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This paper presents the design and implementation of Ferret, a system for locating noma-
dic augmented with RFID tags and visually displaying them to a user in real-time. We pres-
ent a novel algorithm to infer location of tagged objects using the location of a camera and
reader that observes them. We also present techniques to refine location estimates using
multiple observations and a method to display and update object locations on a video cam-
era screen. An experimental evaluation of the Ferret prototype shows that (i) Ferret can
refine object locations to only 1% of the reader’s coverage region in less than 2 min with
small error rate (2.22%); (ii) Ferret can detect nomadic objects with 100% accuracy when

the moving distances exceed 20 cm; and (iii) Ferret is robust against different movement
patterns of user’s mobility.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

RFID is a promising new electronic identification tech-
nology that enables objects to be equipped with lost cost
identification tags. The technology, which is designed to
replace bar codes [12], comprises tags with numeric codes
to uniquely identify each object by querying it wirelessly.
It is envisioned that all objects that have a bar code today
(e.g., books, clothing, food items) will have self-identifying
tags in the coming years. This paper proposes a novel mo-
bile multimedia application that lies at the intersection of
two trends: the ubiquity of RFID tags and the availability of
inexpensive digital cameras and camcorders with wireless
networking capabilities. Specifically we propose equipping
digital cameras with mobile RFID readers so that the com-
bined recording device can capture an image stream as
well as identities and locations of all RFID-tagged objects
contained within each image. Users can query the video
in real-time to determine the locations of RFID tagged ob-
jects in the captured video. Thus, a user can point the
camera at a bookshelf and query for the location of a mis-
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placed book, and the application responds by displaying an
outline of the likely location in the captured video. Simi-
larly, such a device can be used by mobile robots to con-
duct autonomous searches operations. Retail stores can
use such devices to proactively generate missing object
alerts upon detecting the absence of an object from a store
shelf and display a video of the action that triggered the
alert.

A key hurdle in implementing such an application is
that RFID tags are self-identifying but not self-locating—
upon being queried, a tag can report its identify but not
its location. If multiple tagged objects are present within
an image, it is not possible to distinguish between these
objects or pinpoint their individual locations. To accurately
pinpoint an object in an image (e.g., to pinpoint a mis-
placed book on a bookshelf), the application needs to
determine both the object identity and its location.
Although numerous locationing technologies exist such
as GPS and ultrasound [10,13,14], it is generally infeasible
to equip every tagged with a positioning device in addition
to a tag due to reasons of cost, form factor and limited bat-
tery life. Thus, we must somehow exploit passive RFID tags
to provide both location and identification information.
The design of such a locationing technique for passive RFID
tags is the primary contribution of this paper.
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In this paper, we present a system called Ferret that uses
a video camera and a mobile RFID reader to provide a loca-
tioning and identification support for pervasive multime-
dia. Specifically, Ferret uses the location and directionality
of RFID readers to infer the locations of nearby tags. It ex-
ploits the mobility of users and observations of the same
object from multiple vantage points to further refine the in-
ferred object location. Object locations are displayed by
drawing an outline of the probable location on the video
display. The display is continuously updated as the user
moves through the environment using a continuous stream
of tag readings to refine the location.

We have implemented a prototype of Ferret and have
used it to conduct a detailed performance evaluation. Our
results show that (i) Ferret can refine object locations to
only 1% of the reader’s coverage region in less than 2 min
with small error rate (2.22%); (ii) Ferret can detect nomadic
objects with 100% accuracy when the moving distances ex-
ceed 20 cm; and (iii) Ferret works with a wide variety of
user mobility patterns.

The rest of this paper is structured as follows: Section 2
presents the architecture of Ferret, while Section 3 pre-
sents our online RFID locationing algorithm. Section 4 pre-
sents our implementation and Section 5 experimental
results. Finally, Sections 6 and 7 present related work
and our conclusions.

2. Ferret architecture

In this section, we first present the basic idea behind
Ferret, followed by a discussion of system requirements
and assumptions, and the basic algorithm used by Ferret.

2.1. Basic idea

The basic operation of Ferret is illustrated in Fig. 1. As
indicated earlier, Ferret employs a handheld camera with
an embedded RFID reader, and records images as well as
identities of nearby RFID tags for each recorded image.
The user can pose a query for an object of interest, and
the system in real-time updates the camera’s display with
an outline of the probable location of that object (see
Fig. 1). Since the knowledge of the object location can be
imprecise, Ferret displays a bounding box rather than a
single point (the centroid) to depict the object location.
The figure depicts a user looking for a soup can in an office.
After scanning the room, the system displays a small re-
gion containing the soup can.

1

Person points portable
camera at objects

2.2. System requirements

A system such as Ferret imposes several design
requirements.

2.2.1. Scalability

Since RFID tags will become ubiquitous in the coming
years, it is likely that even a small room will contain hun-
dreds of tagged objects (for instance, a bookshelf with
tagged books or a closet with tagged clothing). It is essen-
tial that Ferret should scale to environments with hun-
dreds of tagged objects—in particular, it should be able to
continuously detect and improve the location of each
sensed object by fusing a stream of noisy, and imprecise
readings from the RFID reader to formulate a proposition
of the object’s location.

