Today: Minix Memory Management

g \J’ J Computer Science Lecture 11, page 1

Process and Memory Mgmt

« Memory management is tied to process management
— Processes are allocated memory and use memory

« Minix functionality has evolved over time in terms of
memory management support

§ Computer Science Lecture 11, page 2



Pre-3.1 Minix

* Process mgr (PM) included all memory management
— One server handled processes and memory

« Segmented view of process
— each process has text, stack, heap segment

« Segments are allocated contiguously in RAM

— Memory is treated as a collection of holes and allocated
segments

* uses first-fit and best-fit policies for allocation

* No Paging, no virtual memory/demand paging

§ Computer Science Lecture 11, page 3

Pre-3.1 Minix

» Works well for older CPUs or embedded processors
— CPUs lack support for paging

 Entire processes must be resident in RAM
* Fragmentation can occur

§ Computer Science Lecture 11, page 4



post-3.2 Minix

« Version 3.2.1 (used for our class), ver 3.3

* Introduced VM (virtual memory) server
— Memory mgmt code moved from PM to VM

* Introduced support for paging and virtual memory
* Support modern CPU with support for paging
* Processes are a collection of segments

* Process segments laid out contiguously in virtual rem
— No contiguous assumption for physical memory
— Segments are paged; only subset of pages in physical RAM

* Segmented Paging with Virtual Memory

& ¥ § Computer Science Lecture 11, page 5

Proc and Memory Mgmt

 Discussion of VM (see Minix3 documentation)
 Discussion of PM as it related to memory management

i, § Computer Science Lecture 11, page 6




Typical PM-VM Interaction

» Fork creates a new process, which requires memory to
be allocated for the new process

Userland System
| Cchild I I Parent | I PM l KERNEL
I U U
|
Hfork ) o
|

U
vm_fork() _ |

sys_vmctl set addrspace() _

Done

>
>
Done | |

A

|v)

bnePargnt |

1 )
: Done :
| sys_fork() |

_ Donechild

| Parent PM | VM KERNEL

Lecture 11, page 7

VM Server

Goals: track used, unused memory, allocate memory to
process, free memory.
— Manage virtual memory

Contains arch dependent and independent code

Virtual Region (struct vir _region or region t)
— contiguous range of virtual address space

Physical Region struct phys region
— physical blocks (pages) of memory
— ref count, to track how many times the block is referenced

Disk cache (holds pages of disk blocks)

Computer Science Lecture 11, page 8



Typical Call Structure

* Calls to VM come from userland, PM, kernel
* Typical call handling

— Receive call in main.c

— Call-specific work in call-specific file: mmap.c, cache.c

— Update data structures (region.c) and pagetable (pagetable.c)

Userland VM

| main.c I | mmap.c I | pagefault.c I | region.c I
T T T T

| i
mmiap()

o~

| Process I
T

I pagetable.c I
T

' do_mmap() i

| i i
\_map_page_region()  _ 1
T

1
map_ph_writept() |
|

pt_writemap() 5 i

done

done

done

done

dong

| |
| Process l | main.c | | mmap.c I | pagefault.c I | region.c | I pagetable.c I

g Computer Science Lecture 11, page 9

Handling Absent Memory

* Minix 3.2.1+ uses virtual memory: needed memory may
not be present in RAM

 Pagefault handling for anonymous memory

vM
I main.c I I pagefaults.c l I region.c l | pagetable.c I | mem_anon.c I alloc.c '

T T T T T T
| | I I i I I
1 pagefault message _ | ' I ' ' '
| do_pagefaults() _ | i | )
I | | |
| map_pf() i i 0
i I ' I
| anon_pagefault() | i i
i | i
| alloc_mem() |
I :ii:iiiii

H done

i T
H done | |
I I T |
H map_ph_writept() |

! c I

) done

| ]

i don

|

| done

i I I

|« done i i | i i

< I I i i

I main.c I I pagefaults.c l I region.c l I pagetable.c I I mem_anon.c I I alloc.c I

