
Distributed Systems: A Modern Approach

Prashant Shenoy
University of Massachusetts Amherst



4. Virtualization and Virtual Machines

Virtualization is a key technology that is used in data centers employed by cloud com-
puting platforms and enterprises. Virtualization comes in many flavors and its use in
computer and distributed systems goes well beyond cloud computing. In this chapter,
we first discuss the broad concept of Virtualization and its many uses in system design.
We then delve into virtualization technologies that are specific to data centers and cloud
computing.

What is virtualization?

Intuitively, virtualization is a layering abstraction provided by a computer system that
makes the system easier to use and reduces complexity for applications and users. To
better understand the concept of virtualization, let us consider several examples that may
be familiar to the reader.

Let us consider operating systems, which make extensive use of virtualization by pro-
viding a set of logical abstractions on the underlying hardware resources such as CPU,
memory and storage. These OS abstractions make it easier for a user to use the machine
without having to understand or deal with low-level details of the hardware. In case of
the CPU, the OS provides the abstraction of processes and threads. Each process is pro-
vided an illusion that is the only entity executing on the processor and the OS multiplexes
various processes on the CPU using scheduling techniques. A user can start any number
of applications on their computer (subject to hardware resources limits) and all of these
applications execute concurrently by sharing hardware resources. In case of memory, the
OS provides abstractions of addresses spaces and virtual memory. A process can use its
memory address space transparently and without regard to the presence of other pro-
cesses resident in RAM. The OS uses virtual memory to give an illusion of infinite RAM
by using a backing disk store as swap space and through the use of on-demand paging. Fi-
nally, in case of disk, the OS provide the abstraction of a file and folder that can be used by
users to store their data without having to deal with low-level details of where to store file
data on disk. These are common features that should be familiar to any computer user but
the user may not have realized they are dealing with virtualization! In these examples, the
OS virtualizes a hardware resources in order to share that resource across multiple pro-
cesses or to provide logical abstractions that are easier to use for the user. This type of
virtualization is also referred to as resource virtualization.

Next consider the Java programming language. Java programs needs a java virtual ma-
chine (JVM) to execute them. The JVM provides an abstraction of a logical machine that
is used to execute the java program. The advantage of this approach is portability, since
programs run inside the JVM and the details of the underlying hardware platform and
the CPU architecture are hidden from it. Hence, the same java program will run on any
hardware and OS platform so long as a JVM is available for it. %% In contrast, a C++ bi-
nary that is complied for the x86 architecture will not run on Armmachines without being
recompiled. This is an example of application-level or language-level virtualization.

53



Finally consider a infrastructure-as-a-service cloud platform. The cloud platform pro-
vides virtual servers to its customer. Each virtual server abstraction is identical to a phys-
ical server. The OS and applications that run on the virtual server are not aware that they
are running on a virtual host, rather than a physical one. Further, each physical server
can run multiple virtual servers, with physical resources being partitioned across resident
virtual servers. The virtualization layer multiplexes the various virtual servers onto the
physical server. This is an example of hardware virtualization.

These examples illustrate the virtualization is a broad concept that is used by operating
systems, programming languages and distributed systems for many different purposes.
We now provide two definitions for virtualization.

Virtualization is a layering abstraction that extends or replaces an existing interface in
order to mimic the behavior of another system [Tannenbaum].

Figure XX depicts this concept where the virtualization layer uses interface A on system
A to mimic interface B of another system B. In case of resource virtualization, the virtual-
ization layer is the operating system, which uses the hardware interfaces of the physical
machine (interface A) to expose abstractions such as processes, address spaces, files (in-
terface B). In case of Java, the virtualization layer is the JVM, which uses the OS interface
and libraries (interface A) to provide the logical machine (java virtual machine or inter-
face B) that runs java programs. Finally, in case of cloud servers, the virtualization layer
is called the hypervisor, which we will discuss in Sec XXX. The hypervisor uses the hard-
ware interface of the physical server (interface A) to expose virtual servers that resemble
physical servers (interface B).

