Code, Process, and VM Migration

* Motivation

* How does migration occur?

* Resource migration

» Agent-based system

 Details of process migration

* Migration of Virtual Machines

UMassAmbherst Lecture 10, page |

Part 1: Migration Introduction

* Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

» Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data
from server to client (e.g., databases)

— Improve parallelism — agent-based web searches

UMassAmbherst Lecture 10, page 2

Motivation

- Flexibility
— Dynamic configuration of distributed system

— Clients don’t need preinstalled software — download on
demand

2. Client and server
communicate

/ Server
\

B
i

/
. . 1. Client fetches code
Service-specific
client-side code

Code repository

Client

UMassAmbherst Lecture 10, page 3

Migration models

Process = code seg + resource seg + execution seg

Weak versus strong mobility
— Weak => transferred program starts from initial state

Sender-initiated versus receiver-initiated

Sender-initiated
— migration initiated by machine where code resides

* Client sending a query to database server
— Client should be pre-registered

Receiver-initiated
— Migration initiated by machine that receives code
— Java applets
— Receiver can be anonymous

UMassAmbherst Lecture 10, page 4

Who executes migrated entity?

* Code migration:
— Execute in a separate process
— [Applets] Execute in target process

* Process migration
— Remote cloning
— Migrate the process

UMassAmbherst Lecture 10, page 5

Models for Code Migration

Execute at
Sender-initiated / target process
mobility . Execute in
N separate process
Weak mobility Execute at
Receiver-initiated — target process
mobility "~ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P

mobility
Clone process
Strong mobility

Migrat
Receiver-initiated — Igrate process
mobility

Clone process

UMassAmbherst Lecture 10, page 6

Do Resources Migrate?

* Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
« Database, web sites
— Fixed resources
* Local devices, communication end points

UMassAmbherst Lecture 10, page 7

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Actions to be taken with respect to the references to local resources
when migrating code to another machine.

GR: establish global system-wide reference

MV: move the resources

CP: copy the resource
» RB: rebind process to locally available resource

UMassAmbherst Lecture 10, page §

Migration in Heterogeneous Systems

* Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled

Local stack procedure call onto
operations B migration stack
Local
Procedure B / variables B
Return label
> (jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr. Identification
fromB for proc. B
Local
Parameter var'\z:)k;:IZSA
Push procedure values for B
call onto program Return label
stac Local stack to caller A
operations A Parameter
Local values for A
aaaaa bles A
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)
UMassAmbherst Lecture 10, page 9

Part 2: Virtual Machine Migration

* VMs can be migrates from one physical machine to
another

» Migration can be live - no application downtime
* Iterative copying of memory state
* How are network connections handled?

* Inherently migrates the OS and all its processes

UMassAmbherst Lecture 10, page 10

Pre-Copy VM Migration

* 1. Enable dirty page tracking

« 2. Copy all memory pages to destination

* 3. Copy memory pages dirtied during the previous copy again
* 4. Repeat 3rd step until the rest of memory pages is small.

* 5. Stop VM

* 6. Copy the rest of memory pages and m: 4
* non-memory VM states

« 7. Resume VM at destination /Y :
* 8. ARP pkt to switch { J
Machine A Machine B

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

UMassAmbherst Lecture 10, page 11

Post-Copy VM Migration

* 1. Stop VM

« 2. Copy non-memory VM states to destination

» 3. Resume VM at destination

* 4. Copy memory pages on-demand/background
— Async page fault can be utilized

Copy memory pages
*On-demand(network fault)
sbackground(precache)

UMassAmbherst Lecture 10, page 12

VM Migration Time

Copy VM memory before switching the execution host

Round 2 \Round N \ stop resume
Precopy 5
Precopy Round 1 e g

Performance degradation

. . D ti
Due to dirty page tracking oun tme

Total migration time

time >
stop resume
5 Postcopy
Postcopy €| Demand/pre paging(with async PF)
- :
Down time Performance degradation

Due to network fault

Figure Courtesy: Isaku Yamahata, LinuxCon Japan 2012

Total migration time
Copy VM memory after switching the execution host

UMassAmbherst Lecture 10, page 13

Part 3: Container Migration

« Migration techniques
* Snapshots

* Checkpoint-Resume (CRIU)

UMassAmbherst Lecture 10, page 14

Migration Methods

¢ Cold migration: migrate a VM / container that 1s shutdown
— Copy image and data files, start on new machine.
— No state 1s preserved

