoder, the speed of the encoder from compressive
offloading outperforms JPEG on the IoT device (a Raspberry Pi 4).
Since the edge device is equipped with a GPU, it can still run the
relatively heavy-weight deep neural network decoder very fast,
which outperforms the speed of the JPEG decoder. Compressive
offloading also achieves a higher compression ratio than JPEG. The
end-to-end latency of the compressive offloading is only 42.46% of
the latency of JPEG.

Video Compression. We compare our video compression ap-
proach, LSVC, to four baselines categorized as traditional video
codecs (H.264 [28] and H.265 [24]) and learned video codecs (DVC
[15] and RLVC [30]). For H.264 and H.265, they adopt the “LDP
very fast” mode and the quality parameter Q=15,19,23,27 as config-
ured in DVC [15].Figure 11(a) shows the live coding efficiency of
our approach and baselines. Our approach performs competitively
to H.264, H.265, and DVC when the encoding throughput is low
(less than 0.01 bit/s) and significantly outperforms others when the
encoding throughput is higher. Figure 11(b) (over "WiFi (Lossy)")
compares the live coding efficiency of our approach and baselines.
The live coding efficiency of our approach is slightly outperformed
by DVC when the encoding throughput is low. As the encoding
throughput increases, the live coding efficiency of our approach
improves and is comparable to H.264 and H.265. Figure 12 presents
the live streaming metrics, the rebuffering rate, the frame rate, and
the start-up latency of our approach compared to baselines. In Fig-
ure 12(a) over "WiFi", our approach achieves a rebuffering rate of
roughly 0 like H.264 and H.265. The rebuffering rate of RLVC, being
over 0.3, is much higher than other baselines. In Figure 12(b) over
"WiFi", our approach, H.264 and H.265 can all achieve a frame rate
of 30 fps in live streaming. The frame rate of DVC is roughly 25
fps, and that of RLVC is no higher than 20 fps. Figure 12(a) over
"WiFi (lossy)" shows the rebuffering rate of various approaches. The
rebuffering rates of LSVC, H.264 are H.265 significantly increased
by 0.1-0.2 while the rebuffering rate of RLVC is slightly affected.
Figure 12(b) over WiFi (lossy) shows that the frame rates of LSVC,
H.264, and H.265 are roughly reduced by 5 fps while the frame rates
of DVC and RLVC are almost not affected.

35 35
@34 tsve | @3¢ Lsvc
Zi3 33
s H264 | = H.264
=32 —=— H265 | =32 —s— H.265
k! —— DVC 31 —— DVC

30 —+— RLVC 30 —+— RLVC

0.01 0.02 0.01 0.02

Encoding Throughput Encoding Throughput

(a) WiFi (b) WiFi(Lossy)

Figure 11: The live coding efficiency of LSVC and baselines
under two network conditions

5 CONCLUSION

Designing a scalable and resilient system for distributed IoT appli-
cations is challenging due to a plethora of choices. Through DARTS,

A Lsvc H.265 [N RLVC EA Lsve H.265 KX RLVC
BE=3 H.264 [@@™ DVC BE=3 H.264 [@ DVC

ml
4 N el ¢ 1L 1
LN W R N

WiFi (lossy) i WiFi (lossy)

7%

69695

15}

6969626

Do

=pSo30203030303080503
T pa2424230242990:

E\HHHHHHHHH

(a) Rebuffering Rate (b) Frame Rate

Figure 12: Live streaming metrics of LSVC and baselines
tested on the UVG dataset. The rebuffering rate of LSVC
is close to 0 like H.264 and H.265. The frame rate of LSVC
reaches 30 fps like H.264 and H.265

Table 1: Comparison of compressive offloading and JPEG

Compressive JPEG
Offloading

42.78 ms (6.79
ms on edge

43.33 ms (5.64
ms on edge

Encoding Time Cost

server) server)
Decoding Time Cost 2.20 ms 6.84 ms
Network Transmission 71.88 ms 219.53 ms

Latency

Compressed Image Size 184 KB (2.18%) | 562 KB (6.65%)

End-to-end Latency 116.86 ms 275.25 ms

we present an architecture composed of different services for appli-
cation deployment across infrastructure (portability), data transfer
across applications, and Al-driven system capabilities. For each of
these services, we present our adopted choices along with detailed
experiments to highlight their pros and cons. For Al-driven services,
we presented the benefits of integrating video compression, compu-
tation offloading, and data integrity in DARTS. Through DARTS, we
demonstrate a wide-scale distributed infrastructure that maximizes
the interoperability and flexibility required by heterogeneous IoT
real-time applications.

ACKNOWLEDGMENTS

Research reported in this paper was sponsored in part by the DEV-
COM Army Research Laboratory under Cooperative Agreement
W911NF-17-2-0196 (ARL IoBT CRA). The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S.Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation herein. We thank Robert Brice, Erick Reynoso, Mark Spy-
chala, Gordon MacDonald, Pieter Haines, Jeff Swanson, Ed Creegan,
and Sean D’Arcy for their help during the course of the DARTS
design.

REFERENCES

(1]

(2]

(3]

(4]

(5]
(6]

[10]

[11]

[12]

[13]

[14

[15]

[16]

A. Al-Alj, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar. A smart home
energy management system using iot and big data analytics approach. IEEE
Transactions on Consumer Electronics, 2017.

A.S. AlRawahi, K. Lee, J. Robinson, and A. Lotfi. Enabling exclusive shared access
to cloud of things resources. TOPIC "18, New York, NY, USA, 2018. Association
for Computing Machinery.