An equivalent and more formal definition is provided by [Kaashok] and elaborated
further in [Neih] which states:

Virtualization is a technique that uses the layering principle through enforced modu-
larity to implement a virtual resource using the underlying physical resource.

The layering principe refers to the layered approach for software design that uses re-
sources and interfaces below that layer to create an abstraction exposed to applications
above that layer. This, in effect, adds a layer of indirection where applications have to use
the interface of the abstraction to access the resources below that later. Enforced mod-
ularity means that applications using the layer can not bypass it in order to access the
resources underneath the layer. The resources below the layer are also not directly visible
to the applications using the virtualization layer.

Both of these definitions define the concept of virtualization broadly to capture its use in
operating systems, programming languages, and distributed systems. While they capture
virtualization technologies used in they cloud context, they are not specific to those tech-
nologies alone. We now discuss three general principles for implementing virtualization.

Virtualization principles
There are three high level approaches for implementing virtualization in a computing sys-
tem [Kashaook, Neih]: multiplexing, aggregation, and emulation. These approaches are
depicted in Figure XX

Multiplexing. Multiplexing is usedwhen the virtualization layer exposesmultiple copies
of a virtual resource, all of which aremapped onto the same physical resource. In this case,
the virtual resources are mutiplexed onto physical resource. As an example of multiplex-
ing, consider multiple logical network inferences that are mapped onto single physical
network interface card (e.g., a physical ethernet card). The interfaces are temporally mul-

54



tiplexed onto the physical interface, which enables them to use a certain fraction of the
physical network bandwidth. As another example, consider the OSmemorymanager that
allocates physical memory pages to various processes to implement the abstraction of ad-
dress spaces. This is an example of spatial multiplexing where address spaces belonging
to processes share different pages of physical memory.

Aggregation. The aggregation method is used when the virtual resource is constructed
by aggregatingmultiple physical resources. For example, RAID array provide the abstrac-
tion of single larger logical disk that are constructed using multiple physical disks. The
logical disk exposed by the RAID array aggregates the storage space of the underlying
physical disks and the presence of physical disks is hidden from users in line with notion
of enforced modularity.

Intuitively, aggregation and multiplexing are opposites of one another. In aggregation,
multiple physical resources are used to construct a single virtual resource, whereas in
multiplexing, multiple virtual resources are constructed using a single physical resource.

Emulation. In emulation, the virtual resource mimics (“emulates”) a physical resource
that is different from the actual physical resource used to implement it. A full machine
simulator used by computer architecture researchers implements a new machine archi-
tecture (e.g., a new CPU instruction set) using the underlying machine resources. The
Bochs open source simulator emulates an x86 machine on many non-Intel machines. Ap-
ple’s Rosetta2 technology emulates an x86 architecture on its ARM-based Apple Silicon
processors to enable Intel-based MacOS applications to seamlessly run on its newer Arm-
based processors. Virtual memory is implemented by an OS by using disk to emulate a
slower, but larger, main memory.

Virtual Machines and Taxonomy of virtual machines
A virtual machine is a software implementation of a physical machine and its computing
environment. From an application’s standpoint, the virtual machine resembles a physical
machine in all respects and an application can execute on a virtual machine as if it were
running on a physical machine. Since virtual machines come in many flavors, we provide
a broad definition of virtual machines from [Nieh]

A virtual machine is a full-fledged computing environment with its own isolated pro-
cessing, memory, and networking capabilities.

A virtual machine is capable of running one or more application processes in its com-
puting environment. While some virtual machine (e.g., java virtual machine) run a single
application processes, others can run multiple concurrent processes and may even run
their own operating system that is independent of the OS running on the physical ma-
chine. Regardless of its capabilities, all virtual machines hide the underlying physical ma-
chine from the applications and the OS that run inside them. The processes and OS see
a virtual machine that resembles a physical machine and execute normally like they were
running on actual physical machine.