« Warm migration: migrate state from previous instance
— Suspend running VM/container to disk
— Copy image, data, suspended memory state
— Resume execution of suspended VM
— preservers state, but incurs downtime
» Hot/live migration: migrate state with no downtime
— Copy state while VM executes; no downtime

UMassAmbherst Lecture 10, page 15

Snapshots

Snapshot: point-in-time copy
— General concept in operating and distributed systems

— Snapshots preserve objects (file, disk, VM) as they existed at
time of snapshot

VM Snapshots

— preserves VM state: memory or disk state
— Like a backup

Virtual snapshots: make a virtual copy
— use copy-on-write to make changes to original

Snapshots useful for roll-back or migration
— Snapshots are also known as checkpoints

UMassAmbherst Lecture 10, page 16

Checkpoint and Restore

* Warm container migration: Checkpoint and Restore
— Pause container execution
— Checkpoint (save) memory contents of container to disk
— Copy checkpoint to new machine (memory + disk image)
— Resume execution on new machine

UMassAmbherst Lecture 10, page 17

Linux CRIU

* Linux CRIU (Checkpoint Restore In Userspace)
— Used for warm or live migration, snapshots, debugging
— Works for individual process and containers migration

» Uses /proc file system to gather all info about each process in
the container
— Save process state (file descriptors, memory state etc)
» Copy saved state to another machine
* CRIU restorer
— Use fork to recreate processes to be restored
— Restore resources; for containers, restore namespace
— TCP repair to restore network sockets on same machine
— Can migrate active sockets only if [P address moves

» Use virtual network device in containers and move it
UMassAmbherst Lecture 10, page 18

Part 4. Kubernetes (k8s)

Cluster management using containers

Container-based Orchestration System
— Based on Google’s Borg /Omega cluster managers

Applications are containerized

K8s will deploy them onto machines of the cluster
— Replicate app on multiple machines if requested
— load balance across replicas

— Can scale up or down dynamically (vary replica pool size, a
concept similar top dynamic thread/process pools)

— Provide automated restart upon detecting failure (self-healing)

UMassAmbherst Lecture 10, page 19

K8s Pods

* Pod: contains one or more containers that share ...
volumes and name space | |
— Pods: smallest granularity of allocation in k8s.

* Distributed application: multiple components, ; o

— each component inside a container

— Each pod consists of one or more components /
containers

— Pod can contain all containers of an application but: |

* If a component needs to be scaled, put each such
component in a separate pod

— Application consists of a set of pods, each
independently scalable

* Pods of an application can span multiple cluster
machines

All k8s figures courtesy of Lecture 10
UMassAmherst hupsmwww.sideshare nevrishabhindorias2/introduction-to-kubernetes-139878615 " ' P4£¢20

k8s Services

* service: method to access a
pods’s exposed interfaces R

Labels: Labels:
app=mysc

app=nginx
env=prod env=dev

— static cluster IP address

Labels:
app=nginx
env=prod

— static DNS name

— Services are not ephemeral ; .

— collection of pods

Labels:
app=nginx

[J POds are ephemeral env=prod
: Lﬂ’g#? 2 Labels:
— each has its own IP .

— can be migrated to another machine

— Pods can communicate with one
another using this IP

— All k8s figures courtesy of Lecture 10
UMassAmbherst https://www.slideshare.net/rishabhindoria52/introduction-to-kubemetes-139878615 -ccture 10. page21

Control Plane

- apiserver: REST interfaces for clients

to access management interface
= =
* eted: cluster key-value datastore s e 064
— strongly consistent, highly durable (uses p— \
RAFT consensus) "
* controller-manager: replicate pods, O il
monitor for node failures and restart -
: e ——|
 scheduler: assigns newly created pods | T
to servers based on resource constraints | e)
e o “)

* cloud-controller-manager: interact
with cloud platforms

UMassAmbherst Lecture 10, page22

K8s Node

* kubelet: agent on each node

— ensure containers are running and
healthy

* kubelet proxy

— Manage network rules

— Load balancing for cluster services oo tpmmme.

e container runtime
— runtime for container execution
— containerd/docker, cri-o, rkt

UMassAmbherst Lecture 10, page23

Case Study: Viruses and Malware

» Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
* Sender-initiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

UMassAmbherst Lecture 10, page 24

