
Lecture 3, page

Communication in Distributed Systems

1

• Part 1: Message-oriented Communication
• Part 2: Remote Procedure Calls
• Part 3: RPC Implementation

• Next time:
• Remote Method Invocation

– RMIs are essentially RPCs but specific to remote objects
– System wide references passed as parameters

• Stream-oriented Communication

Lecture 3, page CS677: Distributed OS

Part 1: Communication Between Processes

2

• Unstructured communication
– Use shared memory or shared data structures

• Structured communication
– Use explicit messages (IPCs)

• Low-level socket-based message passing
• Higher-level remote procedure calls

• Distributed Systems: both need low-level
communication support (why?)

Lecture 3, page CS677: Distributed OS

Communication Protocols

3

• Protocols are agreements/rules on communication
• Protocols could be connection-oriented or connectionless

2-1

Lecture 3, page CS677: Distributed OS

Layered Protocols

4

• A typical message as it appears on the network.

2-2

Lecture 3, page CS677: Distributed OS

Middleware Protocols

5

• Middleware: layer that resides between an OS and an application
– May implement general-purpose protocols that warrant their own layers

• Example: distributed commit

2-5

Lecture 3, page CS677: Distributed OS

TCP-based Socket Communication

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

6

Lecture 3, page CS677: Distributed OS

Client-Server Communication

7

• Many distributed systems built on top of simple message-oriented model
– Example: Berkeley sockets

Lecture 3, page

Python Socket Example

8

• Client code

• Server

Example from https://docs.python.org/3/howto/sockets.html

Lecture 3, page CS677: Distributed OS

Understanding TCP Overheads

9

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Lecture 3, page CS677: Distributed OS

Group Communication

10

• One-to-many communication: useful for distributed
applications

• Issues:
– Group characteristics:

• Static/dynamic, open/closed
– Group addressing

• Multicast, broadcast, application-level multicast (unicast)
– Atomicity
– Message ordering
– Scalability

Lecture 3, page CS677: Distributed OS

Part 2: Remote Procedure Calls

11

• Goal: Make distributed computing look like centralized
computing

• Allow remote services to be called as procedures
– Transparency with regard to location, implementation,

language
• Issues

– How to pass parameters
– Bindings
– Semantics in face of errors

• Two classes: integrated into prog language and separate

Lecture 3, page CS677: Distributed OS

Example of an RPC

2-8

12

Lecture 3, page CS677: Distributed OS

RPC Semantics

13

• Principle of RPC between a client and server program [Birrell&Nelson 1984]

Lecture 3, page CS677: Distributed OS

Conventional Procedure Call

14

a) Parameter passing in a local
procedure call: the stack before the
call to read

b) The stack while the called procedure is
active

Lecture 3, page CS677: Distributed OS

Parameter Passing

15

• Local procedure parameter passing
– Call-by-value
– Call-by-reference: arrays, complex data structures

• Remote procedure calls simulate this through:
– Stubs – proxies
– Flattening – marshalling

• Related issue: global variables are not allowed in RPCs

Lecture 3, page CS677: Distributed OS

Client and Server Stubs

16

• Client makes procedure call (just like a local procedure
call) to the client stub

• Server is written as a standard procedure
• Stubs take care of packaging arguments and sending

messages
• Packaging parameters is called marshalling
• Stub compiler generates stub automatically from specs in

an Interface Definition Language (IDL)
– Simplifies programmer task

Lecture 3, page CS677: Distributed OS

Steps of a Remote Procedure Call

17

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Lecture 3, page CS677: Distributed OS

Marshalling and Unmarshalling

18

• Problem: different machines have different data formats
– Intel: little endian, SPARC: big endian

• Solution: use a standard representation
– Example: external data representation (XDR)

• Problem: how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the server stub

passes a pointer to the local copy
• What about data structures containing pointers?

– Prohibit
– Chase pointers over network

• Marshalling: transform parameters/results into a byte stream
– Called serialization in Java (serialize/deserialize)

Lecture 3, page CS677: Distributed OS

Binding

19

• Problem: how does a client locate a server?
– Use Bindings

• Server
– Export server interface during initialization
– Send name, version no, unique identifier, handle (address) to

binder
• Client

– First RPC: send message to binder to import server interface
– Binder: check to see if server has exported interface

• Return handle and unique identifier to client

Lecture 3, page CS677: Distributed OS

Part 3: RPC Implementation
Failure Semantics

20

• Client unable to locate server: return error
• Lost request messages: simple timeout mechanisms
• Lost replies: timeout mechanisms

– Make operation idempotent
– Use sequence numbers, mark retransmissions

• Server failures: did failure occur before or after operation?
– At least once semantics (SUNRPC)
– At most once
– No guarantee
– Exactly once: desirable but difficult to achieve

Lecture 3, page CS677: Distributed OS

Failure Semantics

21

• Client failure: what happens to the server computation?
– Referred to as an orphan
– Extermination: log at client stub and explicitly kill orphans

• Overhead of maintaining disk logs
– Reincarnation: Divide time into epochs between failures and

delete computations from old epochs
– Gentle reincarnation: upon a new epoch broadcast, try to

locate owner first (delete only if no owner)
– Expiration: give each RPC a fixed quantum T; explicitly

request extensions
• Periodic checks with client during long computations

Lecture 3, page CS677: Distributed OS

Implementation Issues

22

• Choice of protocol [affects communication costs]
– Use existing protocol (UDP) or design from scratch
– Packet size restrictions
– Reliability in case of multiple packet messages
– Flow control

• Copying costs are dominant overheads
– Need at least 2 copies per message

• From client to NIC and from server NIC to server
– As many as 7 copies

• Stack in stub – message buffer in stub – kernel – NIC –
medium – NIC – kernel – stub – server

– Scatter-gather operations can reduce overheads

Lecture 3, page CS677: Distributed OS

Case Study: SUNRPC

23

• One of the most widely used RPC systems
• Developed for use with NFS
• Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure
• At-least-once semantics if reply received, at-least-zero semantics

if no reply. With UDP tries at-most-once
• Use SUN’s eXternal Data Representation (XDR)

– Big endian order for 32 bit integers, handle arbitrarily large data structures

Lecture 3, page CS677: Distributed OS

Binder: Port Mapper

24

•Server start-up: create port
•Server stub calls svc_register to
register prog. #, version # with
local port mapper
•Port mapper stores prog #,
version #, and port
•Client start-up: call clnt_create
to locate server port
•Upon return, client can call
procedures at the server

Lecture 3, page CS677: Distributed OS

Rpcgen: generating stubs

25

• Q_xdr.c: do XDR conversion
• Detailed example: add rpc

Lecture 3, page CS677: Distributed OS

Summary

26

• RPCs make distributed computations look like local
computations

• Issues:
– Parameter passing
– Binding
– Failure handling

• Case Study: SUN RPC