We now provide two taxonomies to understand different types of virtual machines. The
first taxonomy [Smith and Nair] is based on the interface on the host machine (interface
A in Fig X) that is used to implement the implement the exposed interface B. Figure XX
shows three different interfaces.

• CPU instruction set. The machine instructions exposed by the CPU represents the
interface between the hardware and software and is the lowest level interface that
can be used by the virtualization layer. The instruction set supported by a CPU can

55



be grouped into two types. The first group consists of all machine instructions that
can be executed by any user-level process. The second group consists of privileged
instructions that can only be executed by the operating systems. The virtualization
layer can use one or both group of machine instructions to implement a new CPU
and its corresponding instruction set. For example, a virtual machine with an ARM
CPU can be implemented using the x86 instruction set. Since the virtualization layer
uses hardware interfaces, this type of virtualization is also referred to as hardware-
level virtualization.

• System call interface: In this case, the system call interface exposed by the OS (inter-
face A) is used to implement the virtualized interface B. This type of virtualization
can be viewed as OS-level virtualization. Container technologies, such as docker,
that uses OS interfaces to implement virtual machines are an example of OS-level
virtualization. Some operating systems, such as Oracle’s Solaris, have the ability
to emulate the system call interface of an older version of the OS (interface B) us-
ing the current interface, which allows the system to be backward compatible to
applications that depended on an older OS version. This functionality is referred
to as legacy containers by Solaris. Finally, Wine is an open source software tool to
runWindowswin32 andwin64 applications on POSIX-supported operating systems
such as Linux, BSD, and macOS. It does do by implementing the Window’s win32
and win64 interface using POSIX system and library calls.

• Application-level libraries. In this case, the virtualization layer using application-
level libraries and application programming interfaces (APIs) to implement the vir-
tual interface B. This type of virtualization can be viewed as application-level vir-
tualization. Application-level libraries, such as the C and C++ libraries, are higher
level interfaces that are themselves implemented using the underlying system call
interface, which they hide from the application developer. Application-level virtual-
ization uses these libraries and their APIs to implement the virtual interface exposed
by the virtual machine. The Java virtual machine is an example of this type of virtu-
alization since the JVM is often implemented in C or C++ and exposes the abstract
java virtual machine interface to run java programs.

Our second taxonomy [Nieh] focuses on the functionality of the virtual machine itself
rather than the interfaces used to implement it. When viewed from this perspective, virtual
machines can be classified into three types.

• Language-based virtual machines. Language-based VMs provide the run-time en-
vironment to run applications written in a specific programming language. Java
virtual machine, javascript engines in web browsers, Microsoft’s common language
runtime, and the Python run-time environment are all examples of language-based
VMs. Language-based VMs run a single application process, and its threads, in the
VM and are also referred to a process virtual machines.

• Lightweight virtual machines. Lightweight VMs use operating system and hard-
ware isolation mechanisms to provide a sandboxed environment that can run one
or more processes. Lightweight VMs typically present the same OS interface as the
underlying OS to applications and are used for isolation and resource allocation.
That is, they are used to isolate a process or groups of processes from other ap-
plications running on the physical host and to allocate a specified amount of the

56



host’s hardware and software resources to applications. Each physical host can run
multiple lightweight virtual machines, each of which is isolated from the rest and
provides an isolated environment to its processes. Examples of lightweight virtual
machines include Docker-based linux containers, Solaris Resource Containers, and
BSD jails. Research prototypes such as the Denali isolation kernel are also an exam-
ple of lightweight VMs.

