CMPSCI 577 Operating Systems Design and Implementation Spring 2020

Lecture 14: 12 March 2020
Lecturer: Ahmed Ali-Eldin Scribe: Kanchi Masalia (1st year Masters)

14.1 System Calls in Linux

It is the interface between the user and kernel. The system calls are compliant with POSIX and SUSV3.
All system calls have return type long. All system calls have a number associated with them which are
architecture dependent. Linux tries to minimize the number of system calls.

There is only slight difference between system calls in Minix and Linux. In Minix each system call has a
server which exposed it to the user, it is not so in Linux. SYSCALL_DEFINEQ is a macro which defines
system call where 0 means zero parameters are used to invoke this system call. Each system call has a
defined handler.

14.1.1 Mechanism

System calls result in an interrupt which causes an exception and the control is switched to the kernel space.
Depending on the parameters it is decided which system call is to be invoked. The system call number is
passed to kernel via eax register.

14.1.2 Why not implement system call in Linux?

You need a system call number officially assigned to you, which is very difficult to get. You need backward
compatibility for them, so once you add you can’t remove them. Thus, making it a maintenance issue.
Hence, Linux unlike Windows tries to maintain low number of system calls.

Alternative: Linux Kernel Modules

14.2 Interrupts and Interrrupt Handlers

14.2.1 Why interrupts?

Processors can run many instructions in seconds. While communicating with slow hardware, it not ideal for
the processor to wait for the response from the hardware.

In order to solve this variable speed problem are 2 ways are:

Polling : Processor will wait for some pre-decided time and then check if the hardware has something that
it has to process.

Interrupts

14-1

14-2 Lecture 14: 12 March 2020

14.2.2 Interrupts

Enables the hardware to signal the processor once it completes the task. Hardware devices generate interrupts
asynchronously. Interrupt controller is a chip which holds a mapping table for each signal from the hardware
and address of what action is to be taken. This enables the processor to communicate with all types of
hardware. Each interrupt has a unique value. (In reality, not all interrupts have a value.) Interrupt values
are known as IRQ (Interrrupt Request Lines).

14.2.3 IRQ

Each TRQ line is assigned a unique number. IRQ zero is the timer interrupt IRQ one is the keyboard
Interrupt. A specific interrupt is associated with a specific device. Unlike system calls, all IRQ numbers
aren’t defined. At times, IRQ numbers are dynamically assigned.

14.2.4 Difference between Interrupts and Exceptions

Origin of interrupts is hardware whereas origin of exceptions is software.

14.2.5 Interrupt Handlers

While installing a device driver, we teach it how to handle interrupts. Device drivers can be implemented in
Kernel or Linux Kernel Module. They are written in C. They run in special kernel context called interrupt
context or atomic context meaning it can not be blocked and thus runs quickly.

14.2.6 Top Halves vs Bottom Halves

Interrupt handling is split in 2 halves. Top Half is for critical work which run immediately and bottom half
are for non urgent work.

14.2.7 Registering Device Driver

Each devices has one associated driver. Each driver registers one handler using request_irg() which returns
0 on success. Common error is -EBUSY which means the irq is already in use.

14.2.8 Handler Flags

When there is an interrupt, everything is blocked. This is achieved using handler flags.

TIRQF_DISABLED : When set it instructs the kernel to disable all interrupts when executing this interrupt
handler. When unset, interrupt handlers run with all interrupts except their own enabled. Most commonly,
it is unset.

TIRQF_TIMER: This is for actual system handler. It indicates something is of very high priority and should
run right away.

TRQF_SHARED and dev: Enables multiple devices to share same same interrupt number.

Lecture 14: 12 March 2020 14-3

TRQF_SAMPLE_RANDOM: There are no true random number generators. Random numbers are needed
for crypto libraries in kernel, etc. So it uses metadata to generate them. This flag is set/unset depending on
whether this metadata can be used for random number generator.

14.2.9 Reentrancy and Interrupt Handlers

When an interrupt handler is executing, it can not run on any other processor as well. This is needed to
prevent the interrupt from being overridden by another interrupt of same type.

14.2.10 Why interrupt sharing?

Limited number of pins but infinite devices to attach. So we want a way to overbook the pins. This can be
achieved by sharing interrupt handler numbers and having hardware and driver support. Hardware should
understand it’s sharing interrupt handler, the kernel should be able to figure which particular device is raising
the interrupt out of all the ones sharing the interrupt handler number.

In the interrupt vector table, the interrupts ranging from 0 - 19 can not to shared. They are non maskable.

14.2.11 Interrupt Control Methods in the kernel

There are ways to mask interrupts on a single processor for synchronization purpose. In multiprocessor
system, each processor has it’s own interrupt handler. There is no way for disabling interrupts on all cores.

14.3 Bottom Halves

Performs most work. It will run when system is less busy. They are run after the handler, but with all
interrupts enabled. If the work is time sensitive, hardware dependent or requires no interruption it must be
performed in interrupt handler. Rest all things are part of bottom half.

There are different mechanisms used to implement bottom-half:

1. Task Queues

2. Softirgs and Tasklets

3. Threaded Interrupts

14.3.1 Task Queues

Similar to priority queues. There are many queues, each one contains linked list of functions to call.
Issue : Not light weight
Now replaced with work-queues.

14.3.2 Softirqs and Tasklets

Softirgs are statistically defined Bottom Halves which can run simultaneously on different processors even if
they are of same type. They also have a number table. Softirgs offer high performance.
Tasklets are built on top of softirqs. Thus, tasklets are softirqs. Two same type of tasklets can not run on

14-4 Lecture 14: 12 March 2020

different processor simultaneously.
Tasklets are for high priority and softirgs are for low priority.

14.3.3 Threaded Interrupts

Instead of implementing top halves and bottom halves, top half is just for acknowledging and clearing
hardware. Everything else is executed in kernel thread.

14.3.4 ksoftirqd

If there are too many softirgs it hogs the system. Also, a softirq can raise it self so it runs again and can
lead to starvation. To mitigate, ksoftirqd - per processor kernel thread are there. If the number of softirgs
grows excessively, the kernel wakes up kernel threads to handle the load with lowest priority.

14.3.5 Work Queues

If the deffered work needs sleep Work Queues are used else softirgs or tasklets are used. Useful for allocating
memory, perform block I/0.

