
Lecture 4, page CS677: Distributed OS

Remote Method Invocation

1

• Part 1: Alternate RPCs Models

• Part 2: Remote Method Invocation (RMI)
– Design issues

• Part 3: RMI and RPC Implementation and Examples

Lecture 4, page CS677: Distributed OS

Lightweight RPCs

2

• Many RPCs occur between client and server on same
machine
– Need to optimize RPCs for this special case => use a

lightweight RPC mechanism (LRPC)
• Server S exports interface to remote procedures
• Client C on same machine imports interface
• OS kernel creates data structures including an argument

stack shared between S and C

Lecture 4, page CS677: Distributed OS

Lightweight RPCs

3

• RPC execution
– Push arguments onto stack
– Trap to kernel
– Kernel changes mem map of client to server address space
– Client thread executes procedure (OS upcall)
– Thread traps to kernel upon completion
– Kernel changes the address space back and returns control to

client
• Called “doors” in Solaris
• Which RPC to use? - run-time bit allows stub to choose between

LRPC and RPC

Lecture 4, page CS677: Distributed OS

Other RPC Models

4

• Asynchronous RPC
– Request-reply behavior often not needed
– Server can reply as soon as request is received and execute procedure later

• Deferred-synchronous RPC
– Use two asynchronous RPCs
– Client needs a reply but can’t wait for it; server sends reply via another

asynchronous RPC
• One-way RPC

– Client does not even wait for an ACK from the server
– Limitation: reliability not guaranteed (Client does not know if procedure

was executed by the server).

Lecture 4, page CS677: Distributed OS

Asynchronous RPC

5

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

2-12

Lecture 4, page CS677: Distributed OS

 Deferred Synchronous RPC

6

• A client and server interacting through two asynchronous RPCs

2-13

Lecture 4, page CS677: Distributed OS

Part 2:Remote Method Invocation (RMI)

7

• RPCs applied to objects, i.e., instances of a class
– Class: object-oriented abstraction; module with data and

operations
– Separation between interface and implementation
– Interface resides on one machine, implementation on another

• RMIs support system-wide object references
– Parameters can be object references

Lecture 4, page CS677: Distributed OS

Distributed Objects

8

• When a client binds to a distributed object, load the interface
(“proxy”) into client address space
– Proxy analogous to stubs

• Server stub is referred to as a skeleton

Lecture 4, page CS677: Distributed OS

Proxies and Skeletons

9

• Proxy: client stub
– Maintains server ID, endpoint, object ID
– Sets up and tears down connection with the server
– [Java:] does serialization of local object parameters
– In practice, can be downloaded/constructed on the fly (why

can’t this be done for RPCs in general?)
• Skeleton: server stub

– Does deserialization and passes parameters to server and sends
result to proxy

Lecture 4, page CS677: Distributed OS

Binding a Client to an Object

10

A. Example with implicit binding using only global references
B. Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a)

Distr_object obj_ref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b)

Lecture 4, page CS677: Distributed OS

Parameter Passing

11

• Less restrictive than RPCs.
– Supports system-wide object references
– [Java] pass local objects by value, pass remote objects by reference
– Local objects: all normal classes; Remote objects: classes with RMIs

(UnicastRemoteObject)

Lecture 4, page

Part 3: Implementation & Examples

12

• Java RMI

• C RPC

• Python Remote Objects (PyRO)

• gRPC

Lecture 4, page CS677: Distributed OS

Java RMI

13

• Server
– Defines interface and implements interface methods
– Server program

• Creates server object and registers object with “remote
object” registry

• Client
– Looks up server in remote object registry
– Uses normal method call syntax for remote methods

• Java tools
– Rmiregistry: server-side name server

Lecture 4, page

Java RMI Example

14

Interface Client

Server

Lecture 4, page CS677: Distributed OS

Java RMI and Synchronization

15

• Java supports Monitors: synchronized objects
– Serializes accesses to objects
– How does this work for remote objects?

• Options: block at the client or the server
• Block at server

– Can synchronize across multiple proxies
– Problem: what if the client crashes while blocked?

• Block at proxy
– Need to synchronize clients at different machines
– Explicit distributed locking necessary

• Java uses proxies for blocking
– No protection for simultaneous access from different clients
– Applications need to implement distributed locking

Lecture 4, page

C/C++ RPC

16

• Uses rpcgen compiler to generate stub code; link with
server and client C code

• Q_xdr.c: do XDR conversion
• Sample code in homework

Lecture 4, page

Binder: Port Mapper

17

•Server start-up: create port
•Server stub calls svc_register to register prog. #, version # with local
port mapper
•Port mapper stores prog #, version #, and port
•Client start-up: call clnt_create to locate server port
•Upon return, client can call procedures at the server

Lecture 4, page

Python Remote Objects (PyRO)

18

Lecture 4, page

gRPC

19

• Google’s RPC platform: now available to all developers
– Modern, high-performance framework
– designed for cloud apps

• Works across OS, hardware and languages
• Supports python, java, C++,C#, Go, Swift, Node.js, ….
• Uses http/2 as transport protocol
• ProtoBuf for serializing structured messages

Lecture 4, page

Protocol Buffers (ProtoBuf)

20

• Allow message structure to be defined for communication
– Platform-independent; marshalling/serialization built-in

• Define message structure in .proto file

• Use protocol compiler protoc to generate classes
– Classes provide methods to access fields and serialize /

parse from raw bytes e.g., set_page_number()
– Like JSON, but binary and more compact
– https://developers.google.com/protocol-buffers

Lecture 4, page

gRPC Example

21

• Define gRPCs in proto file with RPC methods
– params and returns are protoBud messages;

– use protoc to compile and get client stub code in preferred language
– gRPC server on server side

Lecture 4, page

gRPC Features

22

• Four types of RPCs supported
– Unary RPC, server streaming, client streaming, bi-drectional
– Unary RPC sends single response message, streaming can send any

number of messages

• Supports synchronous and asynchronous calls
• Deadlines/timeouts: client specifies timeout, server cn query to

figure out how much time is left to produce reply
• Cancel RPC: server or client can cancel rpc to terminate it

