Linux Memory Management
Ahmed Ali-Eldin

This lecture

e Kernel memory allocations
e User-space memory management
e Caching in memory

Numbers every programmer should know...

Yearly updated data: https://colin-scott.github.io/personal_website/research/interactive_latency.htm

Approximate timing for various operations on a typical PC:

‘execute typical instruction

1/1,000,000,000 sec = 1 nanosec

\fetch from L1 cache memory 0.5 nanosec
\branch misprediction 5 nanosec
’fetch from L2 cache memory 7 nanosec
[Mutex lock/unlock 25 nanosec

|fetch from main memory

100 nanosec

send 2K bytes over 1Gbps
network

20,000 nanosec

read 1MB sequentially from
memory

250,000 nanosec

fetch from new disk location
(seek)

8,000,000 nanosec

read 1MB sequentially from
disk

20,000,000 nanosec

send packet US to Europe and
back

150 milliseconds = 150,000,000
nanosec

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Kernel memory allocation

e Kernel processes require memory allocation
o kernel cannot easily deal with memory allocation errors
o kernel often cannot sleep

The kernel memory allocation mechanisms differ from user-space allocation
The kernel treats physical pages as the basic unit of memory management
x-86 processors include a hardware Memory Management Unit (MMU)

Memory management in Linux is a complex system
o supports a variety of systems from MMU-less microcontrollers to supercomputers.

Pages in Linux

e Old days: Pages with default size 4 KB
e Now: Huge pages + 4KB pages (since kernel 2.6.3)

e Rationale
o on a machine with 8KB pages and 32GB of memory, physical memory is divided into
4,194,304 distinct pages
o 64-bit Linux allows up to 128 TB of virtual address space for individual processes, and can
address approximately 64 TB of physical memory
o While assigning memory to a process is relatively cheap, memory management is not!
m Every memory access requires a page walk
m Typically take 10 to 100 cpu cycles
m ATLB can hold typically only 1024 entries (out of the 4 Million distinct pages above) and
has to be flushed every context switch

Large Memory Applications

e Applications touching greater than 10 GB such as a large in-memory
database with 17 GiB with 1000 connections

o Uses approximately 4.4 million pages
o With a page table size of 16 GiB

e |dea: Having larger page sizes enables a significant reduction in memory
walks for such an application

Huge Pages

e 0n x806, it is possible to map 2M and even 1G pages using entries in the
second and the third level page tables.

e In Linux such pages are called huge

e Usage of huge pages significantly reduces pressure on TLB, improves TLB
hit-rate and thus improves overall system performance.

e Allows power users to choose the correct Page size for their application

e However, it causes fragmentation

Huge P~~-- ~

on x8¢
secon
In Lint
Usag
hit-rat

Default

With
HugePages pool

| the

ves TLB

Transparent Huge Pages (THB)

Builds on the above concept

Default for all applications today

Transparent to the application

Idea: If an application asks for a large memory chunk, give it a huge page
instead of a small one

So is it any good?

e It depends on the application:
o https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impa
ct/
o https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#L ADBI1519
o https://lwn.net/Articles/374424/

e In many cases, THB actually causes severe performance issues in

applications.
o It is still debatable how to fix this

https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://lwn.net/Articles/374424/

Memory in the kernel

The kernel represents every physical page on the system with a struct

page structure
o Define in https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h

o no way to track which tasks are using a page
o A much more complex definition than the one in the book, however let us look at the basics

o The page structure is associated with physical pages, not virtual pages.
The total size of all the structures can well exceed a 100 MB

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h

struct page :Page flags

e The flags field stores the status of the page.
o Such flags include whether the page is dirty or whether it is locked in memory.
o Bit flags represent the various values, so at least 32 different flags are simultaneously
available
o Defined in https://github.com/torvalds/linux/blob/master/include/linux/page-flags.h

https://github.com/torvalds/linux/blob/master/include/linux/page-flags.h

struct page: Tracking pages

e The count field stores the usage count of the page
o thatis, how many references there are to this page.
o When this count reaches negative one, no one is using the page, and it becomes available for
use in a new allocation

e The virtual field is the page’s virtual address.

e The kernel needs to know who owns the page. Possible owners include
user-space processes, dynamically allocated kernel data, static kernel code,
the page cache, and so on

Memory Zones

e Because of hardware limitations, the kernel cannot treat all pages as identical.
o Some pages, because of their physical address in memory, cannot be used for certain tasks.

