Today: Coda, xFS

 Distributed File Systems
* Case Study: Coda File System

* Brief overview of other file systems
— xFS
— Log structured file systems
— HDFS
— Object Storage Systems
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Coda Overview

* DFS designed for mobile clients

— Nice model for mobile clients who are often disconnected
* Use file cache to make disconnection transparent
* At home, on the road, away from network connection

» Coda supplements file cache with user preferences
— E.g., always keep this file in the cache
— Supplement with system learning user behavior
« How to keep cached copies on disjoint hosts
consistent?

— In mobile environment, “simultaneous” writes can be
separated by hours/days/weeks
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« Each file in Coda belongs to exactly one volume
— Volume may be replicated across several servers

— Multiple logical (replicated) volumes map to the same
physical volume

— 96 bit file 1dentifier = 32 bit RVID + 64 bit file handle
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« Use replicated writes: read-once write-all
— Writes are sent to all AVSG (all accessible replicas)
« How to handle network partitions?
— Use optimistic strategy for replication
— Detect conflicts using a Coda version vector
— Example: [2,2,1] and [1,1,2] is a conflict => manual
reconciliation
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Disconnected Operation
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 The state-transition diagram of a Coda client with respect to a
volume.

* Use hoarding to provide file access during disconnection
— Prefetch all files that may be accessed and cache (hoard) locally
— If AVSG=0, go to emulation mode and reintegrate upon reconnection
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Transactional Semantics

* Network partition: part of network isolated from rest

— Allow conflicting operations on replicas across file
partitions

— Reconcile upon reconnection
— Transactional semantics => operations must be serializable

 Ensure that operations were serializable after thay have
executed

— Conflict => force manual reconciliation
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Client Caching

* (Cache consistency maintained using callbacks
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Overview of xFS.

« Key Idea: fully distributed file system [serverless
file system]
— Remove the bottleneck of a centralized system

« xFS: x1n “xFS” => no server
* Designed for high-speed LAN environments

Client Manager Client
Manager Storage ‘ Client Storage Storage Manager
server server server
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XFS Summary

« Distributes data storage across disks using software
RAID and log-based network striping
— RAID == Redundant Array of Independent Disks

* Dynamically distribute control processing across all
servers on a per-file granularity
— Utilizes serverless management scheme

» Eliminates central server caching using cooperative
caching

— Harvest portions of client memory as a large, global file cache.
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Array Reliability

 Reliability of N disks = Reliability of | Disk + N
50,000 Hours + 70 disks = 700 hours
Disk system MTTF: Drops from 6 years to | month!

* Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved
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RAID Overview

Basic idea: files are "striped" across multiple disks

Redundancy yields high data availability

— Availability: service still provided to user, even if some
components failed

Disks will still fail

Contents reconstructed from data redundantly stored in
the array

— Capacity penalty to store redundant info

— Bandwidth penalty to update redundant info

Slides courtesy David Patterson
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Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery

ST 188

* Each disk is fully duplicated onto its “mirror”
*Very high availability can be achieved

* Bandwidth sacrifice on write:
* Logical write = two physical writes
* Reads may be optimized

* Most expensive solution: 100% capacity overhead

* (RAID 2 not interesting, so skip...involves Hamming codes)
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Inspiration for RAID 5

 Use parity for redundancy
- D0 ® D1 ® D2 ®D3=P
— If any disk fails, then reconstruct block using parity:
°eg.,D0=D1 ®D2&®D3X®P
« RAID 4: all parity blocks stored on the same disk

— Small writes are still limited by Parity Disk: Write to D0, D5,
both also write to P disk

— Parity disk becomes bottleneck
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Redundant Arrays of Inexpensive Disks
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XFS uses software RAID

* Two limitations

— Overhead of parity management hurts performance for small
writes

* Ok, if overwriting all N-1 data blocks

* Otherwise, must read old parity+data blocks to calculate
new parity

* Small writes are common in UNIX-like systems

— Very expensive since hardware RAIDS add special hardware to
compute parity
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Log-structured FS

* Provide fast writes, simple recovery, flexible file
location method

« Key Idea: buffer writes in memory and commit to
disk in large, contiguous, fixed-size log segments
— Complicates reads, since data can be anywhere

— Use per-file inodes that move to the end of the log to
handle reads

— Uses in-memory imap to track mobile inodes
* Periodically checkpoints imap to disk
* Enables “roll forward” failure recovery

» Drawback: must clean “holes” created by new writes
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Combine LFS with Software RAID

* The principle of log-based striping in xFS
— Combines striping and logging
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HDFS

* Hadoop Distributed File System
— High throughput access to application data
— Optimized for large data sets (accessed by Hadoop)

* Goals

— Fault-tolerant

— Streaming data access: batch processing rather than interactive
— Large data sets: scale to hundreds of nodes

— Simple coherency model: WORM (files don’t change, append )
— Move computation to the data when possible
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HDFS Architecture

* Principle: meta data nodes separate from data nodes

 Data replication: blocks size and replication factor
configurable

HDFS Architecture
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Google File System

* Master-slave; file divided into chunks (replicated thrice)
* Atomic writes

Application (file name, chunk index) | GFS master »~ [foolbar
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Figure 1: GFS Architecture
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Object Storage Systems

« Use handles (e.g., HTTP) rather than files names
— Location transparent and location independence
— Separation of data from metadata

* No block storage: objects of varying sizes

» Uses
— Archival storage
* can use internal data de-duplication
— Cloud Storage : Amazon S3 service
» uses HTTP to put and get objects and delete
* Bucket: objects belong to bucket/ partitions name space
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