
3/12/20

1

A Deeper Dive into the
Linux Kernel

Ahmed Ali-Eldin

1

Previously

- Introduction to the Linux Kernel
- Process Management
- Process Scheduling

Also

- Kernel data-structures

2

3/12/20

2

This lecture

- Syscalls
- Interrupts and Interrupt handlers
- Bottom Halves and deferring work

3

System Calls in Linux

- A single common layer between the user and the kernel
- Strives to be POSIX and SUSv3 (Single UNIX Specification) compatible

- System calls provide a return value of type long
- Each Syscall has a number like Minix
- All numbers are in sys_call_table which is architecture dependent

- Entry to the table for x86
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_
64.c

4

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c

3/12/20

3

SysCall definition

- SYSCALL_DEFINE0 is simply a macro that defines a system call with no
parameters (hence the 0).

- Each Syscall has a defined handler

5

Mechanism

- Syscall from user-space results in an interrupt
- Interrupt causes an exception (trap) and the control is switched to kernel

space
- defined software interrupt on x86 is interrupt number 128

- Exception handler for the exception is called
- The system call handler is named function system_call()
- Architecture-dependent

- on x86-64 it is implemented in assembly in entry_64.S
- For fun: https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S

- System call number passed into the kernel via the eax register
- User-space puts in the eax register the number corresponding to the

desired system call.

6

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S

3/12/20

4

How to implement a Syscall in Linux

http://soc.eurecom.fr/OS/labs_kernel.html

7

Why Not to Implement a System Call

• You need a syscall number, which needs to be officially assigned to you.

• After the system call is in a stable series kernel, it is written in stone. The
interface cannot change without breaking user-space applications.

• Each architecture needs to separately register the system call and support it.

• System calls are not easily used from scripts and cannot be accessed directly
from the filesystem.

• Because you need an assigned syscall number, it is hard to maintain and use a
system call outside of the master kernel tree.

• For simple exchanges of information, a system call is overkill.

8

http://soc.eurecom.fr/OS/labs_kernel.html

3/12/20

5

Other alternatives in Linux

- Linux Kernel Modules
- More later!

9

Interrupts and Interrupt Handlers

10

3/12/20

6

Why Interrupts?

- Processors can be orders of magnitudes faster than the hardware they talk to
- Not ideal for the kernel to issue a request and wait for a response
- Idea: Deal with the hardware only after that hardware has actually

completed its work
- Two ways to solve the variable speed problem

- Polling
- Interrupts

11

Interrupts

- Enable hardware to signal to the processor
- Typing on the keyboard, moving the mouse, data ready from disk, etc

- Hardware devices generate interrupts asynchronously with respect to the
processor clock—they can occur at any time

- Electronic signals originating from hardware devices and directed into input pins on an
interrupt controller

- a simple chip that multiplexes multiple interrupt lines into a single line to the processor
- Different devices can be associated with different interrupts by means of a

unique value associated with each interrupt.
- These interrupt values are often called interrupt request (IRQ) lines

12

3/12/20

7

IRQ

- Each IRQ line is assigned a numeric value
- IRQ zero is the timer interrupt and IRQ one is the keyboard interrupt.

- Unlike Syscalls
- Not all IRQ numbers are defined
- For example, Interrupts associated with devices on the PCI bus are

dynamically assigned.
- The important notion is that a specific interrupt is associated with a

specific device

13

Difference between interrupts and exceptions

- Handled mostly similarly by most architectures
- Interrupts origin is HW
- Exceptions usually software

14

3/12/20

8

Interrupt Handlers

- Each device that generates interrupts has an associated interrupt handler.
- The interrupt handler for a device is part of the device’s driver

- This why you need a driver for each device on your computer
- The OS might not even know what is this device
- Device drivers can be implemented in the kernel, or as a Linux Kernel

Module
- Interrupt handlers are normal C functions
- They run in a special kernel context, called the interrupt context or atomic

context
- The handler is atomic, i.e., can not block!
- Thus must be very quick!

- A network interrupt on a 10gig card will need a lot of work!

15

Top Halves Versus Bottom Halves
- Split Interrupt handling in two parts: Top and bottom halves
- Interrupt handler is called the top-half

- Run immediately upon receipt
- Perform only time-critical work

- Ack receiving the interrupt
- Reset the HW to allow new interrupts to come

- Bottom half
- Do the rest of the work in the future

16

3/12/20

9

Network Card example

- Network cards receive packets from the network
- Alert the kernel of their availability via interrupt
- Kernel responds by executing the network card’s registered interrupt
- Interrupt runs, acknowledges the hardware, copies the new networking

packets from the network buffer into main memory, and readies the network
card for more packets
- Copying data does not need the processor to block as it can be done in

the background
- Delays in copying the packets can result in a buffer overrun, with

incoming packets overwhelming the networking card’s buffer and thus
packets being dropped

- Done and wait for bottom half!

17

Registering an Interrupt Handler

- Each device has one associated driver
- Each (interrupt based) driver registers one handler only
- Registered using request_irq()

- Defined in https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
- On success, request_irq() returns zero.
- A common error is -EBUSY, irq already in use

18

https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h

3/12/20

10

Handler flags

- IRQF_DISABLED: instructs the kernel to disable all interrupts when executing
this interrupt handler. When unset, interrupt handlers run with all interrupts
except their own enabled.

