Today: Coda, xFS

 Distributed File Systems
* Case Study: Coda File System

* Brief overview of other file systems
— xFS
— Log structured file systems
— HDFS
— Object Storage Systems

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 1

Coda Overview

* DFS designed for mobile clients

— Nice model for mobile clients who are often disconnected
* Use file cache to make disconnection transparent
* At home, on the road, away from network connection

» Coda supplements file cache with user preferences
— E.g., always keep this file in the cache
— Supplement with system learning user behavior
« How to keep cached copies on disjoint hosts
consistent?

— In mobile environment, “simultaneous” writes can be
separated by hours/days/weeks

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 2

File ldentifiers

Volume
replication DB

File handle

File server

VID1,
VvID2

0 4

Server| File handle
@ Server1 | _8
Server2 i File server
Volume |
location DB A 4
File handle

« Each file in Coda belongs to exactly one volume
— Volume may be replicated across several servers

— Multiple logical (replicated) volumes map to the same
physical volume

— 96 bit file 1dentifier = 32 bit RVID + 64 bit file handle

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 3

Server Replication

Server Server
S, P S,y
[///
Client Server Broken Client
A S network B
]

« Use replicated writes: read-once write-all
— Writes are sent to all AVSG (all accessible replicas)
« How to handle network partitions?
— Use optimistic strategy for replication
— Detect conflicts using a Coda version vector
— Example: [2,2,1] and [1,1,2] is a conflict => manual
reconciliation

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 4

Disconnected Operation

(HOARDING)

Disconnection _ , Reintegration
Disconnection completed

NS

EMULATION ? REINTEGRATION]

Reconnection

 The state-transition diagram of a Coda client with respect to a
volume.

* Use hoarding to provide file access during disconnection
— Prefetch all files that may be accessed and cache (hoard) locally
— If AVSG=0, go to emulation mode and reintegrate upon reconnection

(b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 5

Transactional Semantics

* Network partition: part of network isolated from rest

— Allow conflicting operations on replicas across file
partitions

— Reconcile upon reconnection
— Transactional semantics => operations must be serializable

 Ensure that operations were serializable after thay have
executed

— Conflict => force manual reconciliation

(b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 6

Client Caching

* (Cache consistency maintained using callbacks

Session S Session s”A
ClientA ———— T
Open(RD) Close Close
Open(RD
Invalidate pen(RD)
Server - Filef (calbackbrealy — w w /Flef
File f
Open(WR) Close
Client B — Time —»
Session Sy
UMaSSAmheI‘St CSE77-: Disttitbutied] Q%d Operating Systems Lecture 23, page 7

Overview of xFS.

« Key Idea: fully distributed file system [serverless
file system]
— Remove the bottleneck of a centralized system

« xFS: x1n “xFS” => no server
* Designed for high-speed LAN environments

Client Manager Client
Manager Storage ‘ Client Storage Storage Manager
server server server

(b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 8

XFS Summary

« Distributes data storage across disks using software
RAID and log-based network striping
— RAID == Redundant Array of Independent Disks

* Dynamically distribute control processing across all
servers on a per-file granularity
— Utilizes serverless management scheme

» Eliminates central server caching using cooperative
caching

— Harvest portions of client memory as a large, global file cache.

(b/l aSSAmherSt CS677: Distributed and Operating Systems Lecture 23, page 9

Array Reliability

 Reliability of N disks = Reliability of | Disk + N
50,000 Hours + 70 disks = 700 hours
Disk system MTTF: Drops from 6 years to | month!

* Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

(b/l aSSAmherSt CS677: Distributed and Operating Systems Lecture 23, page 10

RAID Overview

Basic idea: files are "striped" across multiple disks

Redundancy yields high data availability

— Availability: service still provided to user, even if some
components failed

Disks will still fail

Contents reconstructed from data redundantly stored in
the array

— Capacity penalty to store redundant info

— Bandwidth penalty to update redundant info

Slides courtesy David Patterson

| [\/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 11

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery

ST 188

* Each disk is fully duplicated onto its “mirror”
*Very high availability can be achieved

* Bandwidth sacrifice on write:
* Logical write = two physical writes
* Reads may be optimized