2.2.2. Locationing

Although RFID tags do not have any means to determine
their locations, we assume that the camera contains a loca-
tioning device such as GPS. This is a reasonable assumption
since the latest generation of cameras contain onboard GPS
receivers to stamp each image with the GPS coordinates (to
record the location where the picture was taken). Specifi-
cally we assume that the Ferret recorder contains a loca-
tioning device and a digital compass to its record the
location and orientation (pan, tilt and roll), respectively.

The key insight in Ferret is to use the location and ori-
entation of the camera/reader to determine the location
of objects in its vicinity. In essence, whenever a tag is read
by a reader, it follows that it is contained within the sens-
ing range of the reader; thus it’s location can be narrowed
to a volume comprising the reader’s range. Multiple obser-
vations from different vantage points allow the location
estimates to be further refined. By maintaining a history
of tags read by the system, Ferret can progressively narrow
the region containing the object. This is a simple yet ele-
gant technique for inferring the location of passive RFID
tags without expensive, battery-powered locationing
capabilities.

2.2.3. Location storage and refinement

In order to refine past estimates using new observa-
tions, Ferret must store a history of past observations.
The simplest approach is to store past observations on
the camera’s storage medium (e.g., compact flash cards).
Such local storage implies that each Ferret device must
start finding objects with zero initial knowledge.

Ferret displays a region
containing the object

Fig. 1. Use of Ferret to discover the location of a soup can in an office.
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Ferret also supports collaborative refinement of loca-
tion estimates using data recorded by multiple recording
devices. Sharing readings of the same object seen by multi-
ple cameras enables faster refinement and more precise
location estimates; however, it requires a means to share
readings via a shared storage medium. Two approaches
are possible. Since modern tags are rewritable and contain
a limited amount of onboard storage, Ferret cameras can
write back their location estimates to the tag (which can
then be shared with other cameras). The limited amount
of tag storage implies that a limited history can be main-
tained, and the approach does not work with read-only
tags that are likely to be more common. A second approach
is to employ a central database where cameras can upload
their location information. This has the advantages of
allowing offline querying and providing initial location
estimates to mobile readers; further, since database stor-
age is plentiful, the system can store long histories as well
as past locations of nomadic objects. However, it requires
readers to have connectivity to the database and requires
privacy controls on the database.

2.3. Basic algorithm

Assuming the above design requirements, the basic Fer-
ret algorithm involves a recording phase and a query phase.
Recording involves four steps: (i) record image, (ii) record
camera coordinates and orientation, (iii) record all tags
within read range of the embedded reader, and (iv) com-
pute (or refine) the location of each observed tag using
the recorded camera’s location and orientation. Clearly,
step (iv) lies at the heart of Ferret and is discussed in detail
in the next section. Querying involves three steps: (i) re-
trieve the location estimates for the object specified by
the user query, (ii) overlay a bounding box on the captured
image depicting this location estimate, and (iii) display the
resulting image to the user.

Next we discuss Ferret’s localization algorithm that can
dynamically discover, update, store, and display object
locations.

3. Online locationing for passive RFID

Consider an RFID reader that queries all tags in its vicin-
ity—the reader emits a query signal which wirelessly pow-
ers the tags, and tags respond with their unique identifier.
Given these tag responses, we propose a technique to
determine and refine tags locations using the coordinates
and orientation of the reader/camera. We begin with the
basic idea behind our locationing technique, followed by
the details. We also discuss how our system can handle no-
madic objects—objects that move locations.

3.1. Locationing basics

Assume that the location and orientation of the camera/
reader is known. When a tag is read by the reader, the
reader produces a positive assertion that the object is pres-
ent within its read range. Specifically, a reading indicates
that the object is contained in the volume defined by the

read range of the reader (see Fig. 2), and this yields an ini-
tial estimate of the object’s location. Suppose that subse-
quently the user moves to a different location in the
vicinity and the reader reads the same tag again. This addi-
tional reading can be used to refine the object location esti-
mate; since the object must reside in the read ranges of the
reader at both location, it follows that it lies in the intersec-
tion of the volumes representing the read range (see Fig. 3).
The coverage region from each reading is intersected with
all readings from the recent past, further reducing the pos-
sible region containing the object (see Fig. 3). Using this
method, Ferret can continually improve its postulation of
the object location so long the object remains stationary.

It is also possible to make negative assertions about an
object’s location. Thus, if an object is not read at a particu-
lar location, then it follows that it is not present in the
reader’s read range and that volume can be eliminated
from the set of possible locations for the object. Although
negative assertions can further narrow an object’s location
estimate, they are computationally more expensive than
an intersection of two positive assertions. Since our goal
is to implement Ferret on a mobile device, we a describe
an online algorithm that only considers positive intersec-
tions to reduce computational cost.

3.2. Online locationing algorithm

For ease of exposition, we present a discrete version of
our algorithm and then describe how to further reduce
its computational using a continuous version.

