
Linux Kernel
Synchronization and Timers

Ahmed Ali-Eldin

What we will cover
● Kernel Synchronization methods
● Timers in the Kernel

In the beginning
● Hope you are all doing great in these times!
● Will have office hours on zoom at your convenience for the Linux lectures

○ Send an email!
○ Reason: different time zones make it very hard to be fair
○ Just ping me if you need a zoom meeting, send in your time zone, we will figure something

out!

Why synchronize?
● Developers must ensure that shared resources are protected from concurrent

access
○ Shared resources in the kernel are many, including, the Task list, for example
○ Multiprocessors are everywhere
○ Kernel code is itself mostly preemptive

Intel Xeon Phi 72 cores

Remember: Critical regions and Race conditions
● Code paths that access and manipulate shared data are called critical regions

(also called critical sections)
● Critical regions should be executed atomically

○ From the beginning to the end with no interruptions

● Race conditions
○ If it is possible for two threads of execution to be simultaneously executing within the same

critical region

Race condition example
Variable has a value of 7

A Kernel example of Races
● A kernel queue with tasks implemented as a linked list

○ Prevalent in the kernel, e.g., Task queues, network queues, etc

● Two functions manipulate the queue
○ A Queue function that adds new tasks to the end of the queue
○ A Dequeue function that removes the head of the queue for processing

● Imagine two processors trying to queue two new tasks with no atomicity
○ Queuing is not one single instruction

Remember: Locking

● Locks are advisory and voluntary.

● Linux alone implements a handful of
different locking mechanisms

● Most significant difference between the
various mechanisms is the behavior
when the lock is unavailable because
another thread already holds it

○ Busy-wait
○ Sleep

● Locks are implemented using atomic
operations that ensure no race exists

● Implementation is architecture specific
○ Most use test-and-set atomic

instruction
○ X86 uses

compare-and-exchange

Kernel causes of concurrency
● Interrupts— An interrupt can occur asynchronously at almost any time,

interrupting the currently executing code.
● Softirqs and tasklets— The kernel can raise or schedule a softirq or tasklet

at almost any time, interrupting the currently executing code.
● Kernel preemption— Because the kernel is preemptive, one task in the

kernel can preempt another.
● Sleeping and synchronization with user-space— A task in the kernel can

sleep and thus invoke the scheduler, resulting in the running of a new
process.

● Symmetrical multiprocessing— Two or more processors can execute
kernel code at exactly the same time.

Easier said than done
● More than 300 race conditions found by Google in 2 days in 2019!
● Using a tool called KTSAN and another one called KCSAN

○ https://github.com/google/ktsan/wiki
○ https://github.com/google/ktsan/wiki/KCSAN

Suggested activity for bored people: See if you can use something similar for
Minix (e.g. https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual)

https://github.com/google/ktsan/wiki
https://github.com/google/ktsan/wiki/KCSAN
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Notes
● When doing kernel dev, you should consider concurrency in the design
● Easier to build in design than to detect after implementation

○ Local data for a thread most probably need no locking as it is stored only in that thread’s stack
○ Data local to a task is similarly usually only accessed by the specific task on one processor at

a time
○ Global kernel data-structures is shared--->lock when accessing
○ Lock data not code!

● Kernel jargon
○ Code that is safe from concurrent access from an interrupt handler is said to be interrupt-safe.
○ Code that is safe from concurrency on symmetrical multiprocessing machines is SMP-safe.
○ Code that is safe from concurrency with kernel preemption is preempt-safe

When accessing data
● Ask the following questions

○ Is the data global? Can a thread of execution other than the current one access it?
○ Is the data shared between process context and interrupt context? Is it shared

between two different interrupt handlers?
○ If a process is preempted while accessing this data, can the newly scheduled

process access the same data?
○ Can the current process sleep (block) on anything? If it does, in what state does

that leave any shared data?
○ What prevents the data from being freed out from under me?
○ What happens if this function is called again on another processor?
○ Given the proceeding points, how am I going to ensure that my code is safe from

concurrency?

Remember: Deadlock
● Lock ordering is important
● Or maybe, locking oneself

Lock contention
● Popular locks can keep lots of threads waiting
● Kills scalability
● You can measure how bad your locking is in the kernel using

https://www.kernel.org/doc/html/latest/locking/lockstat.html

https://www.kernel.org/doc/html/latest/locking/lockstat.html

But also lock overheads
This are measured on a windows machine!