J Computer Science Lecture 11, page 10



Page faults

 Page faults can occur for file-mapped region

— Query cache else go to VFS
vM VFS
pagefauts.c | [regionc | mar_f.c |
aaaaaaaaaaaaaaa e : J | i | :
do_pagefaults() | i
map_pf) | | i i
dfile_pagefault() E 3
find_cached_page_byino() i
ooooooo d
do_vm_call(FDIO)
SSSSSSS i
sssss : |
L susee : f 3
Vs _reply() i i | 0
pf_cont()
map_pf() _ |
mappedfile_pagefault() _ | |
find_cached_page_byino()
und
done
Jmeepeieea
pt_writemay 3
o : []
done :
< i
don: '
i ! :
e | faul n| || ‘mmjle.c'l cache.c J]| pagetabl
) § Computer Science Lecture 11, page 11
y.

Using Bitmaps and Linked Lists

A part of memory with five processes and three

holes. The tick marks show the memory allocation units.
The shaded regions (0 in the bitmap) are free. (b) The
corresponding bitmap. (¢) The same information as a
list.

LA 0. 5. 1.c. VA, . °. 1V, ]

i

1111:000 |P|°|5[—I"IHI5|31+’|P]8|6|_i"lpl‘4|4|")

111000 C1H|18|2|—I—»IF’|2°I6|-I-*I;I%IC*I-|->|HI29I3|><I

Iy L /TN

Process

© 12




Memory Allocation Algorithms

«  First fit Use first hole big enough

«  Next fit Use next hole big enough

«  Best fit Search list for smallest hole big enough

«  Worst fit Search list for largest hole available

*  Quick fit Separate lists of commonly requested sizes

e  Early Minix used these method for physical mem alloc

 Later Minix versions uses holes and allocation for
allocating a process in virtual memory

) Computer Science Lecture 11, page 13

Paging needs a MMU

The CPU sends virtual

CPU addresses to the MMU
package /
CPU >
—| Memory " Disk
! . Management ey controller
unit

1o

The MMU sends physical
addresses to the memory

Bus

) Computer Science Lecture 11, page 14



Example MMU

CPU physical memory

CPU casing physical address #1
physical address #2
physical address #3

virtual address

TLB MMU

physical address

bus

CPU: Central Processing Unit
MMU: Memory Management Unit
TLB: Translation lookaside buffer

) Computer Science Lecture 11, page 15

Paging using a MMU

The internal operation of the MMU with 16 4-KB
pages.

Outgoing
[1]1]oJoJoJoJooJofoJo[o]o]0] physical
address
\ (24580)
15| 000 | O
14 000 | O
13| 000 0
12| 000 | O
11 111 1
10| 000 0
gl ! 12-bit offset
-bit offse!
Paé;le . .81 000 10 copied directly
table 7] 000 |0 from input
6| 000 [O to output
5| 011 1
4| 100 1
3[ 000 |1
2 110 |1 110 |
1] 001 1 P "
resen
0l 010 |7 A/absem bit
Virtual page =2 is used
as an index into the
page table Incoming
. o % N virtual
[oToTToToToloTo]oleToloe] ]o]0] orleg

) Computer Science Lecture 11, page 16



Multilevel Page

Second-level

(a) A 32-bit address with two page table ===
fields. (b) Two-level page tables. E—— e
—+ | table for
Engbr
-1, | memory
Top-level 0>
page table
1023 /
Bits 10 10 12 (55 ; ::
; Ene
(@) Z ::
0 S e
1023
1.
5 4>
4 B
g :: .;I)-gges
0 e
Computer Science o page 17

TLBs—Translation Lookaside Buffers

A TLB to speed up paging.