- What do you think is the common value for this flag?
- IRQF_TIMER: This flag specifies that this handler processes interrupts for the

system timer.
- IRQF_SHARED and dev: More on this later, enables shared handlers
- IRQF_SAMPLE_RANDOM: Should this interrupt metadata be used for the

internal kernel random number generator?

19

Reentrancy and Interrupt Handlers
- When a given interrupt handler is executing, the corresponding interrupt line

is masked out on all processors
- This is to prevent the interrupt from being overridden by another interrupt of

the same type
- Some interrupts even require masking/disabling all other interrupts

- Linux is designed to keep these ones to a minimum
- The same interrupt handler is never invoked concurrently to service a nested

interrupt.
- This greatly simplifies writing your interrupt handler.
- No need to look at concurrency

20

3/12/20

11

Why interrupt sharing?

- Limited number of pins on the any chip including the interrupt controller
- We need to be able to support tens, if not hundreds of drivers in parallel
- Solution:

- Share interrupts
- Must be supported in HW
- Must be supported in driver

21

Interrupt vector Table

22

3/12/20

12

Implementing Interrupt Handlers

- Architecture dependant

23

Interrupt control methods in the kernel
For Synchronization purposes as we discuss later

Per processor

No global disabling for all cores

24

3/12/20

13

Bottom Halves

25

Bottom Half

- Performs most of the actual work
- Design should offload as much work as possible to the bottom half
- Decision is left entirely up to the device-driver author

- Good driver designers do not hog your processor
- Point of a bottom half is not to do work at some specific point in the future, but

simply to defer work until any point in the future when the system is less busy
and interrupts are again enabled.

- Typically runs right after the handler, but with all interrupts enabled

26

3/12/20

14

Good design

- If the work is time sensitive, perform it in the interrupt handler.
- If the work is related to the hardware, perform it in the interrupt handler.
- If the work needs to ensure that another interrupt (particularly the same

interrupt) does not interrupt it, perform it in the interrupt handler.
- Everything else goes to the bottom half.

27

No single way to implement bottom-half

- Old days, all bottom halves were implemented using one single mechanism
called (BH)
- Provided a statically created list of 32 bottom halves for the entire

system.
- But computer evolved to more than these 32 BHs

- Quickly became a bottleneck

28

3/12/20

15

Method1: Task Queues

- A method of deferring work and a replacement for the BH mechanism was
introduced later

- Defines a family of queues
- Each queue contained a linked list of functions to call
- queued functions were run at certain times, depending on which queue

they were in.
- A priority based queuing model

- Problem: was not lightweight enough for performance-critical subsystems,
such as networking.

- Now replaced by work-queues (more later)

29

Method2: Softirqs and Tasklets

- Introduced in kernel 2.3, and completely replaced BH in v2.5
- Softirqs are a set of statically defined bottom halves that can run

simultaneously on any processor; even two of the same type can run
concurrently.

- Tasklets are flexible, dynamically created bottom halves built on top of
softirqs.
- Two different tasklets can run concurrently on different processors, but

two of the same type of tasklet cannot run simultaneously
- Use Softirqs when performance is critical, such as with networking

- However, more care needed as they can run simultaneously

30

3/12/20

16

Summary

31

32

3/12/20

17

Method3: Threaded interrupts

- The main goal of threaded IRQs is to reduce the time spent with interrupts
disabled to a bare minimum

- You do not even have to schedule the bottom half yourself.
- The bottom half is then executed in a dedicated kernel thread
- Not covered more in the lecture!

33

Only eight SoftIRQs

- You can define more, but why?
- Use Tasklets or threaded interrupts!

34

3/12/20

18

Tasklets

- Built on top of softirqs, thus they are softirqs
- Softirqs are required only for high-frequency and highly threaded uses.

- Tasklets for everything else
- Tasklets are represented by two softirqs: HI_SOFTIRQ and

TASKLET_SOFTIRQ.
- Difference: HI_SOFTIRQ-based tasklets run prior to the

TASKLET_SOFTIRQ-based tasklets.

35

The Tasklet Structure

- tasklet_struct structure defined in <linux/interrupt.h>

36

3/12/20

19

37

ksoftirqd

- Per-processor kernel thread
- Help in the processing of softirqs when the system is overwhelmed with

softirqs
- The kernel processes softirqs in a number of places, most commonly on

return from handling an interrupt.
- A softirq can raise itself so that it runs again (for example, the networking

subsystem’s softirq raises itself)
- At high load, this can starve user-processes
- if the number of softirqs grows excessive, the kernel wakes up a family of

kernel threads to handle the load with the lowest possible priority

38

3/12/20

20

Work Queues

- Different form of deferring work into a kernel thread called worked thread that
runs in process context, thus can sleep
- If the deferred work needs to sleep, work queues are used.
- If the deferred work need not sleep, softirqs or tasklets are used
- Useful for situations in which you need to allocate a lot of memory, obtain

a semaphore, or perform block I/O.

39

Work Queues implementation

40

3/12/20

21

Locking between bottom halves

Something for next lecture :)

41