Fine line between coarse-grained locking and fine-grained locking.

Kernel synchronization methods

Integer Atomic Kernel operations
● Atomic integer methods operate on a special data type, atomic_t (does not

work with int)
○ Defined in https://github.com/torvalds/linux/blob/master/tools/include/linux/types.h
○ Atomic operations for the x86 defined in

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic.h, atomic64_32.h,
and atomic64_64.h

https://github.com/torvalds/linux/blob/master/tools/include/linux/types.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic64_32.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic64_64.h

Some Atomic Integer
Methods

Bitwise Kernel Atomic operations
● The Bitwise operations does not require a special atomic data type as it can

be used on any memory address
○ Allowing the user to safely perform bitwise operations on memory
○ Defined in https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
○ The arguments are a pointer and a bit number. Bit zero is the least significant bit of the given

address.

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h

Some Bitwise operations

Some notes
● For each atomic bitwise operation, there is a non-atomic equivalent that can

be used
● The non-atomic operation starts with double underscores, e.g., test_bit() is

__test_bit().
● Use the non-atomic operation if a lock already protects the data
● Non-atomic operation can be faster

Kernel Spin locks
● A spin lock is a lock that can be held by at most one thread of execution

○ If a thread of execution attempts to acquire a spin lock while it is already held, which is called
contended, the thread busy loops—spins—waiting for the lock to become available.

○ Rule of thumb, hold a spin lock if waiting is less than the duration of two context switches
○ Implementation is architecture specific, for the x86

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h

● Used in interrupt handlers after disabling local interrupts

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h

Some Spinlock methods

Reader-Writer Spin Locks
● Sometimes, lock usage can be clearly divided into reader and writer paths

○ Writing demands mutual exclusion, reading does not
○ sometimes called shared/exclusive or concurrent/exclusive locks

Reader-Writer block methods

Semaphores
● Semaphores in Linux are sleeping locks

○ If the semaphore is not available, the task sleeps in the wait queue
○ Once semaphore available, one task is woken by the kernel

● Semaphores used for locks held for a long time
● A task can sleep while holding a semaphore
● Two types of Semaphores in the kernel

○ Binary/Mutex
○ Counting (almost always initialized with a count of one)

● Defined in
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h

● Implemented in
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c

https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c

Semaphore methods

Mutex adds constraints over a semaphore
● Only one task can hold the mutex at a time.
● Whoever locked a mutex must unlock it. You cannot lock a mutex in one

context and then unlock it in another. This means that the mutex isn’t suitable
for more complicated synchronizations between kernel and user-space.

● Recursive locks and unlocks are not allowed. That is, you cannot recursively
acquire the same mutex, and you cannot unlock an unlocked mutex.

● A process cannot exit while holding a mutex
● A mutex cannot be acquired by an interrupt handler or bottom half

Spinlocks vs Semaphores

Completion Variables
● Just another way to build a semaphore like locking mechanism
● One task waits on the completion variable while another task performs some

work. When the other task has completed the work, it uses the completion
variable to wake up any waiting tasks.

The historical obsolete BKL
● The Big Kernel Lock is no longer part of Linux
● It was a global spin-lock

Sequential Locks
● Useful to provide a lightweight and scalable lock for use with many readers

and a few writers
● Designed to not starve writers
● Reader wants a consistent set of information and is willing to retry if the

information changes
● Works by maintaining a sequence counter

○ Whenever the data in question is written to, a lock is obtained and a sequence number is
incremented. Grabbing the write lock makes the value odd whereas releasing it makes it even
because the lock starts at zero

○ Prior to and after reading the data, the sequence number is read. If the values are the same, a
write did not begin in the middle of the read

○ If the values are even, a write is not underway

Timers and Time Management

Kernel Notion of Time
● The hardware provides a system timer that the kernel uses to gauge the

passing of time.
● This system timer works off of an electronic time source, such as a digital

clock or the frequency of the processor.
● The system timer goes off (often called hitting or popping) at a

pre-programmed frequency, called the tick rate.
● When the system timer goes off, it issues an interrupt that the kernel handles

via a special interrupt handler.
○ a tick and is equal to 1/(tick rate) seconds

● Important for many kernel functions, specially scheduling

The Tick Rate: HZ
● The frequency of the system timer (the tick rate) is programmed on system

boot based on a static preprocessor define, HZ.
○ Defined in https://github.com/torvalds/linux/blob/master/include/asm-generic/param.h and

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/param.h
○ Default, tick once every 10 ms

● When writing kernel code, never assume that HZ has any given value as it is
architecture dependant

https://github.com/torvalds/linux/blob/master/include/asm-generic/param.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/param.h

HZ tradeoffs: Pros of Higher values
● Increasing the tick rate means the timer interrupt runs more frequently.

