Today: Minix 1/0 Subsystem

* Device-independent Minix Layer

e Device Drivers in Minix

A\ 5 Compufer Science CS377: Operating Systems Lecture 16, page 1

Minix 1/0O Subsystem

Layers of the I/O software system.

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

2 ¥’ § Computer Science Lecture 16, page 2

Device-Independent I/O Software

Functions of the device-independent I/0O software.

Uniform interfacing for device drivers
Buffering

Error reporting

Allocating and releasing dedicated devices
Providing a device-independent block size

\# j Computer Science Lecture 16, page 3

Uniform Interfacing for Device Drivers

(a) Without a standard driver interface.
(b) With a standard driver interface.

Operating system Operating system

Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver
(a) (b)

3\ §Computer Science Lecture 16, page 4

User-Space I/0O Software

Layers of the I/0O system and the main functions of

each laver.
11O
Layer reply I/O functions
110 User processes A Make /O call; format I/O; spooling
request _*i ?
Device-independent " .)) .
| s ity + Naming, protection, blocking, buffering, allocation
|
* Device drivers * Set up device registers; check status
I
Interrupt handlers * Wake up driver when I/O completed
Y |
Hardware Perform 1/O operation
5 Computer Science Lecture 16, page 5

Minix Interrupt Handlers and 1/0O

« Minix device drivers run in user space
— Can not access kernel memory or I/O ports

« User-space drivers need different levels of access
— Need access to memory outside its data space
* RAM disk driver
— Read or write to I/O ports
* code to do so available in kernel, not user space; disk driver
— Need to respond to predictable interrupts
* Disk driver needs to handle interrupt upon I/O completion
— Handle unpredictable interrupts
* keyboard driver
—c All handled by kernel calls via SYSTEM task

Computer Science Lecture 16, page 6

Driver access to kernel

System task can allow user process to access segments
from other address spaces

— Used to allow memory driver to access RAM disk;

— Console driver to access video display adapter

Minix kernel calls support access to I/O ports

— System task does actual I/O on behalf of user driver (used by hard
disk driver)

Handling predictable interrupts: system task

— generic_handler in system task: converts interrupt into
notification message; device driver uses receive

Unpredictable interrupts: keystrokes, network packets
— Can’t “receive” from one source: interrupts come from anywhere

— Fast handling, non-blocking receive, non-blocking send

Computer Science Lecture 16, page 7

Device Drivers in MINIX 3

Minix versus Unix/monolithic system device drivers

Process-structured system Monolithic system
A
/ A process
User space User-
space
part
Y
A File
i system
- ™\ Kernel Device
xoenate | space driver
\\‘_’,
Y
1-6 are request The user-space part
and reply messages calls the kernel-space part
between four by trapping. The file system
independent calls the device driver as a
processes. procedure. The entire

operating system is part
. of each process
Computer Scit @) b) Lecture 16, page 8

Minix drivers

Separate device driver for each class of I/O device

Drivers run as full fledged user processes
« Communicate with system task using message passing

Simple drivers : written in one source file

Accept requests from other processes and carry them out
— Strictly sequential: no concurrency to keep them simple
* Receive message, process, send reply
— Drivers can receive work requests as well as interrupts
— Driver uses receive to accept interrupt messages
* New work requests are kept pending during interrupt
processing or processing of work requests

Computer Science Lecture 16, page 9

Device Driver Messages
Fields of the messages sent by the file system to the

block device drivers and fields of the replies sent back.