Assume that the world is represented as a discrete grid
where each coordinate represents a possible location of an
object. Suppose that a reader reads an object from a certain
location. Then all grid points within its read range have a
non-zero probability of containing the object. This coverage
map of a reader is shown in Fig. 2. As shown, not all points
within the read range are equally likely to contain the ob-
ject—objects closer to the centroid of its read range are de-
tected with higher probabilities, while objects at the
boundary are detected with lower probabilities. Thus grid
points closer to the centroid have a higher likelihood of
containing the object that those near the boundary. Let

Reader has a 95% chance
of detecting a tag here

Tk

/
/
/

Reader has/a 0%
chance of detecting

a tag here

Reader has a 5%
chance of detecting
a tag here

Fig. 2. Coverage region of an RFID reader and tag detection probabilities
in 2D.



568 X. Liu et al. /Ad Hoc Networks 9 (2011) 565-575

Coverage g
Map \ Object 4

4 /

P g

“f' P \\\ \
// .
Ferret with

RFID Reader

Ferret sees object
at time t1

Ferret sees same
object at later time t2
from a different view

Ferret intersects
readings to produce
smaller location
region

Fig. 3. Refining location estimates.

M(x,y,z) denote the probability that the object is located at
grid point (x,y,z) within the read range; this map M can be
determined from the antenna data sheet of the reader or
from empirical calibration.

Our algorithm works as follows: (i) once Ferret receives
the first positive reading of a tag it initializes a three
dimensional map, L, with the coverage map M, to track
the probability that the object is at each of the coordinates
in the map. (ii) Each successive reading multiplies each
coordinate in L by M(x,y,z).

Observe that the coverage map for each new reading, as
shown in Fig. 3, is represented in the reader coordinate sys-
tem, which assumes that the origin is at the center of the
reader’s RFID antenna. The camera, although attached to
the RFID reader, is offset from the reader, and has a slightly
different coordinate system, which we refer to as the cam-
era coordinate system and has its origin at the center of the
camera’s CCD sensor. To combine multiple readings from
the reader, and subsequently display them to the user,
each map M must be transformed into a common coordi-
nate system. We refer to this as the world coordinate sys-
tem. Without loss of generality, we assume the reader,
camera, and world coordinate systems are left hand coor-
dinate systems (see Fig. 4).

Before intersecting two readings, we must transform
each to world coordinates. This transformation involves
translation and rotation using techniques from linear alge-

Pan a degrees
<l
(7]
x
<F Roll y degrees
> ®
X
4%
/X-Axis

Tilt B degrees

Fig. 4. Left handed coordinate system.

bra and computer graphics [4]. For each reading, the reader
has a location and orientation with respect to the world
coordinates. This is described as a location (xq,¥0,20) and
an orientation with a pan of o° (the rotation along the y
axis, range [-180,180]), a tilt of p° (the rotation along
the x axis, range [—-90,90]), a roll of y° (the rotation along
the z axis, range [-180,180]). The direction of the rotation
is given by the left hand rule where the thumb is in the po-
sitive direction of the rotation axis and the fingers show
the positive direction of rotation (see Fig. 4). This transfor-
mation is formulated as a rotation matrix:

cos(y) —sin(y) O 1 0 0
R=|sin(y) cos(y) 0| x [0 cos(B) —sin(p)
0 0 1 0 sin(f) cos(p)
cos(z) 0 sin(x)
X 0 1 0 (1)

—sin(o) 0 cos(o)

where R is a 3 x 3 orthonormal matrix which has columns
that are mutually orthogonal unit vectors, so that R"! =R".

So, if a point is located at (X, ¥w,z) in the world coor-
dinates, the object’s location in the reader coordinates
(X Yrzy) can be computed via:

X Xw — Xo Xw Xo

Vol =Rx |Yw—Yo| =Rx |y, | +T, T=-Rx |y,

Zr Zw — 20 Zw 2y
(2)

where the composite rotation matrix R is given by Eq. (1).
Therefore, the reverse transformation from reader coor-
dinate system to world coordinate system is given by:

X Xy Xy Xo
-1 -1

Yw | = R x V| — T]=R"x Vel + (Yo

Zw Zy Zr Z0

where (xo,Y0,20) is the reader’s position in world coordinate
system and R™! =RT.

When computing the intersection of coverage maps,
Ferret first transforms the coverage map, M into the world
coordinate systems using Eqs. (1) and (3), and computes
the intersection according to the our algorithm to produce
a new map L containing the likelihood of object locations.
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3.2.1. Displaying location estimates

Once Ferret produces a three dimensional map that it
believes contains a particular object, it must overlay this
region onto the video screen of the camera; doing so in-
volves projecting a 3D map onto a two dimensional dis-
play. This is done in two steps: thresholding and
projection. The threshold step places a minimum value
for the likelihood on the map L—by using a small, but
non-zero value for the threshold, Ferret reduces the vol-
ume that encompasses the likely position of the object.
However, using a larger threshold may cause Ferret to
shrink the volume excessively, thus missing the object.
Currently this is a tunable parameter in Ferret—in the eval-
uation section we demonstrate how to chose s reasonable
value.