Consequently, the work it performs occurs more often.
○ The timer interrupt has a higher resolution and, consequently, all timed events have a higher

resolution
○ The accuracy of timed events improves.
○ System calls such as poll() and select() that optionally employ a timeout value execute with

improved precision.
○ Measurements, such as resource usage or the system uptime, are recorded with a finer

resolution.
○ Process preemption occurs more accurately. Assume a given process is running and has 2

milliseconds of its timeslice remaining. In 2 milliseconds, the scheduler should preempt the
running process and begin executing a new process. Unfortunately, this event does not occur
until the next timer interrupt

HZ tradeoffs: Cons of Higher values
● Linux actually at one point had the default value of HZ set to 1000. Cons of

the approach are
○ A higher tick rate implies more frequent timer interrupts, which implies higher overhead,

■ the processor must spend more time executing the timer interrupt handler.
○ The higher the tick rate, the more time the processor spends executing the timer interrupt.
○ More frequent thrashing of the processor’s cache
○ Increase in power consumption

Tickless OS
● Linux supports tickless operation mode

○ The system dynamically schedules the timer interrupt in accordance with pending timers.
○ Instead of firing the timer interrupt every, say, 1ms, the interrupt is dynamically scheduled and

rescheduled as needed.
■ If the next timer is set to go off in 3ms, the timer interrupt fires in 3ms. After that, if there

is no work for 50ms, the kernel reschedules the interrupt to go off in 50ms.
○ For how to enable this mode:

https://github.com/torvalds/linux/blob/e9a83bd2322035ed9d7dcf35753d3f984d76c6a5/Docum
entation/timers/no_hz.rst

● Saves a lot of power on idle systems
● Many OSes today support or run tickless

https://github.com/torvalds/linux/blob/e9a83bd2322035ed9d7dcf35753d3f984d76c6a5/Documentation/timers/no_hz.rst
https://github.com/torvalds/linux/blob/e9a83bd2322035ed9d7dcf35753d3f984d76c6a5/Documentation/timers/no_hz.rst

Jiffies
● A global variable holding the number of ticks that have occurred since the

system booted.
○ System uptime can be calculated easily using jiffies/HZ seconds
○ Defined in

https://github.com/torvalds/linux/blob/05ef8b97ddf9aed40df977477daeab01760d7f9a/include/li
nux/jiffies.h

● Jiffies variable has always been an unsigned long
○ 32 bits in size on 32-bit architectures and 64-bits on 64-bit architectures.

■ With a tick rate of 100, a 32-bit jiffies variable would overflow in about 497 days.
■ With HZ increased to 1000, however, that overflow now occurs in just 49.7 days
■ This is important for long running servers!
■ So even for 32 bit architectures, there is a 64-bit jiffie
■ Kernel handles wrap-around correctly

https://github.com/torvalds/linux/blob/05ef8b97ddf9aed40df977477daeab01760d7f9a/include/linux/jiffies.h
https://github.com/torvalds/linux/blob/05ef8b97ddf9aed40df977477daeab01760d7f9a/include/linux/jiffies.h

Hardware Clocks and Timers: The RTC

● The real-time clock (RTC) provides a nonvolatile device for storing the system
time.

○ RTC continues to keep track of time even when the system is off by way of a small battery
included on the system board.

○ On the PC architecture, the RTC and the CMOS are integrated, and a single battery keeps the
RTC running and the BIOS settings preserved.

● kernel reads the RTC and uses it to initialize the wall time, which is stored in
the xtime variable

Hardware Clocks and Timers: The System Timer
● The system timer provides a mechanism for driving an interrupt at a periodic

rate
○ Some architectures implement this via an electronic clock that oscillates at a programmable

frequency
○ On x86, the primary system timer is the programmable interrupt timer (PIT).

