
Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Today: Minix I/O Subsystem

• Device-independent Minix Layer

• Device Drivers in Minix
•

1

Computer Science Lecture 16, page Computer Science

Minix I/O Subsystem

Layers of the I/O software system.

2

Computer Science Lecture 16, page Computer Science

Device-Independent I/O Software

Functions of the device-independent I/O software.

3

Computer Science Lecture 16, page Computer Science

Uniform Interfacing for Device Drivers

(a) Without a standard driver interface.
(b) With a standard driver interface.

4

Computer Science Lecture 16, page Computer Science

User-Space I/O Software

 Layers of the I/O system and the main functions of
each layer.

5

Computer Science Lecture 16, page Computer Science

Minix Interrupt Handlers and I/O
• Minix device drivers run in user space

– Can not access kernel memory or I/O ports
• User-space drivers need different levels of access

– Need access to memory outside its data space
• RAM disk driver

– Read or write to I/O ports
• code to do so available in kernel, not user space; disk driver

– Need to respond to predictable interrupts
• Disk driver needs to handle interrupt upon I/O completion

– Handle unpredictable interrupts
• keyboard driver

• All handled by kernel calls via SYSTEM task
6

Computer Science Lecture 16, page Computer Science

Driver access to kernel
• System task can allow user process to access segments

from other address spaces
– Used to allow memory driver to access RAM disk;
– Console driver to access video display adapter

• Minix kernel calls support access to I/O ports
– System task does actual I/O on behalf of user driver (used by hard

disk driver)
• Handling predictable interrupts: system task

– generic_handler in system task: converts interrupt into
notification message; device driver uses receive

• Unpredictable interrupts: keystrokes, network packets
– Can’t “receive” from one source: interrupts come from anywhere
– Fast handling, non-blocking receive, non-blocking send
– 7

Computer Science Lecture 16, page Computer Science

Device Drivers in MINIX 3
Minix versus Unix/monolithic system device drivers

8

Computer Science Lecture 16, page Computer Science

Minix drivers

• Separate device driver for each class of I/O device
• Drivers run as full fledged user processes
• Communicate with system task using message passing
• Simple drivers : written in one source file
• Accept requests from other processes and carry them out

– Strictly sequential: no concurrency to keep them simple
• Receive message, process, send reply

– Drivers can receive work requests as well as interrupts
– Driver uses receive to accept interrupt messages

• New work requests are kept pending during interrupt
processing or processing of work requests

9

Computer Science Lecture 16, page Computer Science

Device Driver Messages
Fields of the messages sent by the file system to the
block device drivers and fields of the replies sent back.

10

Computer Science Lecture 16, page Computer Science

Typical Driver Pseudo-code

11

Computer Science Lecture 16, page Computer Science

Driver Examples

• Block Device Driver
– RAM disk device driver
– Hard disk driver

• Terminal Driver (character device driver)
• Keyboard driver (character driver)

12

Computer Science Lecture 16, page Computer Science

Device-independent I/O

• File system process (vfs) contain all device-independent
code
– I/O system closely related to file system and merged into one

process
• VFS implements the device independent layer in Minix

– drivers implement device-specific layer and kernel facilitates
interrupt handling

13

Computer Science Lecture 16, page Computer Science

Block Device Drivers in MINIX 3

Generic structure of a block device driver

14

Computer Science Lecture 16, page Computer Science

Device Driver Operations
• Each driver needs to handle 6 operations:

– OPEN
– CLOSE
– READ
– WRITE
– IOCTL
– SCATTERED_IO

• ioctl (I/O control): change device parameters (e.g.,
transmission speed, parity)

• Scatter-gather I/O: read/write multiple blocks
15

Computer Science Lecture 16, page Computer Science

RAM Disk

A RAM disk uses a portion of RAM to look like a small
disk. RAM is volatile, so RAM disks are temporary
storage — used during boot process to create root device

16

Computer Science Lecture 16, page Computer Science

RAM Disk Driver

• Typical block driver: read or write a block
• RAM Disk: preallocated RAM to store blocks
• Minix RAM disk driver uses 6 drivers in one

– Each message uses a specific device
• /dev/ram - actual RAM disk
• /dev/mem - device allows reading or writing to physical

memory
• /dev/kmem - byte offset 0 allows read/write to kernel mem
• /dev/boot - holds boot image
• /dev/null, /dev/zero

• Code is in “drivers” under “ramdisk” and “memory”
folders

17

Computer Science Lecture 16, page Computer Science

Hard Disk Driver

Disk geometry: cylinder, track, sector
Typical disk address: cylinder#, track#, sector#

Logical Block Addressing (LBA) sequentially number
sectors
Code in drivers/at_wini (“winchester drives”)
PCI Bus holds IDE disk or SATA (Serial AT
Attachment) disks - can have upto 4 disks

Disks are numbered /dev/c0d0 to /dev/c0d3
18

Computer Science Lecture 16, page Computer Science

Hard Disk Driver Controller
The control registers of an IDE hard disk controller. The
numbers in parentheses are the bits of the logical block
address selected by each register in LBA mode.

19

Computer Science Lecture 16, page Computer Science

Hard Disk Driver Addressing
The fields of the Select Drive/Head register.

20

Computer Science Lecture 16, page Computer Science

Terminals

Typical Terminal types.

21

Computer Science Lecture 16, page Computer Science

Memory-mapped Terminals

 Memory-mapped terminals write directly into video
RAM.

22

Computer Science Lecture 16, page Computer Science

Terminals Output

A video RAM image for the IBM character display.
Bitmapped displays are similar: each pixel can be
controlled

23

Computer Science Lecture 16, page Computer Science

RS-232 Terminals

An RS-232 terminal communicates with a computer over
a communication line, one bit at a time.
The computer and the terminal are completely
independent - UARTS used for serial communication

24

Computer Science Lecture 16, page Computer Science

Input Software

(a) Central buffer pool. (b) Dedicated buffer for each
terminal.

25

Computer Science Lecture 16, page Computer Science

Terminal Driver in MINIX

Terminal driver message types:

1. Read from the terminal (from VFS on behalf of a user
process).

2. Write to the terminal (from VFS on behalf of a user
process).

3. Set terminal parameters for IOCTL (from FS on behalf
of a user process).

26

Computer Science Lecture 16, page Computer Science

Terminal Driver in MINIX (2)

Terminal driver message types (continued):

4. I/O occurred during last clock tick (from the clock
interrupt).

5. Cancel previous request (from the file system when a
signal occurs).

6. Open a device.
7. Close a device.

27

Computer Science Lecture 16, page Computer Science

Terminal Input

28

Computer Science Lecture 16, page Computer Science

Terminal Output

Major procedures used in terminal output.

29

Computer Science Lecture 16, page Computer Science

Keyboard Driver

• Scan codes in the input buffer, with corresponding key
actions below, for a line of text entered at the keyboard.

• L and R represent the left and right Shift keys. + and -
indicate a key press and a key release.

• The code for a release is 128 more than the code for a
press of the same key.

30