* Most expensive solution: 100% capacity overhead

* (RAID 2 not interesting, so skip...involves Hamming codes)

| [\/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 12

Inspiration for RAID 5

 Use parity for redundancy
- D0 ® D1 ® D2 ®D3=P
— If any disk fails, then reconstruct block using parity:
°eg.,D0=D1 ®D2&®D3X®P
« RAID 4: all parity blocks stored on the same disk

— Small writes are still limited by Parity Disk: Write to D0, D5,
both also write to P disk

— Parity disk becomes bottleneck

=

D7

per@ ms Lecture 23, page 13

UMassAmbherst

Redundant Arrays of Inexpensive Disks

RAID 5: High 1/0O Rate Interleaved Parity
J OO gt]

\ Increasing
DI D2 D3 Logical
Independent Disk

. Addresses
writes D4 m‘ D6
possible D7

because of
interleaved D8| | D9 P pDio| (DI
parity

DI2 P pI3| [(D14| |DIs
Example:
write to DO, P pi6é| |D17| |[DI18| |DI9
D5 uses
SlliSks 0, 1,3, p20| |D21| |D22| [D23 P

—mﬁmqmwﬁm - . Lecture 23, page 14
UMassAmbherst \ T T St

XFS uses software RAID

* Two limitations

— Overhead of parity management hurts performance for small
writes

* Ok, if overwriting all N-1 data blocks

* Otherwise, must read old parity+data blocks to calculate
new parity

* Small writes are common in UNIX-like systems

— Very expensive since hardware RAIDS add special hardware to
compute parity

(b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 15

Log-structured FS

* Provide fast writes, simple recovery, flexible file
location method

« Key Idea: buffer writes in memory and commit to
disk in large, contiguous, fixed-size log segments
— Complicates reads, since data can be anywhere

— Use per-file inodes that move to the end of the log to
handle reads

— Uses in-memory imap to track mobile inodes
* Periodically checkpoints imap to disk
* Enables “roll forward” failure recovery

» Drawback: must clean “holes” created by new writes

(b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 16

Combine LFS with Software RAID

* The principle of log-based striping in xFS
— Combines striping and logging

Log segment
T

«€——— Client splits segment Storage servers

and computes parity K”/g
fragment
Fragment Parity fragment tj tj tj tj
Y ¥

\
C1][2] (3]] (2 [3
|)

Send fragments to storage servers

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 17

HDFS

* Hadoop Distributed File System
— High throughput access to application data
— Optimized for large data sets (accessed by Hadoop)

* Goals

— Fault-tolerant

— Streaming data access: batch processing rather than interactive
— Large data sets: scale to hundreds of nodes

— Simple coherency model: WORM (files don’t change, append)
— Move computation to the data when possible

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 18

HDFS Architecture

* Principle: meta data nodes separate from data nodes

 Data replication: blocks size and replication factor
configurable

HDFS Architecture

Namenode

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Metadata ops M

Re!d Datanodes

] \
Em@ - 8 Replication ‘D 8 %D
gu

Datanodes

m| (= Blocks
N] N
Rack 1 Wite Rack 2
[_IMaSSAmherst CS677: Distributed and Operating Systems Lecture 23, page 19

Google File System

* Master-slave; file divided into chunks (replicated thrice)
* Atomic writes

Application (file name, chunk index) | GFS master »~ [foolbar
GFS client File namespace chunk 2ef0
(chunk handle, /
chunk locations) Legend:
mmm) Data messages
Instructions to chunkserver Control messages
(chunk handle, byte range) Chunkserver state
GFS chunkserver GFS chunkserver |
chunk data Linux file system Linux file system

Blg - Blg -

Figure 1: GFS Architecture

| b/l aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 20

Object Storage Systems

« Use handles (e.g., HTTP) rather than files names
— Location transparent and location independence
— Separation of data from metadata

* No block storage: objects of varying sizes

» Uses
— Archival storage
* can use internal data de-duplication
— Cloud Storage : Amazon S3 service
» uses HTTP to put and get objects and delete
* Bucket: objects belong to bucket/ partitions name space

(b/] aSSAmheI‘St CS677: Distributed and Operating Systems Lecture 23, page 21