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RwW 31
1 20 0 R X 38
1 130 1 RwW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RwW 14
1 861 1 RwW 75

§ Computer Science Lecture 11, page 18



Segmentation

20K
16K —
12K — 12K
Symbol
table
8K |- 8K -
Source
text
4K 4K
0K 0K
Segment Segment
0 1

omputer Science

16K

12K -

8K |~ Parse
tree

4K

0K| Constants |
Segment Segment
2 3

12K

8K |-

Call
stack
4K
0K
Segment
4

Lecture 11, page 19

Segmentation vs Paging

Consideration

Paging

Segmentation

Need the programmer be aware

that this technique is being used?

No

Yes

How many linear address
spaces are there?

Many

Can the total address space
exceed the size of physical
memory?

Yes

Yes

Can procedures and data be
distinguished and separately
protected?

No

Yes

Can tables whose size fluctuates
be accommodated easily?

No

Yes

Compufer Science

Lecture 11, page 20



Segmentation vs Paging

Consideration Paging Segmentation

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Computer Science Lecture 11, page 21

Segmentation with Paging:

Intel Pentium (and later) virtual memory support
Local Descriptor Table (LDT)
Global Descriptor Table (GDT)

Each process has its own LDT; one GDT shared by all
LDT: segments local to a process

GDT: system segments + OS segments

Figure: Segment Selector

Bits 13 1 2

Index

0=GDT/1 =LDT Privilege level (0-3)
Lecture 11, page 22




Segmentation with Paging:

Pentium code segment descriptor.
Data segments differ slightly.

0: 16-Bit segment F
1: 32-Bit segment

O: Liis in bytes
1: Liis in pages

—

[ 0: Segment is absent from memory
| 1: Segment is present in memory
Privilege level (0-3)
" 0: System
. 1: Application
+— Segment type and protection

Y Y Y oY v
Base24-31  |a|p|o 1'-(;’_7;"9 PlorL[s| Type Base 1623 |4
Base 0-15 Limit 0-15 0
‘ : . Relative
- 32 Bits " address

& (¥ §Computer Science

Lecture 11, page 23

Segmentation with Paging:

Conversion of a (selector, offset)
pair to a linear address.

Selector

Computer Science

Descriptor

Offset

-

Base address

Limit

Other fields

< G

Y

32-Bit linear address

Lecture 11, page 24



Segmentation with Paging:

Since segments are paged, next, we map the 32-bit
linear address onto a physical address using page tables

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
“L 0 0 R Word R A
selected
1024
Entries T
: ? Offset
Dir
Page
o A l
Directory entry Page table
points to entry points
page table to word
) (b)
Computer Science Lecture 11, page 25

Process Manager Data Structures

The message types, input parameters, and reply values
used for communicating with the PM.

Message type Input parameters Reply value

fork (none) Child’s PID, (to child: 0)
exit Exit status (No reply if successful)
wait (none) Status

waitpid Process identifier and flags Status

brk New size New size

exec Pointer to initial stack (No reply if successful)
kill Process identifier and signal Status

alarm Number of seconds to wait Residual time

pause (none) (No reply if successful)
sigaction Signal number, action, old action Status

sigsuspend Signal mask (No reply if successful)
sigpending (none) Status

sigprocmask How, set, old set Status

sigreturn Context Status

getuid (none) Uid, effective uid
getgid (none) Gid, effective gid
getpid (none) PID, parent PID

§ Computer Science Lecture 11, page 26




Process Manager Data Structures

The message types, input parameters, and reply values
used for communicating with the PM.

| Message type | Input parameters | Reply value |
setuid New uid Status
setgid New gid Status
setsid New sid Process group
getpgrp New gid Process group
time Pointer to place where current time goes Status
stime Pointer to current time Status
times Pointer to buffer for process and child times | Uptime since boot
ptrace Request, PID, address, data Status
reboot How (halt, reboot, or panic) (No reply if successful)
svretl Request, data (depends upon function) Status
getsysinfo Request, data (depends upon function) Status
getprocnr (none) Proc number
memalloc Size, pointer to address Status
memfree Size, address Status
getpriority Pid, type, value Priority (nice value)
setpriority Pid, type, value Priority (nice value)
gettimeofday (none) Time, uptime
5§ Computer Science Lecture 11, page 27