Requests
Field Type | Meaning
m.m_type int Operation requested
m.DEVICE int Minor device to use

m.PROC_NR | int Process requesting the 1/0
m.COUNT int Byte count or ioctl code
m.POSITION | long Position on device

m.ADDRESS | char* | Address within requesting process

Replies
Field Type | Meaning
m.m_type int Always DRIVER_REPLY
m.REP_PROC_NR | int Same as PROC_NR in request
m.REP_STATUS int Bytes transferred or error number

Computer Science Lecture 16, page 10

Typical Driver Pseudo-code

message mess; /* message buffer */

void io_driver() {

initialize(); /* only done once, during system init. */
while (TRUE) {
receive(ANY, &mess); /* wait for a request for work */
caller = mess.source; /* process from whom message came */
switch(mess.type) {
case READ: rcode = dev_read(&mess); break;

case WRITE: rcode = dev_write(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */

default: rcode = ERROR;
}
mess.type = DRIVER_REPLY;
mess.status = rcode; /* result code */
send(caller, &mess); /* send reply message back to caller */
}
}
ng Computer Science Lecture 16, page 11

Driver Examples

* Block Device Driver
— RAM disk device driver
— Hard disk driver

 Terminal Driver (character device driver)
« Keyboard driver (character driver)

11111

§ § Computer Science Lecture 16, page 12

Device-independent I/O

File system process (vfs) contain all device-independent
code

— I/O system closely related to file system and merged into one
process

VFS implements the device independent layer in Minix

— drivers implement device-specific layer and kernel facilitates
interrupt handling

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

5 Computer Science Lecture 16, page 13

Block Device Drivers in MINIX 3

Generic structure of a block device driver

message mess; /* message buffer */

void shared_io_task(struct driver_table *entry_points) {
/* initialization is done by each task before calling this */
while (TRUE) {
receive(ANY, &mess);
caller = mess.source;
switch(mess.type) {
case READ: rcode = (*entry_points—>dev_read)(&mess); break;
case WRITE: rcode = (*entry_points—>dev_write)(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */

default: rcode = ERROR;
}
mess.type = TASK_REPLY;
mess.status = rcode; /* result code */

send(caller, &mess);

J Computer Science Lecture 16, page 14

Device Driver Operations

« Each driver needs to handle 6 operations:
— OPEN
— CLOSE
— READ
— WRITE
— IOCTL
— SCATTERED IO

* ioctl (I/0 control): change device parameters (e.g.,
transmission speed, parity)

= Scatter-gather I/0O: read/write multiple blocks

4 =)
S @
gy B
& L% &
=

o

Computer Science Lecture 16, page 15

RAM Disk

A RAM disk uses a portion of RAM to look like a small
disk. RAM is volatile, so RAM disks are temporary
storage — used during boot process to create root device

Main Memory (RAM)

User
programs
RAM
disk | . RAM disk block 1
~— Read and writes of RAM block 0
use this memory
Operating
system

€ A .
Eg\ Computer Science Lecture 16, page 16

RAM Disk Driver

 Typical block driver: read or write a block
« RAM Disk: preallocated RAM to store blocks

* Minix RAM disk driver uses 6 drivers in one
— Each message uses a specific device
* /dev/ram - actual RAM disk

* /dev/mem - device allows reading or writing to physical
memory

* /dev/kmem - byte offset 0 allows read/write to kernel mem
* /dev/boot - holds boot image
 /dev/null, /dev/zero

* Code 1s in “drivers” under “ramdisk” and “memory”
g folders

 J Computer Science Lecture 16, page 17

Hard Disk Driver

Disk geometry: cylinder, track, sector
Typical disk address: cylinder#, track#, sector#

Logical Block Addressing (LBA) sequentially number
sectors

Code 1n drivers/at wini (“winchester drives”)

PCI Bus holds IDE disk or SATA (Serial AT
Attachment) disks - can have upto 4 disks

Disks are numbered /dev/c0d0 to /dev/c0d3

” J Computer Science Lecture 16, page 18

Hard Disk Driver Controller

The control registers of an IDE hard disk controller. The
numbers in parentheses are the bits of the logical block

address selected by each register in LBA mode.

