OS Virtualization

e Part 1: OS Virtualization
e Part 2: Fair share allocation

e Part 3: Docker and linux containers

UMassAmbherst Lecture 8, page |

Part 1: OS Virtualization

« Recall virtualization: use native interface to emulate
another one

* Broader view of OS virtualization:

* OS interface (e.g., sys call interface) can emulate another
OS interface

* E.g., Solaris zone can emulate older kernel version
* Modern view of OS virtualization

* OS paradigm where kernel allows multiple isolated user
space instances

» Each instance looks like real machine running OS
 Outside processes can see all resources; processes inside
isolated instances see a restricted set

UMassAmbherst Lecture 8, page 2

Part 1: OS Virtualization

 Emulate OS-level interface with native interface

* “Lightweight” virtual machines
— No hypervisor, OS provides necessary support

Solarls 10 - global zone h

Container 1 Container 2 Container 3
Applications Applications Applications -
L L) |

Host OS Kernel with virtualization layer

Hardware ch D|sk PCIe Memory
\ Hardware /

» Referred to as containers (“isolated set of processes™)
— Solaris containers, BSD jails, Linux containers

UMassAmbherst Lecture 8, page 3

Linux Containers (LXC)

Containers share OS kernel of the host
— OS provides resource isolation

Benefits
— Fast provisioning, bare-metal like performance, lightweight

App || App

App || App App || App

HH

Virtu ne e
Operating System Operating System

“Realizing Linux Containers”
by Boden Russell, IBM

Type 1 Hypervisor Type 2 Hypervisor Linux Containers

UMassAmbherst Lecture 8, page 4

OS Mechanisms for LXC

* OS mechanisms for resource isolation and
management

* namespaces: process-based resource isolation
* Cgroups: limits, prioritization, accounting, control

 chroot: apparent root directory
» Linux security module, access control
* Tools (e.g., docker) for easy management

UMassAmbherst Lecture 8, page 5

Linux Namespaces

* Namespace: restrict what can a container see?
— Provide process level isolation of global resources

* Processes have illusion they are the only processes in
the system

* MNT: mount points, file systems (what files, dir are
visible)?

» PID: what other processes are visible?

* NET: NICs, routing

» Users: what uid, gid are visible?

* chroot: change root directory

UMassAmbherst Lecture 8, page 6

Linux cgroups

* Resource isolation
— what and how much can a container use?
* Set upper bounds (limits) on resources that can be used

* Fair sharing of certain resources

* Examples:
— cpu: weighted proportional share of CPU for a group
— cpuset: cores that a group can access
— block 10: weighted proportional block 10 access
— memory: max memory limit for a group

Without CPU Core Pinning With CPU Core Pinning

1 http-bxe u http-ixc (core 0)

T I
S /XN ‘ " mysqhixc ® mysghbec (core 1-3)
@g;s’g OF é\gaélégglgl ‘ ® hadoop-Ixc ® hadoop-ixc (core 4-11)
45 2 - 1)= ‘ Devce fles ® rabbit-dx ® rbbitbe (core 12-15)
Lecture &, page
UMassAmbherst page 7

Putting it all together

» Images: files/data for a container

— can run different distributions/apps on a host
 Linux security modules and access control
» Linux capabilities: per process privileges

nnnnn

wwwwwwww

UMassAmbherst Lecture 8, page 8

Part 2: Proportional Share Scheduling

* Proportional-share scheduling: allocate a fraction (“slice/
share”) of the resource
— allocate CPU capacity to containers, VM, or a process
— allocate network bandwidth to an application, container
» Share-based scheduling:
— Assign each process a weight w_i (a “share”)
— Allocation is in proportional to share
— fairness: reused unused cycles to others in proportion to weight
— Examples: fair queuing, start time fair queuing

* Hard limits: assign upper bounds (e.g., 30%), no
reallocation

UMassAmbherst Lecture 8, page 9

Weighted Fair Queuing (WFQ)