Finally, Ferret projects the intersection map onto the
image plane of the video display. Ferret must transform
the intersection map from the world coordinate system
into camera coordinate system. Ferret performs this trans-
formation using Eqs. (1) and (2), along with the camera’s
current position and orientation. As stated previously, the
camera coordinate system follows the left-hand conven-
tion, and the z-axis of the camera coordinate system is
co-linear with the camera’s optical axis. Assuming the
camera has focal length f, and a point is positioned at
(Xe, Y 2c) in camera coordinate system. The projection is gi-
ven by:

B ¥
v Zc .VC
where u and v is the projection at the CCD sensor.

For each reading the RFID reader produces, the location
algorithm must perform O(n®) operations, for a three
dimensional space that is n x n x n, in addition to translat-

ing and rotating the coverage map, and projecting the loca-
tion map onto the display.

3.2.2. Reducing computational overhead

Since the above discrete version of the algorithm may
be too computationally intensive for small mobile devices,
we present a continuous version that is simpler but at
some loss of accuracy. The primary goal is to reduce the
representation of the probability of where the object is. In-
stead of a full representation that describes the probability
at each location, we reduce it to describing just the convex
region where the object is with very high probability.
Describing such a region is very compact, as we only need
to track the points that describe the perimeter of the con-
vex region. Intersecting two maps is very fast, as it is a ser-
ies of line intersections.

Fig. 5 shows this in detail for two dimensions, extending
it to three dimensions is straightforward. The first half of
the diagram shows sample points that describe the outside
of the coverage map. Ferret rotates and translates the cov-
erage map M as described in the previous section, and
intersects it with the current map L. For each constant y va-
lue, the system finds the intersection of the two line seg-
ments and uses that as the description of the new map L.
For instance in Fig. 5, we choose a constant y value y1. After
rotating and translating the map M to match to the reader’s

Fig. 5. Online location estimation.

current position, the system intersects the two line seg-
ments, (x1,y1)— (x3,y1) from the current map L, with
(x2,y1) — (x4,y1) from the new map M. The resulting inter-
section is the segment (x2,y1) — (x3,y1), which describes
the perimeter of the new location map L. Ferret repeats this
process for all y values. Extending this to three dimensions
is straightforward: intersect two line segments for each
pair of constant y and z value. This means the complexity
of the intersection is O(n?) rather than O(n®) as in the off-
line algorithm.

Also, instead of using a map of probabilities for the cov-
erage map, we reduce it to the convex shape that describes
the coverage region of the RFID reader than can read tags
with some probability greater than 0. This virtually elimi-
nates the possibility of false positives. Additionally,
describing the perimeter only requires two x points for
each pair of y and z values, thus the representation of the
region is greatly reduced in size from O(n®) to O(n?). Using
our prototype as an example, this reduces the storage
requirement from 43.5M bytes to 178 K bytes—each of
these are highly compressible. This greatly aids Ferret’s
ability to store the regions directly on the storage-poor
tags. The line segment representation does mean that the
system cannot incorporate negative regions, as intersect-
ing with a negative region can create a concave, rather than
convex, region. A concave region would return the com-
plexity of the representation and the intersection to
0(n). False negatives do not affect the system, as negative
readings are not used at all.

3.3. Handling nomadic objects

We designed Ferret to deal with objects that move
infrequently—commonly referred to as nomadic as op-
posed to mobile objects that move frequently. When ob-
jects do move, Ferret should adjust to deal with this. In
the continuous version, this is straightforward. When the
location algorithm performs an intersection of two maps,
it may produce a region of zero volume. This indicates that
the maps were disjoint, and th object could not possibly be
within the previously postulated region. The system then
reinitializes the location map, L, to the most current read-
ing, which is M rotated and translated to the reader’s cur-
rent position.

In contrast, discrete algorithm uses thresholding to
eliminate low probability regions containing the object. It
applied applying a likelihood threshold to the likelihood
location map and removes any location with a probability
less than the threshold. If the resulting location map is
empty, we will consider the object has moved and
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reinitialize the location map, L, to the most current reading.
Choosing an appropriate threshold is a critical factor in this
approach. Using a larger threshold will increase the likeli-
hood that the resulting location map is empty when the
object actually does not move. In Section 5, we will show
the experiments on how to choose an appropriate
threshold.

4. Implementation considerations

We have implemented a prototype Ferret system as
shown in Fig. 6. Although the prototype is quite large, this
is due to the combination of many separate pieces of hard-
ware—there is nothing that would preclude a much smal-
ler commercial version. Our prototype is based on the
following hardware:

A ThingMagic Mercury4 RFID reader which has a Sensor-
Magic monostatic circular antenna connected to it. The
output power of the reader is set to 30 dBm (1 W). This
reader operates at the frequency range 909-928 MHz,
and supports RFID tags of EPC Class 0, EPC Class 1, and
ISO 18000-6B. The reader is paired with a ThingMagic
monostatic circular antenna that has a balloon shaped
radiation pattern. An alternative is to a use a linear antenna
that has a more focused radiation pattern and longer
range; however, the narrower beam will produce fewer po-
sitive readings for each tag. The tradeoff in antenna choice
and the possibility of future antennas with variable radia-
tion patterns are interesting questions for future research.
We used an orientation-insensitive, EPC Class 1, Alien
Technology “M” RFID tag operating at 915 MHz.

