Unix and Minix Networking

* Network Protocols

* Unix networking

* Minix networking

Computer Science

Lecture 19, page 1

Communication Protocols

* Protocol: a set of rules for communication that are agreed to by

all parties

* Protocol stack : networking software is structured into layers

— Each layer N, provides a service to layer N+1, by using its own layer N
procedures and the interface to the N-1 layer.

— Example: International Standards Organization/ Open Systems
Interconnect (ISO/OSI)

Computer Science

Application Virtual peer-to-peer Application
Presentation | << - - conn chl(—m— ---= \Presentation
Session Session
Transport Transport
Network Network Network
Data Link Ctl Data Link C Data Link Ctl
Physical Physical Physical
B » ©

Lecture 19, page 2

TCP/IP Protocol Stack

User Application Process ‘

]

file transfer protocol, FTP
remote terminal protocol, telnet
mail transfer protocol, SMTP
name server protocol, NSP

network management protocol, SNMP
WWW, http

layers 5-7

layer 4 TCP [UDP

layer 1-3 P
IEEE802.X/X.25

LAN/WAN

Most Internet sites use TCP/IP - Transmission Control Protocol/
Internet Protocol.

— It has fewer layers than ISO to increase efficiency.
— Consists of a suite of protocols: UDP, TCP, IP...
— TCP is a reliable protocol -- packets are received in the order they are

sent
— UDP (user datagram protocol) an unreliable protocol (no guarantee of
delivery).
Computer Science Lecture 19, page 3

Socket Communication

* Client-server socket communication and Socket primitives
— Berkeley sockets (BSD Unix)

Server T
[socket - bind | listen aciept}J rAead | write

| i
| ! \

. . . I i . o
Synchronization point — ! Communication *

|
| ! \

Y / A
socket »rconnect-» write ——» read close |
Client

P .
: fy Computer Science Lecture 19, page 4

Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
g Computer Science CS677: Distributed OS Lecture 19, page 5

Linux Network Architecture

* File access path versus socket access path

‘ Network Device Driver ‘

‘ File Access ‘ } ‘ Socket Access
\ ; y
VES : Protocol Families
_ - ! INET UNIX
Ve :,:,4} — “‘
i
¢ - WTT [,,,,,,;\;:;}L
Logical Filesystem i UDI'fthOTOI'?CP
EXT4 | P
‘ v
i
_ | Network Interface
S e o lenene] e
i
i
i
i

Computer ScCiciee Lecture 19, page 6

Sockets in Linux kernel

« Contains sys calls like socket,
connect, accept

* Implements POSIX socket
interface

— independent of protocols

* Maps socket data structures to
integer handlers

« Calls lower layer functions

— sys_socket()->sock_create

E, 5§ Computer Science

sys_socket
Integer
socket handler
Handler
table
Socket
create

Protocol Families

* Implements different socket
families: INET, UNIX

* Extensible through modules
and fn pointers

* Calls net_proto family->create
for family-specific
initialization

i, g Computer Science

Lecture 19, page 7

net_proto_family
*pf >
inet_create
~—» AF_LOCAL
> AF_UNIX

Lecture 19, page 8

Protocols

oo . roto_ops
« Families have multiple Proo-oP
1 socket | | inet_stream_ops
protocols o
ne n
— INET: TCP, UDP ==
. inet I
* Protocol functions stores inet_listen
in pI’OtO_OpS inet_stream_connect

* Some functions unused in

inet_dgram_ops
a protocols: dummy fns

inet_bind

* Some functions same q

NULL
across protocols: shared

inet_dgram_connect

Computer Science Lecture 19, page 9

Packet Creation

* At sending function, packetize char* |
the buffer v

 Packets represented as sk_buff top_send_msg
data structure

Struct sk_buf

» Contains pointers to r
— transport layer header tcp_transmit_skb
— link layer header
. . Struct sk_buf
— received timestamp TCP Header
/

— Device that received it
ip_queue_xmit

Computer Science Lecture 19, page 10

Fragmentation and Routing

* Fragmentation is performed ip_fragment
inside 1p_fragment .
° route ﬁlled in by ip_route_output_flow
ip_route_output flow ‘
. . N Route cache
* Routing mechanisms used Y ’
— Route cache \
— Forwarding Information Base ¢] i
— Slow routing ‘
N o Slow routing
Y
ip_forward <= Y N » dev_queue_xmit
(packet forwarding) (queue packet)
Computer Science Lecture 19, page 11
* Responsible for packet Dev_queue_xmit(sk_buf)
scheduling | y
* dev queue xmit enqueues Dev' 1 qdisc | enqueue
packets for transmission ; |
— qdisc of device
* Send in process context I
» Ifdevice bUSt, schedule for late Dev — qdisc — dequeue
 dev hard start xmit sends to E

device

dev_hard_start_xmit()

| Computer Science Lecture 19, page 12

*NIX Networking Commands

Ethernet MAC address: d0:73:d5:2a:12:51
IP address: 192.168.1.2 or 128.119.240.2
* ping

ifconfig

ifconfig
dev/ip: address 10.0.2.15 netmask 255.255.255.0 mtu 1500

* Linux: netstat -rn

* Linux: route

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 00 0 etho
0.0.0.0 192.168.55.100 ©0.0.0.0 UG 00 0 l4tbre
169.254.0.0 0.0.0.0 255.255.0.0 U (] 0 l4tbre
Computer Science Lecture 19, page 13

Minix INET

* “inet” system process handles networking in Minix
— Source code “servers/inet”

* Implements ethernet layer, IP layer and TCP/UDP

* Ethernet card 1s a I/O device
— Device driver is in “drivers”
— 1000 is Intel gigabit driver

» TCP/IP code is in “inet” and “inet/generic”

httDI/ / WWW.I]YX.IICt/ NCtWOIlg/ minix/ note: minix v2, not v3

Computer Science Lecture 19, page 14

Data link Layer

* Hardware: ethernet, modem etc
* Can have more than one device (major and minor #)
* 1octl call used to set parameters such as comm speed

* The driver itself runs as a user process

* I/O Involves: VFS, INET and driver process

— same concept as any block device driver

Computer Science Lecture 19, page 15

INET Server

* inet.c - main function for INET Server
— handles various message types from VFS and DL ETH

from FS:

	I				
m_type	DEVICE	PROC_NR	COUNT	POSITION	ADDRESS
			I		
DEV_OPEN	minor dev	proc nr	mode		
		\ \			
DEV_CLOSE	minor dev	proc nr			
I					
	I				
DEV_IOCTL_S	minor dev	proc nr		NWIO..	address
I					
DEV_READ_S	minor dev	proc nr	count		address
			I		
DEV_WRITE_S	minor dev	proc nr	count		address
		\ \			
	I \				
CANCEL	minor dev	proc nr			

|
Computer Science Lecture 19, page 16

INET Server

 buf.c - buffering code to allocate data for sending and
recelving network packets

 mnx_eth.c - code for sending and receiving ethernet
frames to/from ethernet driver

* inet config.c - configure networking devices
— /dev/eth, /dev/ip, dev/tcp, /dev/udp

° mg.c — message queue structure
— mq_list 1s message queue and mq _t is one message entry

/) jl Computer Science Lecture 19, page 17

INET Server

* sr.c - code to interface with file system

— DEV_OPEN, DEV_CLOSE, DEV_READ, DEV_WRITE...
 generic/udp.c - code for UDP protocol

— udp_ port data structure 1s used for a UDP socket port
 generic/tcp.c - code for TCP protocol

— tcp_port data structure used to TCP socket port

CompuTer‘ Science Lecture 19, page 18