* One of the original proportional share schedulers

 Each process /container assigned a weight w,
_ each receives w,+ Y w, fraction of resource

]

 OS keep a counter for each process s;
— Tracks how much CPU service the process has received

_ After each quantum, s; = s, + 4 where q is quantum length
i
— Scheduler schedules task with min s,
— what happens when process blocks: accumulates “credit” and
can starve others
. Track s, . = min(s,s,,..)and s; = max(s,,;,, S; + i)

W .
UMassAmbherst Ledure 8, page 10

Share-based Schedulers

From paolo <>
Subject [PATCH RFC RESEND 00/14] New version of the BFQ I/O Scheduler
Date Tue, 27 May 2014 14:42:24 +0200

From: Paolo Valente <paolo.valente@unimore.it>
[Re-posting, previous attempt seems to have partially failed]

Hi,

this patchset introduces the last version of BFQ, a proportional-share
storage-I/0 scheduler. BFQ also supports hierarchical scheduling with
a cgroups interface. The first version of BFQ was submitted a few

wrAma Am~ 11 T dn Aamatrad am w0 dm dbha mabahan ba Adabdinaniakh 4

[PATCH RFC 00/22] Replace the CFQ I/0 Scheduler with BFQ

From: Paolo Valente
Date: Mon Feb 01 2016 - 17:50:39 EST

o Next message: Panla Valente: "I[PATCH RFC 03/221 hlack cfa: remave deen seek anenes lagic"
T2 instances’ baseline performance and ability to burst are governed by CPU Credits. Each T2 instance receives CPU Credits

continuously, the rate of which depends on the instance size. T2 instances accrue CPU Credits when they are idle, and use CPU credits
when they are active. A CPU Credit provides the performance of a full CPU core for one minute.

UMassAmbherst Lecture 8, page 11

Part 3: Docker and Linux Containers

* Linux containers are a set of kernel features
— Need user space tools to manage containers
— Virtuozo, OpenVZm, VServer,Lxc-tools, Docker
* What does Docker add to Linux containers?
— Portable container deployment across machines
— Application-centric: geared for app deployment
— Automatic builds: create containers from build files
— Component re-use
* Docker containers are self-contained: no
dependencies

UMassAmbherst Lecture 8, page 12

Docker

* Docker uses Linux containers

CL RESI APL Dockerfiles

A

- -
\

m@m«

Virtu viachine Virtua! Ma e

Type 1 Hypervisor Linux Containers docker

UMassAmbherst

Lecture 8, page 13

LXC Virtualization Using Docker

» Portable: docker images run anywhere docker runs

» Docker decouples LXC provider from operations
— uses virtual resources (LXC virtualization)

* fair share of physical NIC vs use virtual NICs that are fair-
shared

Non-Virtual Virtual
* Vendor specc codepats - cnpin
uc-rnnva perver '-\1 azes

. ammmwlh coslly

ve Intertaces

o
s
ns @
3
@
o

UMassAmbherst

Lecture 8, page 14

Docker Images and Use

* Docker uses a union file system (AuFS)
— allows containers to use host FS safely

» Essentially a copy-on-write file system
— read-only files shared (e.g., share glibc)

— make a copy upon write
» Allows for small efficient container images

* Docker Use Cases

— “Run once, deploy anywhere”

— Images can be pulled/pushed to repository

— Containers can be a single process (useful for
microservices) or a full OS

Lecture 8, page 15

UMassAmbherst

Case Study: PlanetLab

 Distributed cluster across universities
— Used for experimental research by students and faculty in
networking and distributed systems

» Uses a virtualized architecture

— Linux Vservers

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Priviliged management

User-assigned
virtual machines

virtual machines

$59001d
$59001d
$59001d
$59901d
$$9901d
$$9001d
$59001d
$59001d
$59001d
$59001d

Vserver Vserver

Vserver Vserver Vserver

Linux enhanced operating system

Hardware

Lecture 8, page 16

UMassAmbherst