A Sony Motion Eye web-camera connected to a Sony Vaio
laptop. This CMOS-based camera is set to a fixed focal
length of 2.75 mm, and uses a sensor size of 2.4 mm by
1.8 mm. The camera provides uncompressed 320 x 240 vi-
deo at 12 frames-per-second.

Cricket [10] ultrasound 3D locationing system to esti-
mate the location of the camera and RFID reader. We de-
ployed Cricket beacons (served as references) on the
ceiling, and attached a Cricket sensor to our prototype sys-
tem. The Cricket sensor is offset from the camera and RFID
reader and we correct for this translation in software.

Fig. 6. Ferret prototype system.

A Sparton SP3003D digital compass to obtain the 3D ori-
entations (pan, tilt, and roll) of the camera’s lens and the
reader’s antenna. We mounted the compass, the camera’s
lens, and the reader’s antenna in a way that they all have
same 3D orientations.

Our prototype consists of the following software
modules:

4.1. Video module

This module records the video stream from the web
camera, and transcodes the video stream into MPEG-2 vi-
deo clip. In addition to this functionality, the video module
will project and highlight the estimated region containing
the target object when displaying video stream. We modify
the FFmpeg video suite [2] to implement this module. We
implement the projection function according to Eq. (3) to
compute the projection of the location estimation, and
then intercept the display function of FFmpeg video suite
to display the boundary of the projection area.

4.2. RFID module

This module controls the RFID reader, and records the
readings from the RFID reader. The RFID reader provides
functions of remote control and query via TCP connection
using SQL-like query and control messages. The RFID mod-
ule submits a query request with interval value of 250 ms
to the reader, and then the RFID reader periodically re-
sponds with configurable plaint text message including
the tag ID, the ID of the antenna reading the tag, and so on.

4.3. Cricket and compass module

This module communicates with the Cricket sensor and
digital compass to obtain the location and orientation of
camera and RFID reader. The Cricket module communi-
cates with the Cricket sensor via a serial port, and the out-
put of the Cricket sensor is its distances to beacons. Our
module records these distances, and uses them to triangu-
late the location of the Cricket sensor. After adding some
constant offset (measured manually), we then have the
location of the camera and RFID reader. The Compass mod-
ule also communicates with the compass via a serial port.

4.4. Locationing module

This module implements our locationing algorithm.
This implementation includes: (i) coordinate transforma-
tion functions between world coordinate system and the
coordinate systems of camera and RFID reader according
to Egs. (1)-(3), (ii) intersection functions to compute inter-
section for positive readings and negative readings, and
(iii) a central database to store the location information.

5. Experimental evaluation

In this section, we evaluate Ferret by focusing on the
performance of locationing and projection. In particular,
we concentrate on how quickly Ferret can refine the
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location of an object for a user. We also evaluate and com-
pare the accuracy of the discrete and continuous versions,
evaluate the ability to handle nomadic objects, and show
the computation and storage costs of our system.

We measure Ferret’s performance using two metrics:
the size of the postulated location and the error rate. Ferret
automatically provides the size, either the volume of the
three-dimensional region, or the area of the two-dimen-
sional projection on the video screen. The three-dimen-
sional region is not a sphere, but to interpret the results,
a sphere with a volume of 0.01 m?® has a diameter of
26.7cm and a volume of 0.1m>? has a diameter of
57.6 cm. Ferret’s error rate is the number of objects that
do not appear in the area projected on to the display. The
error rate is determined through manual inspection of a vi-
deo recording.

All of our experiments are conducted in a 4m x
10 m x 3 m room equipped with a Cricket ultrasound sys-
tem. We used five beacons mounted on the ceiling which
we manually calibrated. The origin of our world-coordinate
system is a corner of the room. The camera records all vi-
deo at 12 frames/second, and the RFID reader produces 4
readings per second. For the continuous system, we use a
coverage map that includes all places where the tag has a
non-zero probability of reading a tag. That region is an
irregular shape that is 2.56 m x 1.74 m x 2.56 m at the
maximum and has a volume of approximately 2 m>.

5.1. Refinement performance

The primary goal of Ferret is to quickly locate, refine,
and display an outline on the video display that contains
a particular object. As this happens online, Ferret continu-
ously collects readings and improves its postulation of the
object’s location—this is reflected as the volume of the re-
gion shrinking over time. To demonstrate this, we placed
one tag in the room, and then walked around “randomly”
the room with the prototype. We plot the volume of the
location estimation versus time in Fig. 7. The absolute vol-
ume tracks the total volume of the region, while the rela-
tive volume tracks the size of the region relative to the
starting coverage region of the reader. In this case Ferret
does not make any errors in locating the object. The time
starts from the first positive reading of the tag and Ferret
begins with no previous knowledge about object locations.

The results show that the volume size of the location
estimation drops from 2 m> to 0.02 m® which is only 1%
of the reader’s coverage region in less than 2 min. The vol-
ume monotonically decreases, as intersecting positive
readings only shrinks the area, while negative readings
are ignored. Also, this is a pessimistic view of the refine-
ment time—with prior knowledge, the process occurs
much more rapidly. For instance, if the user switches to
searching for another object in the same room, Ferret can
take advantage of all of the previous readings. If a previous
user has stored location information on the tag, this reader
can also take advantage of that from the time of the first
reading. Additionally, if some location information is
stored in a centralized database, Ferret can immediately
project an area onto the video without any readings.