• System-level virtual machines. System-level VMs are computing environments that
mimic an entire physical machine abstraction, including all its hardware such as the
CPU, memory, disk and network interface. Since system virtual machine expose a
bare metal machine abstraction, they can run an operating system and applications
on top of them. Like lightweight virtual machines, a system-level virtual machine
provides isolation from other virtual machines or applications running on the phys-
ical host. Multiple system-level VMs can run on a single host and the virtualization
layer multiplexes them onto the physical host and isolates them from one another.

There are two broad categories of platforms that implement system-level virtual ma-
chines. The first type of platform is called a hypervisor, which typically exposes virtual
versions of the same hardware as the underlying physical machine. Since the exposed
hardware (e.g., the CPU) is the same as the physical hardware, the hypervisor uses di-
rect execution to execute its virtual machines. Direct execution means that the machine
instructions of application processes and the operating systems running inside the VM
are directly executed on the physical processor. While normal instructions can be directly
executed and provides highly efficient execution, privileged instructions can not be exe-
cuted directly for security reasons and are instead implemented using a trap and emulate
framework, as discussed in Sec XXX.

Full emulation is the other method for implementing system-level virtual machine. In
full emulation, the emulation layer can expose a different set of hardware than the physical
hardware (e.g., a virtual CPU with a different instruction set from the underlying physi-
cal CPU),. In this case, the goal is to accurately mimic the emulated machine and requires
each virtual instruction to be implemented using an equivalent set of physical instructions.
As a result, full emulation can be orders of magnitude slower than using hypervisors, but
it allows any machine architectures to be implemented using the emulation layer. Full
emulation, also knows as full machine simulation, is popular in computer architecture re-
search, where researchers an experiment with new hardware designs or new architectural
features. The Bochs open source tool is another example of full emulation, where a full
x86 PC is emulated using native hardware.

We note that some emulation techniques are not based on system-level virtualmachines.
For example, Apple Rosetta and Rossetta 2 are processors emulation techniques that per-
formdynamic binary translation of one instruction set to another and enableMacOS appli-
cations designed for an older Mac hardware platform to run on a newer plarform. Rosetta
allows PowerPC Mac applications to run unmodified on Intel-based Macs, while Rosetta
2 enables Intel-based Mac applications to run umodified on Arm-based Macs (e.g., on
the M1 arm processor). Both emulators should be viewed as application-level emulation
frameworks—neither exposes a full machine to applications and each is a process virtual
machine.

We can derive a rough mapping between the two taxonomies. Language-level vir-
tual machines are implemented using application layer virtualization. Lightweight vir-
tual machines are implemented using OS-layer virtualization, although some lightweight

57



VMs may also reply on isolation features at the hardware layer. Within system-level vir-
tual machines, hypervisors are implemented using hardware-layer virtualization, while
full emulation frameworks are user-level programs that implement virtualization using
application-layer libraries and APIs.

In the rest of this chapter, we focus on hypervisors and containers since these virtual-
ization technologies are predominantly used in cloud and data centers.

Hypervisors
A hypervisor is a type of system software that runs andmanages virtual machines. It pro-
vides the virtualization functionality that exposes virtual machines to users and executes
them by multiplexing VMs onto the resources of the physical machine.

Hypervisors are also referred to as virtual machine monitors (VMMs) and these terms
are used interchangeably in the literature. However some researchers prefer to use VMMs
to refer to the subsystem of the hypervisor responsible for virtualizing processors and
memory, and use hypervisors to refer to the full system for providing VM functionality
[Nieh]. In this book, we will not distinguish between the terms and assume they are syn-
onymous. The concept of hypervisors was introduced in a seminal paper by [Popeck and
Goldberg] where they specified three important properties of hypervisors. - Efficiency: A
hypervisor should be capable of executing a large fraction of CPU instructions directly on
hardware with no intervention. This property ensures that process running inside virtual
machines see only a small performance slowdown. It also distinguishes hypervisors from
full system emulators, which need to translate every instruction and see a significant per-
formance impact. - Safety: This property, also known as the resource control property,
states that the hypervisor should remain in full control of the virtualized resources. Hy-
pervisors should allow arbitrary operating systems and processes to execute inside virtual
machines. Safety, which is enforced through isolation, should ensure that it is not possible
for amalicious process from impacting another VM or the hypervisor itself. - Equivalence:
A process executing under the VMM should execute a behavior that is indistinguishable
from when it runs directly on the physical machine. The only exceptions to this property
are that the virtual machine may be slower than the physical machine it mimics and may
also have fewer resources (e.g., less memory) than the underlying physical machine.

