
Lecture 6, page

Distributed and Cluster Scheduling

1

• Part 1: Multiprocessor scheduling

• Part 2: Distributed Scheduling

• Part 3: Cluster Scheduling

Lecture 6, page CS677: Distributed OS

Part 1: Multiprocessor Scheduling

2

• Shared memory symmetric multiprocessor (SMP) or multi-core
CPU

•Salient features: One or more caches: cache affinity is important
– Semaphores/locks typically implemented as spin-locks: preemption during

critical sections
•Multi-core systems: some caches shared (L2,L3); others are not

Lecture 6, page CS677: Distributed OS

Multiprocessor Scheduling

3

•Central queue
– queue can be a bottleneck;
– utilizes all processors;
– poor cache affinity

•Distributed queue
– imbalance between queues
– load balancing between queue
– good cache affinity

• Exploit cache affinity – try to
schedule on the same processor that
a process/thread executed last

Lecture 6, page CS677: Distributed OS

Gang Scheduling

4

• Gang scheduling: schedule parallel application at once on all
cores/processors
– Reduces waiting/blocking from message passing/IPC
– Same idea also applies to a cluster setting

• Effect of spin-locks: what happens if preemption occurs in the
middle of a critical section?
– Preempt entire application (co-scheduling)
– Raise priority so preemption does not occur (smart scheduling)
– Both of the above

Lecture 6, page CS677: Distributed OS

Part 2: Distributed Scheduling

5

• Distributed scheduling arouse in the workstation era
• Workstation on every desk, many idle

– Harness idle cycles on workstations
– Scheduling in a Network of Workstations (NoW)

• User submits job to local machine
• OS schedules locally if load is low
• OS schedules remotely on an idle machine otherwise

• Distributed system with N workstations
– To understand benefits of the approach:
– Model each w/s as identical, independent M/M/1 systems
– Utilization u, P(system idle)=1-u

Lecture 6, page CS677: Distributed OS

Harnessing Idle Cycles in NoW

6

• What is the probability that at least one system is idle and one
job is waiting?

• High utilization => little benefit
• Low utilization => rarely job waiting
• Probability high for moderate system utilization

– Potential for performance improvement
– Distributed scheduling (aka load balancing) useful

• What is the performance metric?
– Mean response time

• What is the measure of load?
– Must be easy to measure and reflect performance improvement
– Queue lengths at CPU, CPU utilization

• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance
– Job floats around and load oscillates

Lecture 6, page CS677: Distributed OS

Components

7

• Transfer policy: when to transfer a process?
– Threshold-based policies are common and easy

• Selection policy: which process to transfer?
– Prefer new processes
– Transfer cost should be small compared to execution cost

• Select processes with long execution times
• Location policy: where to transfer the process?

– Polling, random, nearest neighbor
• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven
[periodic], state-change-driven [send update if load changes]

Lecture 6, page CS677: Distributed OS

Sender-initiated Policy

8

• Transfer policy

• Selection policy: newly arrived process
• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers
– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job
– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

Lecture 6, page CS677: Distributed OS

Receiver-initiated Policy

9

• Transfer policy: If departing process causes load < T,
find a process from elsewhere

• Selection policy: newly arrived or partially executed
process

• Location policy:
– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing
– Shortest: poll n nodes in parallel, choose node with heaviest

load above T

Lecture 6, page CS677: Distributed OS

Symmetric Policies

10

• Nodes act as both senders and receivers: combine
previous two policies without change
– Use average load as threshold

• Improved symmetric policy: exploit polling information
– Two thresholds: LT, UT, LT <= UT
– Maintain sender, receiver and OK nodes using polling info
– Sender: poll first node on receiver list …
– Receiver: poll first node on sender list …

Lecture 6, page CS677: Distributed OS

Case Study 1: V-System (Stanford)

11

• State-change driven information policy
– Significant change in CPU/memory utilization is broadcast to

all other nodes
• M least loaded nodes are receivers, others are senders
• Sender-initiated with new job selection policy
• Location policy: probe random receiver from M, if still

receiver, transfer job, else try another

Lecture 6, page CS677: Distributed OS

Case study 2: Sprite (Berkeley)

12

• Workstation environment => owner is king!
• Centralized information policy: coordinator keeps info

– State-change driven information policy
– Receiver: workstation with no keyboard/mouse activity for 30

seconds and # active processes < number of processors
• Selection policy: manually done by user => workstation

becomes sender
• Location policy: sender queries coordinator
• WS with foreign process becomes sender if user becomes

active: selection policy=> home workstation

Lecture 6, page CS677: Distributed OS

Sprite (contd)

13

• Sprite process migration is a building block for
scheduling on to remote machines
– Facilitated by the Sprite file system
– State transfer

• Swap everything out
• Send page tables and file descriptors to receiver
• Demand page process in
• Only dependencies are communication-related

– Redirect communication from home WS to receiver

Lecture 6, page

Case study 3: Condor

14

• Condor: use idle cycles on workstations in a LAN
– Active project at U. Wisconsin, can use even today