In addition to the volume size of the location estima-
tion, we also plot the projection area versus time in
Fig. 7c in which the projection areas are shown as a per-
centage of the image plane area. Our results show that
the final projection area is only 3% of the whole image, or
approximately a 54 pixel diameter circle on a 320 x 240
frame. However, the projection area does not monotoni-
cally decrease as the volume does. This is because the cam-
era is constantly moving, thus the point-view constantly
changes, and the same volume can project different areas
from different orientations.

5.2. Accuracy of our techniques

Next, we evaluate and compare the precision of the dis-
crete and continuous methods in locating objects. While
the continuous algorithm is useful for current mobile de-
vices, the discrete algorithm uses a more precise represen-
tation of the object’s location likelihood. To evaluate
Ferret’s precision in locating objects, we placed 30 tags in
a2.5m x 2.5m x 2 m region, and we move the prototype
around the room for 20 min. We repeat the experiment 3
times and record the volume of the postulated region,
and manually verify how many objects are truly contained
in the area projected onto the video plane. With 30 tags
and three experiments, Ferret can make between 0 and
90 location errors.

Before evaluating the discrete algorithm, we must set a
threshold for the minimum likelihood for the object as
described in Section 3. Recall that a larger threshold can
reduce the volume encompassing the likely position of
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Fig. 7. Continuous refinement of location.
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the object. However, a larger threshold will also increase
the error rate of Ferret (the volume does not contain the
object). In order to test the sensitivity of discrete Ferret
to the change of likelihood threshold, we varied the likeli-
hood threshold from 0.00001 to 0.4, and ran the discrete
Ferret algorithm on the data we collected in the experi-
ment. We show the results in Fig. 8.

The results show that: (i) the number of errors almost
doubles from 5 to 9 as threshold increase from 0.00001
to 0.4, (ii) the mean volume of the location estimation is
essentially constant, and (iii) for a threshold <0.01, the
number of errors does not change. When using too high
of a threshold Ferret incorrectly shrinks the volume, leav-
ing out possible locations for the object. Considering the
balance of error rate and mean volume, we choose a likeli-
hood threshold of 0.01. Using this threshold, we run the
discrete algorithm and compare it to the performance of
the continuous algorithm. In Fig. 9, we plot the CDF of Fer-
ret’s location accuracy for both algorithms.

The results show that (i) The continuous algorithm can
localize an object in 0.15 m* and 0.05 m> regions with 80%
and 50% probability, respectively. The 0.15 m® and 0.05 m®
regions are only 7.5% and 2.5% of the reader’s coverage re-
gion which is 2 m?; (ii) The discrete algorithm outperforms
the continuous algorithm by localizing an object in a

Threshold Errors | Mean Volume

0.00001 5/90 0.0117m3
0.0001 5/90 0.0117m3
0.001 5/90 0.0116m3
0.01 5/90 0.0112m3
0.1 6,/90 0.0108m3

0.2 7/90 0.0104m3

0.3 8/90 0.0102m3

0.4 9/90 0.0100m3

Fig. 8. Performance of Ferret under different likelihood thresholds.
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Fig. 9. CDF of locationing accuracy.

0.05 m? region with more then 90% probability and in a
0.1 m3 region with 100% probability.

5.3. Tuning ferret

Due to the inaccuracies in estimating the location and
orientation of RFID reader, Ferret might incorrectly esti-
mate tag’s location: tag is not in the region estimated by
Ferret, and further Ferret might incorrectly reset the algo-
rithm when the tag has not moved. In our experiments, the
continuous algorithm has two errors and none reset, while
the discrete algorithm has five errors and one reset. The
larger errors of discrete algorithm is because the smaller
volume of location map increases the chance of not con-
taining object. We can compensate these inaccuracies by
increasing the coverage region of RFID reader, and conse-
quently, we are able to eliminate the errors. However,
the increasing coverage region has larger volume, and
therefore we pay the price of decreasing locationing accu-
racy. Our results in Table 1 show that as the volume size of
coverage region increases from 2 m> to 5m>: (i) for the
continuous Ferret, the number of errors drops from 2 to
0, and the mean volume of the location estimation in-
creases from 0.077 m> to 0.30 m®; and (ii) for the discrete
Ferret, the number of errors drops from 5 to 0, the number
of resets drops from 1 to 0, and the mean volume of the
location estimation increases from 0.011 m® to 0.14 m°.