J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier. An energy efficient iot data
compression approach for edge machine learning. Future Generation Computer
Systems, 2019.

A. Banks and R. Gupta. Mqtt version 3.1.1. oasis standard. 2014.

R.Buyya and S. N. Srirama. Internet of Things (IoT) and New Computing Paradigms.
2019.

J. A. C. Cabré, D. Precup, and R. Sanz. Horizontal and vertical self-adaptive cloud
controller with reward optimization for resource allocation. In 2017 International
Conference on Cloud and Autonomic Computing (ICCAC), 2017.

M. A. A. da Cruz,]. J. P. C. Rodrigues, P. Lorenz, V. V. Korotaev, and V. H. C.
de Albuquerque. In.iot—a new middleware for internet of things. IEEE Internet
of Things Journal, 2021.

Grafana Labs. Grafana - the open platform for analytics and monitoring. 2022.

R. Gupta, K. Nahrstedt, N. Suri, and J. Smith. Svad: End-to-end sensory data
analysis for iobt-driven platforms. In 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT), 2021.

J. Koh, S. Sandha, B. Balaji, D. Crawl, I. Altintas, R. Gupta, and M. Srivastava.
Data hub architecture for smart cities. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, SenSys "17, New York, NY, USA, 2017.
Association for Computing Machinery.

J. Kreps. Kafka : a distributed messaging system for log processing. 2011.

R. Kridalukmana, A. F. Rochim, and F. Ramezani. Iot microservice architecture
for iotaas device users. In 2021 International Conference on High Performance Big
Data and Intelligent Systems (HPBD IS), 2021.

S.Li, J. Chen, H. Yu, Y. Zhang, D. Raychaudhuri, R. Ravindran, H. Gao, L. Dong,
G. Wang, and H. Liu. Mf-iot: A mobilityfirst-based internet of things architec-
ture with global reach-ability and communication diversity. In 2016 IEEE First
International Conference on Internet-of-Things Design and Implementation (IoTDI),
2016.

S. Liu, S. Yao, J. Li, D. Liu, T. Wang, H. Shao, and T. Abdelzaher. Giobalfusion:
A global attentional deep learning framework for multisensor information fu-
sion. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2020.

G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao. Dvc: An end-to-end
deep video compression framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

T.Lu, W. Xia, X. Zou, and Q. Xia. Adaptively compressing IoT data on the resource-
constrained edge. In 3rd USENIX Workshop on Hot Topics in Edge Computing

[17]

(18

(19]

[20]

[
-

[22

[23

[24]

[25]

[26

[27]

(28]

[29]

[30]

[31

(HotEdge 20). USENIX Association, June 2020.

H. Ma, B. Ghojogh, M. N. Samad, D. Zheng, and M. Crowley. Isolation mon-
drian forest for batch and online anomaly detection. In 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2020.

A. Mercat, M. Viitanen, and J. Vanne. Uvg dataset: 50/120fps 4k sequences for
video codec analysis and development. In Proceedings of the 11th ACM Multimedia
Systems Conference, 2020.

M. Nasar and M. A. Kausar. Suitability of influxdb database for iot applications.
International Journal of Innovative Technology and Exploring Engineering, 2019.
A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng. Iot middleware: A
survey on issues and enabling technologies. IEEE Internet of Things Journal, 2017.
S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava. Time awareness in
deep learning-based multimodal fusion across smartphone platforms. In 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI), 2020.

C. Sarkar, A. U. Nambi S. N, R. V. Prasad, A. Rahim, R. Neisse, and G. Baldini.
Diat: A scalable distributed architecture for iot. IEEE Internet of Things Journal,
2015.

S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya. Elastic load balancing for dynamic
virtual machine reconfiguration based on vertical and horizontal scaling. IEEE
Transactions on Services Computing, 2019.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on circuits and systems
for video technology, 22(12), 2012.

A. Taivalsaari and T. Mikkonen. A taxonomy of iot client architectures. IEEE
Software, 2018.

P. Tsiachri Renta, S. Sotiriadis, and E. G. Petrakis. Healthcare sensor data man-
agement on the cloud. In Proceedings of the 2017 Workshop on Adaptive Resource
Management and Scheduling for Cloud Computing, ARMS-CC °17, New York, NY,
USA, 2017. Association for Computing Machinery.

S. Wang, Y. Hou, F. Gao, and S. Ma. A novel clock synchronization architecture

for iot access system. In 2016 2nd IEEE International Conference on Computer and
Communications (ICCC), 2016.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.
264/avc video coding standard. IEEE Transactions on circuits and systems for video
technology, 13(7), 2003.

J. Wu, Q. Liang, and E. Bertino. Improving scalability of software cloud for com-
posite web services. In 2009 IEEE International Conference on Cloud Computing,
2009.

R. Yang, F. Mentzer, L. Van Gool, and R. Timofte. Learning for video compression
with recurrent auto-encoder and recurrent probability model. IEEE Journal of
Selected Topics in Signal Processing, 2020.

S.Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher. Deep compressive
offloading: Speeding up neural network inference by trading edge computation
for network latency. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020.

	Abstract
	1 Introduction
	2 Requirements
	2.1 Data Computation Model
	2.2 Distributed Model

	3 DARTS
	3.1 Cross-domain Application Deployment Service (Portability)
	3.2 Distributed Real-time Data Transfer Service
	3.3 AI-Compressed Workflow Services

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Datasets
	4.3 Metrics
	4.4 Results

	5 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 45.21, 718.98 Width 516.96 Height 18.55 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 45.2052 718.9761 516.9624 18.5458

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 4
 9
 8
 9

 1

 HistoryList_V1
 qi2base