Hypervisors can be classified into two basic types. In this thesis, Goldberg [Goldberg
thesis] named them as Type 1 and Type 2 hypervisors, and these names, while not very
descriptive, are used to this day.

Type 1: Type 1 hypervisors run on bare machine, which means they do not require
a separate operating system to run and take on the role of an operating system that is
designed specifically to run virtual machines. Since they run on a bare machine, type 1
hypervisors are responsible for managing virtual machines as well for performing the OS
task of managing and allocating resources to each VM.

Each virtual machine running on a type 1 hypervisor runs its own operating system, re-
ferred to as a guest operating system. Since each VM is independent and isolatedmachine,
different VMs can run different operating systems on the same physical machine.

Type 1 hypervisors rely on direct execution, where virtual machine instructions are ex-
ecuted directly on the CPU. As we will see shortly, direct execution only applies to CPU
instructions that are unprivilged, while privileged instructions needed to be handled by
the hypervisors. As wewill see shortly, type 1 hypervisors require hardware support from
the underlyingCPUandnot all CPUs are capable to runningType 1 hypervisors. Such type

58



1 hypervisors are also referred to as hardware virtualization, and can run any unmoidified
operating systems and applications that are capable of running on the physical machine.

Sincemany CPUs, including early Intel x86 processors, lacked support for running Type
1 hypervisors, researchers designed a new virtualization technique called paravirtualiza-
tion. Paravirtualized type 1 hypervisors no longer require hardware support from the
underlying CPU and can run on any CPU. To do so, they require the operating system
kernel to be modified to support virtualization, and as a result, are no longer able to run
an arbitrary unmodified OS. Paravirtualization represents a tradeoff between the ability to
run hypervisors on any processor and the ability of run an unmodified OS. The notion of
paravirtualization was introduced in the Denali kernel, a research operating sysyem de-
signed to run a large number of VMs without any hardware support from the CPU. Since
then, the approach has been employed by many other hypervisors.

Examples of type 1 hypervisors include VMWare ESX server, Windows Hyper-V, and
Xen. Of these ESX and Hyper-V use hardware virtualization, while Xen uses paravirtual-
ization.

Type 2: A type 2 hypervisor runs on top on an operating system, which is called the host
operating system (host OS). From the perspective of the host OS, a type 2 hypervisor is
simply a user process (i.e., an application) that runs alongside other active processes. The
hypervisor provides an environment to run virtual machines, much like a type 1 hypervi-
sors. However type 2 hypervisors only need to manage virtual machines and they leave
the task of allocating and managing resources to the host OS (unlike type 1 hypervisors,
which perform both of these functions).

Like before, each VM runs a guest operating system and arbitrary applications on top
of the guest OS. Type 2 hypervisors do not require any special hardware support, since
they rely on the host OS to perform all privileged operations on behalf of the VMs. Hence,
they can run on any processor and can run arbitrary unmodified operating systems and
applications.

Examples of type 2 hypervisors include VMware workstation, VMware Fusion, Oracle
VirtualBox, Microsoft VirtualPC, and Linux KVM. This type of virtualization is also re-
ferred to as full or software virtualization.

Next we discuss each type of hypervisor in detail.

Type 1 hypervisors: Hardware Virtualization

Goldberg theorem for type 1

Type 2 Hypervisor: Software Virtualization

Paravirtualization and Xen

virtualizing memory, disk, network

59


