
CS677: Distributed OSComputer Science Lecture 21, page 1

Today: Coda, xFS

• Case Study: Coda File System

• Brief overview of other recent file systems

– xFS

– Log structured file systems

CS677: Distributed OSComputer Science Lecture 21, page 2

Coda

• Coda: descendent of the Andrew file system at CMU

– Andrew designed to serve a large (global community)

• Salient features:

– Support for disconnected operations

• Desirable for mobile users

– Support for a large number of users

CS677: Distributed OSComputer Science Lecture 21, page 3

Overview of Coda

• Centrally administered Vice file servers

• Large number of virtue clients

CS677: Distributed OSComputer Science Lecture 21, page 4

Virtue: Coda Clients

• The internal organization of a Virtue workstation.

– Designed to allow access to files even if server is unavailable

– Uses VFS and appears like a traditional Unix file system

CS677: Distributed OSComputer Science Lecture 21, page 5

Communication in Coda

• Coda uses RPC2: a sophisticated reliable RPC system
– Start a new thread for each request, server periodically informs client it is still

working on the request

• RPC2 supports side-effects: application-specific protocols
– Useful for video streaming [where RPCs are less useful]

• RPC2 also has multicast support

CS677: Distributed OSComputer Science Lecture 21, page 6

Communication: Invalidations

a) Sending an invalidation message one at a time.

b) Sending invalidation messages in parallel.

Can use MultiRPCs [Parallel RPCs] or use Multicast

 - Fully transparent to the caller and callee [looks like normal RPC]

CS677: Distributed OSComputer Science Lecture 21, page 7

Naming

• Clients in Coda have access to a single shared name space

• Files are grouped into volumes [partial subtree in the directory structure]

– Volume is the basic unit of mounting

– Namespace: /afs/filesrv.cs.umass.edu [same namespace on all client; different from NFS]

– Name lookup can cross mount points: support for detecting crossing and automounts

CS677: Distributed OSComputer Science Lecture 21, page 8

File Identifiers

• Each file in Coda belongs to exactly one volume

– Volume may be replicated across several servers

– Multiple logical (replicated) volumes map to the same physical volume

– 96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OSComputer Science Lecture 21, page 9

Sharing Files in Coda

• Transactional behavior for sharing files: similar to share reservations in NFS

– File open: transfer entire file to client machine [similar to delegation]

– Uses session semantics: each session is like a transaction

• Updates are sent back to the server only when the file is closed

CS677: Distributed OSComputer Science Lecture 21, page 10

Transactional Semantics

• Network partition: part of network isolated from rest

– Allow conflicting operations on replicas across file partitions

– Reconcile upon reconnection

– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have executed

– Conflict => force manual reconciliation

YesYesFile contents

YesYesFile length

YesYesLast modification time

NoYesAccess rights

NoYesFile identifier

Modified?Read?File-associated data

CS677: Distributed OSComputer Science Lecture 21, page 11

Client Caching

• Cache consistency maintained using callbacks

– Server tracks all clients that have a copy of the file [provide callback promise]

– Upon modification: send invalidate to clients

CS677: Distributed OSComputer Science Lecture 21, page 12

Server Replication

• Use replicated writes: read-once write-all

– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?

– Use optimistic strategy for replication

– Detect conflicts using a Coda version vector

– Example: [2,2,1] and [1,1,2] is a conflict => manual reconciliation

CS677: Distributed OSComputer Science Lecture 21, page 13

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a volume.

• Use hoarding to provide file access during disconnection

– Prefetch all files that may be accessed and cache (hoard) locally

– If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OSComputer Science Lecture 21, page 14

Overview of xFS.

• Key Idea: fully distributed file system [serverless file system]

• xFS: x in “xFS” => no server

• Designed for high-speed LAN environments

CS677: Distributed OSComputer Science Lecture 21, page 15

Processes in xFS

• The principle of log-based striping in xFS

– Combines striping and logging

CS677: Distributed OSComputer Science Lecture 21, page 16

Reading a File Block

• Reading a block of data in xFS.

CS677: Distributed OSComputer Science Lecture 21, page 17

xFS Naming

• Main data structures used in xFS.

Maps stripe group ID to list of storage serversStripe group map

Triplet of stripe group, ID, segment ID, and segment offsetLog addresses

Maps a file name to a file identifierFile directory

Reference used to index into manager mapFile identifier

Maps block number (i.e., offset) to log address of blockInode

Maps file ID to log address of file's inodeImap

Maps file ID to managerManager map

DescriptionData structure

