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This lecture
● Kernel memory allocations
● User-space memory management
● Caching in memory



Numbers every programmer should know...
Yearly updated data: https://colin-scott.github.io/personal_website/research/interactive_latency.html 

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Kernel memory allocation
● Kernel processes require memory allocation

○ kernel cannot easily deal with memory allocation errors
○ kernel often cannot sleep

● The kernel memory allocation mechanisms differ from user-space allocation
● The kernel treats physical pages as the basic unit of memory management
● x-86 processors include a hardware Memory Management Unit (MMU)
● Memory management in Linux is a complex system

○ supports a variety of systems from MMU-less microcontrollers to supercomputers.



Pages in Linux
● Old days: Pages with default size 4 KB
● Now: Huge pages + 4KB pages (since kernel 2.6.3)
●  Rationale

○ on a machine with 8KB pages and 32GB of memory, physical memory is divided into 
4,194,304 distinct pages

○ 64-bit Linux allows up to 128 TB of virtual address space for individual processes, and can 
address approximately 64 TB of physical memory

○ While assigning memory to a process is relatively cheap, memory management is not!
■ Every memory access requires a page walk
■ Typically take 10 to 100 cpu cycles
■ A TLB can hold typically only 1024 entries (out of the 4 Million distinct pages above) and 

has to be flushed every context switch



Large Memory Applications
● Applications touching greater than 10 GB such as a large in-memory 

database with 17 GiB with 1000 connections
○ Uses approximately 4.4 million pages
○ With a page table size of 16 GiB

● Idea: Having larger page sizes enables a significant reduction in memory 
walks for such an application



Huge Pages
● on x86, it is possible to map 2M and even 1G pages using entries in the 

second and the third level page tables.
● In Linux such pages are called huge
● Usage of huge pages significantly reduces pressure on TLB, improves TLB 

hit-rate and thus improves overall system performance.
● Allows power users to choose the correct Page size for their application
● However, it causes fragmentation
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Transparent Huge Pages (THB)
● Builds on the above concept
● Default for all applications today
● Transparent to the application
● Idea: If an application asks for a large memory chunk, give it a huge page 

instead of a small one



So is it any good?
● It depends on the application: 

○ https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impa
ct/

○ https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519 
○ https://lwn.net/Articles/374424/ 

● In many cases, THB actually causes severe performance issues in 
applications.

○ It is still debatable how to fix this

https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://lwn.net/Articles/374424/


Memory in the kernel
● The kernel represents every physical page on the system with a struct 

page structure
○ Define in https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h 
○ no way to track which tasks are using a page
○ A much more complex definition than the one in the book, however let us look at the basics
○ The page structure is associated with physical pages, not virtual pages.

● The total size of all the structures can well exceed a 100 MB

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h


struct page :Page flags
● The flags field stores the status of the page.

○  Such flags include whether the page is dirty or whether it is locked in memory.
○  Bit flags represent the various values, so at least 32 different flags are simultaneously 

available
○ Defined in https://github.com/torvalds/linux/blob/master/include/linux/page-flags.h 

https://github.com/torvalds/linux/blob/master/include/linux/page-flags.h


struct page: Tracking pages
● The _count field stores the usage count of the page

○ that is, how many references there are to this page. 
○ When this count reaches negative one, no one is using the page, and it becomes available for 

use in a new allocation

● The virtual field is the page’s virtual address. 
● The kernel needs to know who owns the page. Possible owners include 

user-space processes, dynamically allocated kernel data, static kernel code, 
the page cache, and so on



Memory Zones
● Because of hardware limitations, the kernel cannot treat all pages as identical. 

○ Some pages, because of their physical address in memory, cannot be used for certain tasks. 

● The kernel divides pages into different zones.
○ The kernel uses the zones to group pages of similar properties
○ Linux has to deal with two shortcomings of hardware with respect to memory addressing:

■ Some hardware devices can perform DMA (direct memory access) to only certain 
memory addresses.

■ Some architectures can physically addressing larger amounts of memory than they can 
virtually address. Consequently, some memory is not permanently mapped into the 
kernel address space.