Sharing Text Segments

L 1

0x3dc00
Stack
roc 2
(pG ) 0x3d400
AP 2274 0x3d000
Data
(proc 2)
Virtual Physical Length
0x3c000
L A Stack| O0x5 Oxf5 ox2
0x34800 Data 0 0oxfo Ox4
Stack
(proc 1) Text 0 Oxc8 0x3
Virtual Physical Length 0x34000
Gap 0x33¢00 Process 2
Stack| 0x5 Oxd0 | Ox2 (c)
Data
Data 0 Oxcb Ox4 [— (proc 1)
Text 0 Oxc8 0x3
0x32c00
Process 1 Text
(a) (shared)
0x32000

Computer Science Lecture 11, page 28



The Hole List

The hole list 1s an array of struct hole.

PRIVATE struct hole {

struct hole *h_next; /* pointer to next entry on the list */
phys_clicks h_base; /* where does the hole begin? */
phys_clicks h_len; /* how big is the hole? */

} hole[NR_HOLES];

/> § Computer Science Lecture 11, page 29

FORK System Call

Check to see if process table is full.

Try to allocate memory for the child’s data and stack.
Copy the parent’s data and stack to the child’s memory
Find a free process slot and copy parent’s slot to it.
Enter child’s memory map in process table.

Choose a PID for the child.

Tell kernel and file system about child.

Report child’'s memory map to kernel.

Send reply messages to parent and child.

OO INI® (O~ DN~

§ Computer Science Lecture 11, page 30



EXEC System Call (1)

. Check permissions—is the file executable?

. Read the header to get the segment and total sizes.

. Fetch the arguments and environment from the caller.

. Allocate new memory and release unneeded old memory.

. Copy stack to new memory image.

. Copy data (and possibly text) segment to new memory image.
. Check for and handle setuid, setgid bits.

. Fix up process table entry.

. Tell kernel that process is now runnable.

OO INOO (S |W|IN|(—

/ Computer Science Lecture 11, page 31

Other System Calls in PM

Three system calls involving time.

Call Function

time Get current real time and uptime in seconds
stime | Set the real time clock

times | Get the process accounting times

/ Computer Science Lecture 11, page 32



Other System Calls in PM

Figure 4-51. The system calls supported in servers/pm/

getset.c.
System Call Description
getuid Return real and effective UID
getgid Return real and effective GID
getpid Return PIDs of process and its parent
setuid Set caller’s real and effective UID
setgid Set caller’s real and effective GID
setsid Create new session, return PID
getpgrp Return ID of process group

& IV 5 computer Science Lecture 11, page 33

Other System Calls in PM

Figure 4-52. Special-purpose MINIX 3 system calls in
servers/pm/misc.c.

System Call Description
do_allocmem Allocate a chunk of memory
do_freemem Deallocate a chunk of memory
do_getsysinfo Get info about PM from kernel
do_getprocnr Get index to proc table from PID or name
do_reboot Kill all processes, tell FS and kernel
do_getsetpriority | Get or set system priority
do_svretrl Make a process into a server

Computer Science Lecture 11, page 34



Other System Calls (4)

Debugging commands supported by servers/pm/

trace.c.
Command Description
T_STOP Stop the process
T_OK Enable tracing by parent for this process
T_GETINS Return value from text (instruction) space

T_GETDATA | Return value from data space
T_GETUSER | Return value from user process table

T_SETINS Set value in instruction space
T_SETDATA | Set value in data space
T_SETUSER | Set value in user process table
T_RESUME Resume execution

T_EXIT Exit
T_STEP Set trace bit
Computer Science Lecture 11, page 35

Memory Management Utilities

Three entry points of alloc.c

1. alloc_mem — request a block of memory of given
size
2.  free_mem — return memory that is no longer needed

3. mem_init— nitialize free list when PM starts
running

Computer Science Lecture 11, page 36



