
Lecture 17, page

Replication

1CS677: Distributed and Operating Systems

• Part 1: Remote write and local write protocols

• Part 2: Quorum-based protocols

Lecture 17, page

Implementation Issues

2CS677: Distributed and Operating Systems

• Two techniques to implement consistency models
– Primary-based protocols

• Assume a primary replica for each data item
• Primary responsible for coordinating all writes

– Replicated write protocols
• No primary is assumed for a data item
• Writes can take place at any replica

Lecture 17, page

Remote-Write Protocols

3CS677: Distributed and Operating Systems

• Traditionally used in client-server systems (no replication)

Lecture 17, page

Remote-Write Protocols (2)

4CS677: Distributed and Operating Systems

• Primary-backup protocol (1 prim, 3backup)
– Allow local reads, sent writes to primary
– Block on write until all replicas are notified
– Implements sequential consistency

Lecture 17, page

Local-Write Protocols (1)

5CS677: Distributed and Operating Systems

• Primary-based local-write protocol in which a single copy is migrated between
processes.

– Limitation: need to track the primary for each data item

Lecture 17, page

Local-Write Protocols (2)

6CS677: Distributed and Operating Systems

• Primary-backup protocol in which the primary migrates to the
process wanting to perform an update

Lecture 17, page

Replicated-write Protocols

7CS677: Distributed and Operating Systems

• Relax the assumption of one primary
– No primary, any replica is allowed to update
– Consistency is more complex to achieve

• Synchronous writes to all replicas

• Asynchronous writes to all replicas
•

Lecture 17, page

Synchronous Replication

8CS677: Distributed and Operating Systems

Lecture 17, page

Asynchronous Replication

9CS677: Distributed and Operating Systems

Lecture 17, page

Replicated-write Protocols

10CS677: Distributed and Operating Systems

• Relax the assumption of one primary (“leaderless”)
– No primary, any replica is allowed to update
– Consistency is more complex to achieve

• Quorum-based protocols
– Use voting to request/acquire permissions from replicas
– Consider a file replicated on N servers

• NR+NW > N NW > N/2
– Update: contact NW servers and get them to agree to do update

(associate version number with file)
– Read: contact NR and obtain version number

• If all servers agree on a version number, read

Lecture 17, page

Gifford’s Quorum-Based Protocol

11CS677: Distributed and Operating Systems

• Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

Lecture 17, page

Quorums In Action

12CS677: Distributed and Operating Systems

Lecture 17, page

Quorums in Action

13CS677: Distributed and Operating Systems

Lecture 17, page

Replica Management

14CS677: Distributed and Operating Systems

• Replica server placement
– Web: geophically skewed request patterns
– Where to place a proxy?

• K-clusters algorithm
• Permanent replicas versus temporary

– Mirroring: all replicas mirror the same content
– Proxy server: on demand replication

• Server-initiated versus client-initiated

Lecture 17, page

Final Thoughts

15CS677: Distributed and Operating Systems

• Replication and caching improve performance in
distributed systems

• Consistency of replicated data is crucial
• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application
– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)
– Implementation overheads and complexity grows if stronger

guarantees are desired

Lecture 17, page

Fault Tolerance

16CS677: Distributed and Operating Systems

• Single machine systems
– Failures are all or nothing

• OS crash, disk failures
• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)
• Question: Can we automatically recover from partial

failures?
– Important issue since probability of failure grows with number

of independent components (nodes) in the systems
– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

Lecture 17, page

A Perspective

17CS677: Distributed and Operating Systems

• Computing systems are not very reliable
– OS crashes frequently (Windows), buggy software, unreliable hardware,

software/hardware incompatibilities
– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems
– Growing popularity of Internet/World Wide Web

• “Novice” users
• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?
• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable
– Important for online banking, e-commerce, online trading, webmail…

Lecture 17, page

Basic Concepts

18CS677: Distributed and Operating Systems

• Need to build dependable systems
• Requirements for dependable systems

– Availability: system should be available for use at any given
time

• 99.999 % availability (five 9s) => very small down times
– Reliability: system should run continuously without failure
– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,
nuclear reactor

– Maintainability: a failed system should be easy to repair

Lecture 17, page

Basic Concepts (contd)

19CS677: Distributed and Operating Systems

• Fault tolerance: system should provide services despite
faults
– Transient faults
– Intermittent faults
– Permanent faults

Lecture 17, page

Failure Models

20CS677: Distributed and Operating Systems

• Different types of failures.

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure
 Receive omission
 Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure
 Value failure
 State transition failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Lecture 17, page

Failure Masking by Redundancy

21CS677: Distributed and Operating Systems

• Triple modular redundancy.