● Zones defined in: 
https://github.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d
0061ee/include/linux/mmzone.h 

https://github.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d0061ee/include/linux/mmzone.h
https://github.com/torvalds/linux/blob/cc12071ff39060fc2e47c58b43e249fe0d0061ee/include/linux/mmzone.h


The main zones
● Note: The actual use and layout of the memory zones is 

architecture-dependent, and not all zones need to exist!
● Each zone is represented by struct zone in the mmzone.h file

○ ZONE_DMA—This zone contains pages that can undergo DMA.
○ ZONE_DMA32—This zone contains pages that can undergo DMA. and are accessible only by 

32-bit devices.
○ ZONE_NORMAL—This zone contains normal, regularly mapped, pages.
○ ZONE_HIGHMEM—This zone contains “high memory,” which are pages not permanently 

mapped into the kernel’s address space.
■ On 32-bit x86 systems, ZONE_HIGHMEM is all memory above the physical 896MB 

mark. On other architectures, ZONE_HIGHMEM is empty because all memory is directly 
mapped. 



Allocating pages in the kernel



Gfp_mask 



Easier than masks, flags



Freeing pages in the kernel
● Three main functions

○ void __free_pages(struct page *page, unsigned int order)
○ void free_pages(unsigned long addr, unsigned int order)
○ void free_page(unsigned long addr)

● You must be careful to free only pages you allocate. 
○ Passing the wrong struct page or address, or the incorrect order, can result in corruption. 
○ kernel trusts itself. unlike with user-space



Example

free_pages(page, 3);



Allocating byte sized chunks

● Use kmalloc() if you need physically contiguous memory (mostly needed 
for hardware devices), and vmalloc() if you only need virtually contiguous 
memory

void * kmalloc(size_t size, gfp_t flags)

● The function returns a pointer to a region of memory that is at least size 
bytes in length

○ Kernel allocations always succeed, unless an insufficient amount of memory is available. 
○ You must check for NULL after all calls to kmalloc() and handle the error appropriately

● The counterpart to kmalloc() and vmalloc() is kfree() and vfree()

void kfree(const void *ptr)

● kmalloc used more as it has better performance



Linux Slab layer
● The slab layer acts as a generic data structure-caching layer.

○ Most kernel programmers introduce free lists in their code. This is memory that was allocated 
for a data structure that no longer exists.

■ Rather deallocating the memory, it is added to a free list that can later be used for new 
data structures instead of trying to allocate new memory

■ Acts like an internal caching layer in the kernel

● Can be problematic when the memory becomes scarce
○ To enable the kernel more control, the kernel provides the slab layer
○ Implemented in https://github.com/torvalds/linux/blob/master/mm/slab.c and definitions in 

slab.h 

https://github.com/torvalds/linux/blob/master/mm/slab.c
https://github.com/torvalds/linux/blob/master/mm/slab.h


Slab- layer basic tenets (1)
● Frequently used data structures tend to be allocated and freed often, so 

cache them.
● Frequent allocation and deallocation can result in memory fragmentation

○  To prevent this, the cached free lists are arranged contiguously. Because freed data 
structures return to the free list, there is no resulting fragmentation.

● The free list provides improved performance during frequent allocation and 
deallocation because a freed object can be immediately returned to the next 
allocation

● If the allocator is aware of concepts such as object size, page size, and total 
cache size, it can make more intelligent decisions.



Slab- layer basic tenets (2)
● If part of the cache is made per-processor (separate and unique to each 

processor on the system), allocations and frees can be performed without an 
SMP lock.

● If the allocator is NUMA-aware, it can fulfill allocations from the same memory 
node as the requestor.

●  Stored objects can be colored to prevent multiple objects from mapping to 
the same cache lines.



Slab design
● The slab layer divides different objects into 

groups called caches
○ The caches are then divided into slabs
○ The slabs are composed of one or more 

physically contiguous pages.
● There is one cache per object type

○ one cache is for process descriptors (a 
free list of task_struct structures, etc)

○ kmalloc() is actually implemented on top of 
slab

■ Try to assign memory from the 
cache rather than new memory

● Each slab contains some number of 
objects, which are the data structures 
being cached.

● Each slab is in one of three states: full, 
partial, or empty.



