Last Class: Fault Tolerance

 Basic concepts and failure models

 Failure masking using redundancy

« Agreement in presence of faults
— Two army problem
— Byzantine generals problem

m Compufer Science CS677: Distributed OS Lecture 18, page 1
UMASS

Today: More on Fault Tolerance

* Reliable communication
— One-one communication
— One-many communication
 Distributed commit
— Two phase commit
— Three phase commit
* Failure recovery
— Checkpointing
— Message logging

m Compufer Science CS677: Distributed OS Lecture 18, page 2
UMASS

Reliable One-One Communication

* Issues were discussed in Lecture 3
— Use reliable transport protocols (TCP) or handle at the application layer
* RPC semantics in the presence of failures
* Possibilities
— Client unable to locate server
— Lost request messages
— Server crashes after receiving request
Lost reply messages
Client crashes after sending request

REQ Server REQ Server REQ Server
P Receive ’ Receive P Receive
Execute Execute
< 7| Reply NeREP | NoREP |
(@) ()] (©
m Computer Science CS677: Distributed OS Lecture 18, page 3
UMASS

Reliable One-Many Communication

Receiver missed
message #24

. . Sender Receiver Receiver \ Receiver Receiver
*Reliable multicast oy
buffer Last=24 Last =24
— Lost messages => need tc ==
retransmit -
g eqe,e @
.POSSIbllltleS Sender Receiver Receiver Receiver Receiver
— ACK-based schemes last=25 | |Last=24 | |last=23 | |Last=24
* Sender can become ‘ ‘ ‘ i
ACK 25 IJ Missed 24U ACK 25|J
bottleneck o = = -
()
- NACK-based SChemes Sender receives Receivers suppress their feedback
only one NACK
Sender Receiver / Receiverz Receiver & Receiver
—— T=3 T=4 T=1 T=2
(55 [NACK] [NACK] [NACK] [NACK]
NACK | J\\
1

Network

m Computer Science CS677: Distributed OS Lecture 18, page 4
UMASS

Atomic Multicast

*Atomic multicast: a guarantee that all
process received the message or none at all

— Replicated database example
*Problem: how to handle process crashes?

*Solution: group view
— Each message is uniquely associated
with a group of processes
* View of the process group when
message was sent

* All processes in the group should
have the same view (and agree on
it)

m Computer Science
UMASS

Reliable multicast by multiple

P1 joins the group point-to-point messages P3 crashes P3 rejoins
Ny e g 14 | v | /
pr & « ! ! -
oA W ! A
L N S
P2 TR I A I A
I LA 1/ [A I/
[N A [y 4 / IV ;
ps L . Ly 2y
| LA VA
| FA RN Y | \
py 4 \ [! 4
I ! I I
'6=(P1,P2.P3PY / 'G=PIP2PY ' G={P1P2PIPY
/
Partial multicast Time —

from P3 is discarded

Virtually Synchronous Multicast

CS677: Distributed OS

Lecture 18, page 5

Implementing Virtual Synchrony in Isis

Unstable
message

Flush message

A View change@
P

©

(@) (b) (c)
a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from everyone
else

m Computer Science
UMASS

CS677: Distributed OS

Lecture 18, page 6

Distributed Commit

* Atomic multicast example of a more general problem

— All processes in a group perform an operation or not at all
— Examples:

 Reliable multicast: Operation = delivery of a message
* Distributed transaction: Operation = commit transaction
* Problem of distributed commit
— All or nothing operations in a group of processes
 Possible approaches

— Two phase commit (2PC) [Gray 1978]
— Three phase commit

m Computer Science CS677: Distributed OS Lecture 18, page 7
UMASS

Two Phase Commit

. . coordinator subordinate
*Coordinator process coordinates
the operation \
write ready to
*Involves two phases =T
— Voting phase: processes vote on st e o
whether to commit P B I
— Decision phase: actually commit I e commio
or abort done comi
PR

Vote-request

_ INIT Vote-abort INIT
Commit ™ Vote-request
Vote-request Vote-commit

WAIT READY
Vote-abort Vote-commit Global-abort Global-commit
Global-abort Global-commit ACK ACK
(ABORT | [commiT) (ABORT | (commiT)
(@ {b)

m Computer Science CS677: Distributed OS Lecture 18, page 8
UMASS

Implementing Two-Phase Commit

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
while GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;
}
record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
}else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;

}

* Outline of the steps taken by the coordinator in a
two phase commit protocol

m Computer Science CS677: Distributed OS Lecture 18, page 9
UMASS

Implementing 2PC

actions by participant:

write INIT to local log; actions for handling decision requests:
wait for VOTE_REQUEST from coordinator; I*executed by separate thread */
if timeout {
write VOTE_ABORT to local log; while true {
) exit; wait until any incoming DECISION_REQUEST
J . is received; /* remain blocked */
i p;s;g'%%].}éitgéﬁﬁwfgécal log; read most recently recorded STATE from the
send VOTE_COMMIT to coordinator; local log;
wait for DECISION from coordinator; if STATE == GLOBAL_COMMIT
if timeout { send GLOBAL_COMMIT to requesting
multicast DECISION_REQUEST to other participants; participant;
wait until DECISION is received; /* remain blocked */ else if STATE == INIT or STATE ==
write DECISION to local log; GLOBAL ABORT
 ECISION == GLOB AL_COMMIT send GLOBAL_ABORT to requesting
write GLOBAL_COMMIT to local log; participant;
else if DECISION == GLOBAL_ABORT else
write GLOBAL_ABORT to local log; skip; /* participant remains blocked */

}else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

}
m Computer Science CS677: Distributed OS Lecture 18, page 10
UMASS

Three-Phase Commit

Commit
Vote-request

Vote-abort
Global-abort

ABORT

Vote-commit
Prepare-commit

PRECOMMIT

Ready-commit
y Global-commit

“COMMIT |

(@)

Vote-request

Vote-abort INIT
Vote-request

Vote-commit ¥

READY

Global-abort
ACK

b

4

Prepare-commit
Ready-commit

PRECOMMIT,

Global-commit

ACK

“coMMmIT)

(b)

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

m Computer Science
UMASS

CS677: Distributed OS

Lecture 18, page 11

Recovery

* Techniques thus far allow failure handling

» Recovery: operations that must be performed after a
failure to recover to a correct state

* Techniques:
— Checkpointing:

* Periodically checkpoint state

 Upon a crash roll back to a previous checkpoint with a

consistent state

m Computer Science
UMASS

CS677: Distributed OS

Lecture 18, page 12

Independent Checkpointing

In|t|al state Checkpomt
P1

T

Time —»

* Each processes periodically checkpoints independently of other
processes

» Upon a failure, work backwards to locate a consistent cut

* Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

Cascading rollbacks can lead to a domino effect.

m Compufer Science CS677: Distributed OS Lecture 18, page 13

Coordinated Checkpointing

» Take a distributed snapshot [discussed in Lec 11]

« Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot

m Computer Science CS677: Distributed OS Lecture 18, page 14
UMASS

Message Logging

* Checkpointing 1s expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
* Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
* Avoids recomputations from previous checkpoint

m Computer Science CS677: Distributed OS Lecture 18, page 15
UMASS