e The kernel divides pages into different zones.
o The kernel uses the zones to group pages of similar properties
o Linux has to deal with two shortcomings of hardware with respect to memory addressing:
m Some hardware devices can perform DMA (direct memory access) to only certain
memory addresses.
m Some architectures can physically addressing larger amounts of memory than they can
virtually address. Consequently, some memory is not permanently mapped into the
kernel address space.

e Zones defined in:
https://qithub.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d

0061ee/include/linux/ mmzone.h

https://github.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d0061ee/include/linux/mmzone.h
https://github.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d0061ee/include/linux/mmzone.h

The main zones

e Note: The actual use and layout of the memory zones is
architecture-dependent, and not all zones need to exist!

e Each zone is represented by struct zone inthe mmzone.h file
o ZONE_DMA—This zone contains pages that can undergo DMA.
o ZONE_DMA32—This zone contains pages that can undergo DMA. and are accessible only by
32-bit devices.
o ZONE_NORMAL—This zone contains normal, regularly mapped, pages.
o ZONE_HIGHMEM—This zone contains “high memory,” which are pages not permanently
mapped into the kernel’'s address space.
m On 32-bit x86 systems, ZONE_HIGHMEM is all memory above the physical 896MB
mark. On other architectures, ZONE_HIGHMEM is empty because all memory is directly
mapped.

Allocating pages in the kernel

Flag
alloc_page (gfp mask)

alloc_pages(gfp_mask,
order)

__get_free_page (gfp mask)
__get_free_pages(gfp_mask,
order)

get_zerced page (gfp mask)

Description
Allocates a single page and returns a pointer to its

Allocates 2°™ pages and returns a pointer to the
first page’s page structure

Allocates a single page and returns a pointer to its
logical address

Allocates 2°™ pages and returns a pointer to the
first page’'s logical address

Allocates a single page, zero its contents and
returns a pointer to its logical address

Gfp_mask

Flag
__GFP_WAIT
__GFP_HIGH
__GFP_IO

_ GFP_FS
__GFP_COLD
__GFP_NOWARN

__GFP_REPEAT

__GFP_NOFAIL

__GFP_NORETRY
__GFP_NOMEMALLOC
__GFP_HARDWALL

__GFP_RECLAIMABLE

Description

The allocator can sleep.

The allocator can access emergency pools.
The allocator can start disk |/0.

The allocator can start filesystem /0.

The allocator should use cache cold pages.
The allocator does not print failure warnings.

The allocator repeats the allocation if it fails, but the allocation
can potentially fail.

The allocator indefinitely repeats the allocation. The allocation
cannot fail.

The allocator never retries if the allocation fails.
The allocator does not fall back on reserves.
The allocator enforces "hardwall” cpuset boundaries.

The allocator marks the pages reclaimable.

__GFP_COMP The allocator adds compound page metadata (used internally
by the huget1b code).
Flag Description
__GFP_DMA Allocates only from ZONE_DMA
__GFP_DMA32 Allocates only from ZONE_DMA32

__GFP_HIGHMEM

Allocates from ZONE_HIGHMEM Of ZONE_NORMAL

Easier than masks, flags

Flag
GFP_ATOMIC

GFP_NOWAIT

GFP_NOIO

GFP_NOFS

GFP_KERNEL

GFP_USER

GFP_HIGHUSER

GFP_DMA

Description

The allocation is high priority and must not sleep. This is the flag
to use in interrupt handiers, in bottom halves, while holding a spin-
lock, and in other situations where you cannot sleep.

Like GFP_ATOMIC, except that the call will not fallback on emer-
gency memory pools. This increases the liklihood of the memory
allocation failing.

This allocation can block, but must not initiate disk I/0. This is the
flag to use in block 1/0 code when you cannot cause more disk
1/0, which might lead to some unpleasant recursion.

This allocation can block and can initiate disk /0, if it must, but it
will not initiate a filesystem operation. This is the flag to use in
filesystem code when you cannot start another filesystem operation.

This is a normal allocation and might block. This is the flag to use
in process context code when it is safe to sleep. The kernel will do
whatever it has to do to obtain the memory requested by the
caller. This flag should be your default choice.

This is a normal allocation and might block. This flag is used to
allocate memory for user-space processes.

This is an allocation from ZONE_HIGHMEM and might block. This
flag is used to allocate memory for user-space processes.

This is an allocation from ZONE_DMA. Device drivers that need
DMA-able memory use this flag, usually in combination with one of
the preceding flags.