5.4. Mobility effects

Ferret exploits the user’s mobility to produce a series of
readings from multiple positions, and further refine its
location estimation via intersecting the coverage regions
at these positions. The previous experiment showed the re-
sults of a human, yet uncontrolled, mobility pattern. In
reality users move erratically; however, their motions are
composed of smaller, discrete motion patterns. To study
how individual patterns affect the performance of Ferret
we placed a single tag in the room and evaluated Ferret
with a small set of semi-repeatable motion patterns shown
in Fig. 10: (a) straight line, the prototype system moves in
a straight line, tangential to the object, without changing
the orientation of the camera lens and RFID reader; (b)
head-on, the prototype moves straight at the object and
stops when the reader reaches the object; (c) z-Line, the
prototype system moves in a z-shaped line without chang-
ing its orientation; (d) rotation, the prototype system
moves in an arc, while keeping the lens orientation radial
to the path; (e) circle, the prototype system moves in a cir-
cle, while keeping the reader facing the object. Intuitively,
the circular pattern may be the least likely of the mobility
patterns, whereas the head-on is probably the most
likely—once the user gets one positive reading, she will
tend to head towards the object in a head-on pattern. We
evaluated Ferret’s performance using the volume of the
resulting region. For each movement pattern we ran three
experiments, averaged the results, and compared the
smallest volume size of both continuous and discrete Fer-
ret. Our results are shown in Fig. 12.

The results show that Ferret performs similarly for each
of the movement patterns; however the circular pattern
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Table 1
Performance of Ferret under different volumes of coverage regions.

573

Volume of coverage region (m?) Continuous Discrete
Num. errors Num. resets Mean volume (m?) Num. errors Num. resets Mean volume (m?)
2 2/90 0/90 0.077 5/90 1/90 0.011
3 0/90 0/90 0.18 2/90 1/90 0.043
4 0/90 0/90 0.23 1/90 1/90 0.084
5 0/90 0/90 0.30 0/90 0/90 0.14
X X X and thus produces smaller volumes. This is true even of
the head-on pattern as the first reading and the last read-
% % % " ﬁ/ﬁ/@\ ing have very little volume in common. Another result is
(a) Straight line b) Head-on ) z-Line that the discrete algorithm, dug to its bette.r locationing
accuracy, outperforms the continuous algorithm, except
—— RFID Tag in the case of the circular and head-on patterns, where
Ferret Moving the performance is similar.
Direction
(d) Rotation (e) Circle [d — Ferret System 5.5. Object motion detection

Fig. 10. Path of the Ferret device.
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Fig. 11. Detected object movements.

performs the worst. The circular pattern always keeps the
object in view and generally in the center of the reader’s
coverage region. This produces a set of readings that gener-
ally cover very similar regions. In each of the other cases,
the mobility of the reader covers more disjoint spaces,

Ferret is designed to deal with objects that move infre-
quently, but when the object does move, Ferret should de-
tect this and start its refinement process over. As discussed
in Section 3, whenever Ferret encounters an empty loca-
tion estimation, Ferret assumes that the corresponding ob-
ject has moved. To evaluate Ferret’s performance in
detecting these nomadic objects we place a tag in the room
and use Ferret to estimate its location. We then move the
tag a distance between 5 cm and 200 cm and again use Fer-
ret to estimate its location. We repeat the experiment ten
times for each distance, and record the number of times
that Ferret did not detect a moved object. The results are
shown in Fig. 11.

The figure shows that both the continuous and discrete
versions can detect 100% object movements when the
moving distance exceeds 25 cm and 20 cm, respectively.
This is consistent with our previous results that show that
Ferret can localize an object to within an region with a vol-
ume of hundredths of a m3—this gives a radius on the order
of 20 cm, exactly how well Ferret can detect movement. As
the object has not actually left the postulated area, Ferret is
still correct about the object’s location.

5.6. Memory overheads

The prototype has a non-zero probability of detecting
tags in balloon-shaped region, with maximum dimensions
of 2.56 m x 2.56 m x 1.74 m—this shape has a volume of
approximately 2 m>. For the discrete algorithm we sample
this coverage region every centimeter. As discussed in

Straight line | Head-on | z-Line | Rotate | Circle

continuous Volume (m?) 0.020 0.0042 0.023 0.026 0.032
discrete Volume (m?) 0.0015 0.0030 0.0017 | 0.0011 | 0.026
discrete : continuous 13.33 1.40 13.52 23.63 1.23

Fig. 12. Performance of Ferret under various mobility patterns.
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Section 3, the discrete algorithm requires every point in
this space, while the continuous algorithm only requires
a set of points that describe the exterior of the region. This
reduced representation results in much smaller spatial
requirements as compared to discrete spatial require-
ments: (i) the discrete algorithm uses a float of four bytes
to describe the probability of a sample point, and the total
space is 256 x 256 + 174 + 4 =43.5 M bytes using a three
dimensional array to store the probabilities of all sample
points, and (ii) the continuous algorithm uses a two
dimensional array (the dimensions correspond to y and z)
to represent the coverage region, and consequently, it only
needs two bytes to track the x value of every outside
sample point, thus the total space required is
256 « 174 « 2 = 178 K bytes. Both the discrete and continu-
ous representations are highly compressible: the discrete
can be reduced to 250 K bytes and the continuous repre-
sentation to 5 K bytes using the commonly available com-
pression tool gzip. For the foreseeable future, RFID tags will
not contain enough storage for the discrete representation,
while the continuous version is not unreasonable. If tags
have more or less storage the number of sample points
can be adjusted, although this will affect the precision of
the system.