• Used to run large batch jobs, long simulations
• Idle machines contact condor for work
• Condor assigns a waiting job
• User returns to workstation => suspend job, migrate

– supports process migration
• Flexible job scheduling policies

Lecture 6, page

Case Study 4: Volunteer Computing

15

• Modern way to harness idle cycles in PCs over WAN
– Harness compute cycles of thousands of PCs on the Internet

• Volunteer Computing
– PCs owned by different individuals
– Donate CPU cycles/storage when not in use (pool resouces)
– Idling machine contacts coordinator for work
– Coordinator: partition large parallel app into small tasks
– Assign compute/storage tasks to PCs

• Examples: Seti@home, BOINC, P2P backups
– Volunteer computing

Lecture 6, page

Part 3: Cluster Scheduling

16

• Scheduling tasks on to a cluster of servers
– Machines are cheap, no need to rely on idle PCs anymore
– Use a cluster of powerful servers to run tasks
– User requests sent to the cluster (rather than a idle PC)

• Interactive applications
– Web servers use a cluster of servers
– “Job” is a single HTTP request; optimize for response time

• Batch applications
– Job is a long running computation; optimize for throughput

Lecture 6, page

Typical Cluster Scheduler

17

• Dispatcher node assigns queued requests to worker
nodes as per a scheduling policy

incoming
requests

dispatcher
node

worker
nodes

queue

scheduling
policy

cluster

Lecture 6, page

Scheduling in Clustered Web Servers

18

• Distributed scheduling in large web servers
– N nodes, one node acts as load balancer/dispatcher
– other nodes are replica worker nodes (“server pool”)

• Requests arrive into queue at load balancer node
– Dispatcher schedules request onto an worker node

• How to decide which node to choose?
– Scheduling policies: least loaded, round robin

• Weighted round robin when servers are heterogeneous
• Session-level versus request-level load balancing

– Web server maintain session state for client (e.g., shopping cart)
– Perform load balancing at session granularity

• All requests from client session sent to same worker

Lecture 6, page

Scheduling Batch Jobs

19

• Batch jobs are non-interactive tasks
– ML training, data processing tasks, simulations

• Batch scheduling in a server cluster
– Users submit job to a queue, dispatcher schedules jobs

• SLURM: Simple Linux Utility for Resource Management
– Linux batch scheduler; runs on > 50% supercomputers
– Nodes partitioned into groups; each group has job queue

• Specify size, time limits, user groups for each queue
• Example: short queue, long queue
• Many policies: FCFS, priority, gang scheduling
• Exclusive or shared access to nodes (e.g., MPI jobs)

• Others: SunGridEngine, DQS, Load Leveler, IBM LSF

Lecture 6, page

Mesos Scheduler

20

• Mesos: Cluster manager and scheduler for multiple frameworks
– Cluster typically runs multiple frameworks: batch, Spark, …

• Statically partition cluster, each managed by a scheduler
– Mesos: fine-grain server sharing between frameworks

• Two-level approach: allocate resources to frameworks, framework
allocates resources to tasks

• Resource Offers: bundle of resources offered to framework
– Framework can accept or reject offer
– Higher-level policy (e.g., fair share) governs allocation;

resource offers used to offer resources
– Framework-specific scheduling policy allocates to tasks
– Framework can not ask for resources; only accept/reject

resource offers (Paper shows this is sufficient).

Lecture 6, page

Mesos Scheduler

21

• Four components: coordinator, Mesos
worker, framework scheduler, executor on
server nodes

• Step 1: worker node (6 core, 6GB) becomes
idle, reports to coordinator

• Step 2: Coordinator invokes policy, decides
to allocate to Framework 1. Sends resource
offer

• Step 3: Framework accepts, scheduler
assigns task 1 (2C, 2GB) and task 2 (2C,
3GB)

• Step 4: Coordinator sends tasks to executor
on node

• Unused resources (2C, 1GB): new offer

Lecture 6, page

Borg Scheduler

22

• Google’s cluster scheduler: scheduling at very large scales
– run hundreds of thousands of concurrent jobs onto tens of

thousands of server
– Borg’s ideas later influenced kubernates

• Design Goals:
– hide details of resource management and failures from apps
– Operate with high reliability (manages gmail, web search, ..)
– Scale to very large clusters

• Designed to run two classes: interactive and batch
– Long running interactive jobs (prod job) given priority
– Batch jobs (non-prod jobs) given lower priority
– % of interactive and batch jobs will vary over time

Lecture 6, page

Borg Scheduler

23

• Cell: group of machines in a cluster (~10K servers)
• Borg: matches jobs to cells

– jobs specify resource needs
– Borg finds a cell/machine to run a job
– job needs can change (e.g., ask for more)

• Use resource reservations (“alloc”)
– alloc set: reservations across machines
– Schedule job onto alloc set

• Preemption: higher priority job can preempt a lower priority
job if there are insufficient resources

• Borg Master coördinator: replicated 5 times, uses paxos to
• Priority queue to schedule jobs: uses best-fit, worst-fit