Freeing pages in the kernel

e [hree main functions

© wvoild free pages(struct page *page, unsigned int order)
© void free pages (unsigned long addr, unsigned int order)
© wvoid free page (unsigned long addr)

e You must be careful to free only pages you allocate.

o Passing the wrong struct page or address, or the incorrect order, can result in corruption.
o kernel trusts itself. unlike with user-space

Example

unsigned long page;

page = get free pages(GFP_KERNEL, 3);

if (!page) |
/* insufficient memory: you must handle this error! */
return -ENOMEM;

/* ‘page’ is now the address of the first of eight contiguous pages ... */

free_pages(page, 3);

Allocating byte sized chunks

e Use kmalloc () if you need physically contiguous memory (mostly needed
for hardware devices), and vmalloc () if you only need virtually contiguous
memory

void * kmalloc(size t size, gfp_t flags)

e The function returns a pointer to a region of memory that is at least size
bytes in length

o Kernel allocations always succeed, unless an insufficient amount of memory is available.
o You must check for NULL after all calls to kmalloc() and handle the error appropriately

e The counterpartto kmalloc () and vmalloc () is kfree () and viree ()

void kfree (const void *ptr)

e kmalloc used more as it has better performance

Linux Slab layer

e The slab layer acts as a generic data structure-caching layer.
o Most kernel programmers introduce free lists in their code. This is memory that was allocated
for a data structure that no longer exists.
m Rather deallocating the memory, it is added to a free list that can later be used for new
data structures instead of trying to allocate new memory
m Acts like an internal caching layer in the kernel

e Can be problematic when the memory becomes scarce

o To enable the kernel more control, the kernel provides the slab layer
o Implemented in https://github.com/torvalds/linux/blob/master/mm/slab.c and definitions in
slab.h

https://github.com/torvalds/linux/blob/master/mm/slab.c
https://github.com/torvalds/linux/blob/master/mm/slab.h

Slab- layer basic tenets (1)

e Frequently used data structures tend to be allocated and freed often, so
cache them.

e Frequent allocation and deallocation can result in memory fragmentation

o To prevent this, the cached free lists are arranged contiguously. Because freed data
structures return to the free list, there is no resulting fragmentation.

e The free list provides improved performance during frequent allocation and
deallocation because a freed object can be immediately returned to the next
allocation

e If the allocator is aware of concepts such as object size, page size, and total
cache size, it can make more intelligent decisions.

Slab- layer basic tenets (2)

e If part of the cache is made per-processor (separate and unique to each
processor on the system), allocations and frees can be performed without an
SMP lock.

e If the allocator is NUMA-aware, it can fulfill allocations from the same memory
node as the requestor.

e Stored objects can be colored to prevent multiple objects from mapping to
the same cache lines.

Slab design

e The slab layer divides different objects into
groups called caches
o The caches are then divided into slabs
o The slabs are composed of one or more
physically contiguous pages.
e There is one cache per object type
o one cache is for process descriptors (a
free list of task_struct structures, etc)
o kmalloc() is actually implemented on top of
slab
m Try to assign memory from the
cache rather than new memory
e Each slab contains some number of
objects, which are the data structures
being cached.
e Each slab is in one of three states: full,

partial, or empty.

slab

~| object

Cache

~ object

object

slab

| object

~ object

The kernel stack

e Historically, unlike user-space programs, kernel processes have non-dynamic

stacks
o Usually the stack per process is one (normal sized) memory page

o However, since 2016, new approaches have been suggested, including Virtually mapped
kernel stacks, see: https://lIwn.net/Articles/692208/

https://lwn.net/Articles/692208/

Overall memory architecture in Linux

SLAB

Kemnel Dynamic Memory

(sLoe/sLus

All Physical Memory Optional)

Allocator | smatoc Q

BKemel Dynamic Data

(Embecded System, ignomng

=5

Kernel Module O‘M:SeD

Zones, NUMA here)
\
([User Space Memory
alioc_pag
Environment
Paged Memory N\ Back:
Buddy Shared Memary
\ System
Allpcator
Resarved
l Atomic Heap
Earty | [Eeemery \
Allccated Memory \ Virtual Memoary
(ade_memory_region) \
\ e
| =
Kemel Code and Reclaim Shared Libraries
Static Data
(Cvrmniinux)

Code

Source: https://slideplayer.com/slide/11404795/

The Process Address Space

Address Space Layout

e Determined (mostly) by the application
e Determined at compile time
o Link directives can influence this

e OS usually reserves part of the address space to map itself
o Upper GB on x86 Linux

e Application can dynamically request new mappings from the OS, or delete
mappings
o Dynamically asks kernel for “anonymous” pages for its heap and stack