5.7. Computational requirements

The computational requirements of discrete and contin-
uous have similar relationship. We measured the computa-
tional and spatial requirements of Ferret’s locationing
algorithm on an IBM X40 laptop equipped with a 1.5 GHz
Pentium-M processor: (i) the discrete algorithm costs
749.32 ms per reading for each object, and (ii) the contin-
uous algorithm only costs 6 ms per positive reading for
each object, which is only 1/125 of the discrete computa-
tional requirements. Our results show that the continuous
algorithm incurs small overhead and can run online to
track multiple tags simultaneously on relatively small mo-
bile devices.

6. Related work

Researchers have developed RFID-based indoor loca-
tioning systems [7,9] using active, battery powered, RFID
tags. In SpotON [7], Hightower et al. use the radio signal
attenuation to estimate tag’s distance to the base stations,
and triangulate the position of the tagged objects with the
distance measurements to several base stations. LANDM-
ARC [9] deploys multiple fixed RFID readers and reference
tags as infrastructure, and measures the tracking tag's
nearness to reference tags by the similarity of their signal
received in multiple readers. LANDMARC uses the
weighted sum (the weight is proportional to the nearness)
of the positions of reference tags to determine the 2D posi-
tion of the tag being tracked.

All the above work [7,9] use battery-powered sensors to
identify and locate objects. These sensors are expensive (at
least tens of dollars per sensor) and have limited lifetime
(from several days to several years). These limitations have
prevented them from scaling to applications dealing with

hundreds and thousands of objects. In contrast, passive
RFID tags are inexpensive (less than a dollar per tag and
falling) and do not require battery power source. These fea-
tures make passive RFID technology ideal for such
applications.

Fishkin et al. proposed a technique to detect human
interactions with passive RFID tagged objects using static
RFID readers in [3]. The proposed technique used the
change of response rate of RFID tags to unobtrusively de-
tect human activities on RFID tagged objects such as, rotat-
ing objects, moving objects, waving a hand in front of
objects, and walking in front of objects. However, this does
not consider the problem of estimating the locations of
RFID tagged objects. Their experimental results show that
their system could nearly always detect rotations, while
the system performed poorly in detecting translation-only
movement.

In [5], Hahnel et al. proposed a mapping and localiza-
tion approach using the combination of a laser-range
scanner and RFID technology. Their approach employed
laser-based FastSLAM [6] and Monte Carlo localization
[1] to generate maps of static RFID tags using mobile ro-
bots equipped with RFID readers and laser-range scanner.
Through practical experiments, they demonstrated that
their system can build accurate 2D maps of RFID tags,
and they further illustrated that resulting maps can be
used to accurately localize the robot and moving tags.

Another system is the 3D RFID tag [11]. The 3D RFID
system is equipped with a robot-controlled uni-directional
antenna, and the 3D tag consists of several combined tags.
Two kinds of 3D tags are developed: union tag and cubic
tag. The proposed system cannot only detect the existence
of the 3D tag but also estimate the orientation and position
of the object. However, they require usages of specific ori-
entation-sensitive 3D tags custom-built from multiple
tags. Furthermore, the system uses highly expensive robot
system to control the antenna’s movement and then esti-
mate the orientation and position of the object. In contrast,
Ferret only needs one standard orientation-insensitive tag
per object and the user’s inherent mobility to estimate the
object’s location.

The pervasive multimedia application envisioned in this
work has similarities with our recently-proposed SEVA
system [8]. SEVA assumes WiFi-based tags that are both
self-identifying and self-locating—each tag has a unique
identity and uses a Cricket [10] ultrasound receiver to con-
tinuously determine its location. A digital camera records
video as well as object locations and identities, which
can be subsequently queried by the user. There are several
key differences between SEVA and Ferret. SEVA is based on
active 802.11-based tags, while Ferret relies on passive
RFID tags. Object tags in SEVA are assumed to have loca-
tioning capabilities and can determine their own positions.
Ferret does not make this assumption. SEVA is inherently
designed for offline use, where users query their video col-
lections post-facto; consequently, SEVA depends on post-
processing capabilities. In contrast, Ferret requires the
capability to capture and query video in real-time. Finally,
SEVA scales to around a dozen moving objects, whereas
Ferret requires the ability to scale to hundreds or thou-
sands of nomadic RFID-tagged objects.
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7. Conclusions

This paper presented the design and implementation of
Ferret, a scalable system for locating nomadic objects aug-
mented with RFID tags and displaying them to a user in
real-time. We presented a novel algorithm to infer location
of tagged objects using the location of a camera and reader
that observes them; location estimates can be refined over
time using multiple observations of an object. We also pre-
sented methods for detecting when nomadic objects move
and to display and update object locations on a video cam-
era screen. Our experiments conducted using a fully work-
ing prototype showed that (i) Ferret can refine object
locations to only 1% of the reader’s coverage region in less
than 2 min with small error rate (2.22%); (ii) Ferret can de-
tect nomadic objects with 100% accuracy when the moving
distances exceed 20 cm; and (iii) Ferret is robust against
different movement patterns of user’s mobility.

We expect that future systems will build on the tech-
niques presented in this paper, and make further improve-
ments to the locationing algorithms. While a great number
of hurdles exist in privacy issues, we contend that systems
that leverage this ubiquity will provide untold utility to
users.
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