Register Read Function Write Function
0 Data Data
1 Error Write Precompensation
2 Sector Count Sector Count
3 Sector Number (0-7) Sector Number (0-7)
4 Cylinder Low (8-15) Cylinder Low (8-15)
5 Cylinder High (16-23) Cylinder High (16-23)
6 Select Drive/Head (24-27) | Select Drive/Head (24-27)
7 Status Command

g \J’ § Computer Science

(a)

Lecture 16, page 19

Hard Disk Driver Addressing

The fields of the Select Drive/Head register.

6

5 4 3

2 1

LBA

1 D | HS3

HS2

HS1 | HSO

L } Computer Science

LBA: 0 = Cylinder/Head/Sector Mode
1 = Logical Block Addressing Mode

D: 0 = master drive
1 = slave drive
HSn: CHS mode: Head select in CHS mode

LBA mode: Block select bits 24 - 27

(b)

Lecture 16, page 20

Terminals

Typical Terminal types.

Terminals
Memory-mapped RS-232 Network
interface interface interface
Character . Bit Glass Intelligent X terminal
oriented oriented tty terminal
§ Computer Science Lecture 16, page 21

Memory-mapped Terminals

Memory-mapped terminals write directly into video
RAM.

Graphics
CPU Memory adapter Video
Video _— controller

Y

rav T [

Bus ./~ Analog

| | video signal

Parallel port

Computer Science Lecture 16, page 22

Terminals Output

A video RAM image for the IBM character display.

Bitmapped displays are similar: each pixel can be
controlled

Video RAM Screen
RAM address ABCD A
0123
25 lines
. Xx3x2x1x0 | 0xBOOAO
... xDxCxBxA | 0xBO0O0O Y
160 characters —» -— 80 characters —»
(a) (a)
Computer Science Lecture 16, page 23

RS-232 Terminals

An RS-232 terminal communicates with a computer over
a communication line, one bit at a time.

The computer and the terminal are completely
independent - UARTS used for serial communication

Computer

RS-232
CPU Memory interface Transmit

i X
] H ”_' Recieve

Bus

§ Computer Science Lecture 16, page 24

Input Software

(a) Central buffer pool. (b) Dedicated buffer for each

terminal.
Terminal Terminal
data structure data structure
Central
Terminal buffer pool Terminal
0
: =5 T
uffer
2 area for
terminal O
3 >
s Buffer
area for
terminal 1
(a) (b)
§ Computer Science Lecture 16, page 25

Terminal Driver in MINIX

Terminal driver message types:

1. Read from the terminal (from VFS on behalf of a user
process).

2. Write to the terminal (from VFS on behalf of a user
process).

3. Set terminal parameters for [OCTL (from FS on behalf
of a user process).

5 Computer Science Lecture 16, page 26

Terminal Driver in MINIX (2)

Terminal driver message types (continued):

4. 1/0 occurred during last clock tick (from the clock
interrupt).

5. Cancel previous request (from the file system when a
signal occurs).

6. Open a device.

7. Close a device.

’.‘i\ r .
i § Computer Science Lecture 16, page 27

Terminal Input

¢ “Keyboard™>
\ _Interrupt_~
B e [RREA >

;
%@

J Computer Science Lecture 16, page 28

Terminal Output

Major procedures used in terminal output.

/ End of line
“Easy" |
characters \\

Lecture 16, page 29

b7 .
¥’ § Computer Science

Keyboard Driver

* Scan codes in the input buffer, with corresponding key
actions below, for a line of text entered at the keyboard.

« L and R represent the left and right Shift keys. + and -
indicate a key press and a key release.

* The code for a release 1s 128 more than the code for a
press of the same key.

42 | 35 | 163 | 170 | 18 | 146 | 38 | 166 | 38 | 166 | 24 | 152 | 57 185
L+ | h+ h- L- | e+ | e- [+ - I+ |- o+ | o- | SP+ | SP-

54 17 | 145 | 182 | 24 | 152 | 19 | 147 | 38 | 166 | 32 | 160 28 156
R+ | w+ w- R- o+ o- r+ r- [+ |- d+ d- CR+ | CR-

J Computer Science Lecture 16, page 30