Example memory layout

e Idd prints the shared objects (shared libraries) required by each program or
shared object specified on the command line.
e An example of its use and output is the following:

$ ldd /bin/1s
linux-vdso.so0.1 (Ox00007ffcc3563000)
libselinux.so.1l => /1ib64/1ibselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /1ib64/1libcap.so0.2 (0x00007f87e5254000)
libc.so0.6 => /1ib64/1libc.s0.6 (0x00007f87e4e92000)
libpcre.so.1l => /1ib64/1libpcre.so.1 (0x00007f87e4c22000)
libdl.s0.2 => /1ib64/1ibdl.s0.2 (Ox00007f87e4ale000)
/1ib64/1d-1inux-x86-64.50.2 (0x00005574bf12e000)
libattr.so.1 => /1ib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /1ib64/1libpthread.so0.0 (0x00007f87e45fa0b00)

The Process memory areas

Memory areas contain, for example

o O O O O

(@)

o

A memory map of the executable file’'s code, called the text section.

A memory map of the executable file’s initialized global variables, called the data section.

A memory map of the zero page containing uninitialized global variables (called bss section)
A memory map of the zero page used for the process’s user-space stack

An additional text, data, and bss section for each shared library, such as the C library and
dynamic linker, loaded into the process’s address space

Any memory mapped files.

Any shared memory segments.

Any anonymous memory mappings, such as those associated with malloc()

Virtual memory areas

e Linux represents portions of a process with a vm_area_struct, or vma
o Includes:
m Start address (virtual)
m End address (first address after vma)
m Protection (read, write, execute, etc)

e Definedin
https://qgithub.com/torvalds/linux/blob/master/include/linux/mm types.h

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h

The Memory Descriptor

e The kernel represents a process’s address space with a data structure called

the memory descriptor.
o contains all the information related to the process address space.
o represented by struct mm struct and defined in
https://qgithub.com/torvalds/linux/blob/master/include/linux/mm_types.h
o Very well documented in the code above
o The memory descriptor associated with a given task is stored in the mm field of the task’s
process descriptor.

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h

The Page Cache and Page Writeback

The page cache

e RAM can be orders of magnitude faster than disk
e The page cache consists of physical pages in RAM, the contents of which

correspond to physical blocks on a disk.
o The size of the page cache is dynamic; it can grow to consume any free memory and shrink to

relieve memory pressure.
o the storage device being cached is called the backing store because the disk stands behind
the cache as the source of the canonical version of any cached data.

e Entire files need not be cached; the page cache can hold some files in their
entirety while storing only a page or two of other files. What is cached
depends on what has been accessed.

Write Caching

One of three strategies

o No-write: Cache gets invalidated and needs to be repopulated from disk
o Write-through-cache: Update both memory and disk together keeping the cache coherent
o Write-back: default policy in Linux

The write-back caching policy requires that a write operation occurs at the

cache only

o The backing store is not immediately or directly updated. Instead, the written-to pages in the
page cache are marked as dirty and are added to a dirty list.

o Periodically, pages in the dirty list are written back to disk in a process called writeback,
bringing the on-disk copy in line with the in-memory cache.

o The pages are then marked as no longer dirty

Write therefore can be performed in bulk, optimizing access to the slow disk
Application can force immediate write back with sync system calls (and some
open/mmap options)

The Linux Page Cache

e A page in the page cache can consist of multiple non-contiguous physical disk
blocks

e the kernel must check for the existence of a page in the page cache before
initiating any page 1/0,

o the overhead of searching and checking the page cache could nullify any benefits from the
cache

o Thus some parts of the search is implemented as an efficient Radix-Tree

Cache reclamation

e Kernel caches and processes can continue assigning memory until memory

becomes scarce
o Low memory, hibernation, free memory below a “goal”

e Memory pages can be divided into one of four categories
o Unreclaimable — free pages (obviously), pages pinned in memory by a process, temporarily
locked pages, pages used for certain purposes by the kernel
o Swappable — anonymous pages, tmpfs, shared IPC memory
o Syncable — cached disk data
o Discardable — unused pages in cache allocators

Cache eviction policies

e Least Recently Used

e The two list strategy
o Linux keeps two lists: the active list and the inactive list.
o Pages on the active list are considered “hot” and are not available for eviction.
o Pages on the inactive list are available for cache eviction
o Pages are placed on the active list only when they are accessed while already residing on the
inactive list.
The lists are kept in balance
o Approach is also known as LRU/2; it can be generalized to n-lists, called LRU/n

(@)