■ The PIT exists on all PC machines and has been driving interrupts since the days of
DOS.

■ The kernel programs the PIT on boot to drive the system timer interrupt (interrupt zero)
at HZ frequency.

The Timer Interrupt Handler
● The timer interrupt is broken into two pieces: an architecture-dependent and

an architecture-independent routine
● The architecture dependant part does at least the following functions

○ Obtain the xtime_lock lock, which protects access to jiffies_64 and the wall time value, xtime.
○ Acknowledge or reset the system timer as required.
○ Periodically save the updated wall time to the real time clock.
○ Call the architecture-independent timer routine, tick_periodic()

The Timer Interrupt Handler: tick_periodic()

● The architecture-independent routine, tick_periodic(), performs much more
work:

○ Increment the jiffies_64 count by one. (This is safe, even on 32-bit architectures, because the
xtime_lock lock was previously obtained.)

○ Update resource usages, such as consumed system and user time, for the currently running
process.

○ Run any dynamic timers that have expired
○ Execute scheduler_tick()
○ Update the wall time, which is stored in xtime.
○ Calculate the load average.

● Defined here
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tic
k-common.c

https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tick-common.c

The Timer Interrupt Handler: tick_periodic()

● The architecture-independent routine, tick_periodic(), performs much more
work:

○ Increment the jiffies_64 count by one. (This is safe, even on 32-bit architectures, because the
xtime_lock lock was previously obtained.)

○ Update resource usages, such as consumed system and user time, for the currently running
process.

○ Run any dynamic timers that have expired
○ Execute scheduler_tick()
○ Update the wall time, which is stored in xtime.
○ Calculate the load average.

● Defined here
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tic
k-common.c

https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/tick-common.c

The Time of Day
● Defined in

https://github.com/torvalds/linux/blob/master/include/uapi/linux/time.h and
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d
17b3f73/kernel/time/timekeeping.c

● The xtime.tv_sec value stores the number of seconds that have elapsed since
January 1, 1970 (UTC).

○ This date is called the epoch

https://github.com/torvalds/linux/blob/master/include/uapi/linux/time.h
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/timekeeping.c
https://github.com/torvalds/linux/blob/b0be0eff1a5ab77d588b76bd8b1c92d5d17b3f73/kernel/time/timekeeping.c

Dynamic Kernel Timers
● Timers—sometimes called dynamic timers or kernel timers—are essential for

managing the flow of time in kernel code.
○ Kernel code often needs to delay execution of some function until a later time

● Using Timers
○ Initialize timer setup with an expiration time
○ specify a function to execute upon said expiration
○ activate the timer
○ The given function runs after the timer expires
○ Timers are not cyclic and the timer is destroyed after it expires

● Defined and methods to manipulate in
https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3f
de73f5/include/linux/timer.h

https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3fde73f5/include/linux/timer.h
https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3fde73f5/include/linux/timer.h

Dynamic Kernel Timers
● Timers—sometimes called dynamic timers or kernel timers—are essential for

managing the flow of time in kernel code.
○ Kernel code often needs to delay execution of some function until a later time

● Using Timers
○ Initialize timer setup with an expiration time
○ specify a function to execute upon said expiration
○ activate the timer
○ The given function runs after the timer expires
○ Timers are not cyclic and the timer is destroyed after it expires

● Defined in
https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3f
de73f5/include/linux/timer.h

https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3fde73f5/include/linux/timer.h
https://github.com/torvalds/linux/blob/04cbfba6208592999d7bfe6609ec01dc3fde73f5/include/linux/timer.h

Timers implementation
● Timers are stored in a linked list
● To optimize insertions and realizing which timers expired

○ the kernel partitions timers into five groups based on their expiration value
○ Timers move down through the groups as their expiration time draws closer
○ The partitioning ensures that, in most executions of the timer softirq, the kernel has to do little

work to find the expired timers.

Other methods for delaying execution
● Sometimes there is a need for a short delay, or a simpler way to induce

delays
○ The kernel provides three functions for microsecond, nanosecond, and millisecond delays,

defined in <linux/delay.h> and <asm/delay.h>, which do not use jiffies
■ void udelay(unsigned long usecs)
■ void ndelay(unsigned long nsecs)
■ void mdelay(unsigned long msecs)

○