The kernel stack
● Historically, unlike user-space programs, kernel processes have non-dynamic 

stacks
○ Usually the stack per process is one (normal sized) memory page
○ However, since 2016, new approaches have been suggested, including  Virtually mapped 

kernel stacks, see: https://lwn.net/Articles/692208/ 

https://lwn.net/Articles/692208/


Overall memory architecture in Linux

Source: https://slideplayer.com/slide/11404795/



The Process Address Space



Address Space Layout
● Determined (mostly) by the application 
● Determined at compile time 

○ Link directives can influence this 

● OS usually reserves part of  the address space to map itself   
○ Upper GB on x86 Linux 

● Application can dynamically request new mappings from the OS, or delete 
mappings

○ Dynamically asks kernel for “anonymous” pages for its heap and stack



Example memory layout
● ldd prints the shared objects (shared libraries) required by each program or 

shared object specified on the command line.  
● An example of its use and output is the following: 



The Process memory areas
● Memory areas contain, for example

○ A memory map of the executable file’s code, called the text section.
○ A memory map of the executable file’s initialized global variables, called the data section.
○ A memory map of the zero page containing uninitialized global variables (called bss section)
○ A memory map of the zero page used for the process’s user-space stack
○ An additional text, data, and bss section for each shared library, such as the C library and 

dynamic linker, loaded into the process’s address space
○ Any memory mapped files.
○ Any shared memory segments.
○  Any anonymous memory mappings, such as those associated with malloc()



Virtual memory areas
● Linux represents portions of  a process with a vm_area_struct, or vma

○ Includes:
■ Start address (virtual) 
■ End address (first address after vma) 
■ Protection (read, write, execute, etc) 

● Defined in 
https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h 

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h


The Memory Descriptor
● The kernel represents a process’s address space with a data structure called 

the memory descriptor.
○ contains all the information related to the process address space.
○ represented by struct mm_struct  and defined in 

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h 
○ Very well documented in the code above
○ The memory descriptor associated with a given task is stored in the mm field of the task’s 

process descriptor.
○

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h


The Page Cache and Page Writeback



The page cache
● RAM can be orders of magnitude faster than disk
● The page cache consists of physical pages in RAM, the contents of which 

correspond to physical blocks on a disk. 
○ The size of the page cache is dynamic; it can grow to consume any free memory and shrink to 

relieve memory pressure.
○ the storage device being cached is called the backing store because the disk stands behind 

the cache as the source of the canonical version of any cached data.

● Entire files need not be cached; the page cache can hold some files in their 
entirety while storing only a page or two of other files. What is cached 
depends on what has been accessed.



Write Caching
● One of three strategies

○ No-write: Cache gets invalidated and needs to be repopulated from disk
○ Write-through-cache: Update both memory and disk together keeping the cache coherent
○ Write-back: default policy in Linux

● The write-back caching policy requires that a write operation occurs at the 
cache only

○ The backing store is not immediately or directly updated. Instead, the written-to pages in the 
page cache are marked as dirty and are added to a dirty list.

○ Periodically, pages in the dirty list are written back to disk in a process called writeback, 
bringing the on-disk copy in line with the in-memory cache.

○ The pages are then marked as no longer dirty

● Write therefore can be performed in bulk, optimizing access to the slow disk
● Application can force immediate write back with sync system calls (and some 

open/mmap options)



The Linux Page Cache
● A page in the page cache can consist of multiple non-contiguous physical disk 

blocks
● the kernel must check for the existence of a page in the page cache before 

initiating any page I/O,
○ the overhead of searching and checking the page cache could nullify any benefits from the 

cache 
○ Thus some parts of the search is implemented as an efficient Radix-Tree



Cache reclamation
● Kernel caches and processes can continue assigning memory until memory 

becomes scarce
○ Low memory, hibernation, free memory below a “goal”

● Memory pages can be divided into one of four categories
○ Unreclaimable – free pages (obviously), pages pinned in memory by a process, temporarily 

locked pages, pages used for certain purposes by the kernel 
○ Swappable – anonymous pages, tmpfs, shared IPC memory 
○ Syncable – cached disk data 
○ Discardable – unused pages in cache allocators



Cache eviction policies

● Least Recently Used
● The two list strategy

○ Linux keeps two lists: the active list and the inactive list. 
○ Pages on the active list are considered “hot” and are not available for eviction.
○ Pages on the inactive list are available for cache eviction
○ Pages are placed on the active list only when they are accessed while already residing on the 

inactive list.
○ The lists are kept in balance
○ Approach is also known as LRU/2; it can be generalized to n-lists, called LRU/n


