A Deep Dive into the Linux
Kernel

Processes and Syscall
Ahmed Ali-Eldin

Practicalities

e Book: Linux Kernel Development 3rd Edition, Robert Love
o Available as E-Book via the library
o Available in hard-copy
o Google the book, it is a great book

e Part of the course, so part of the Midterm exam
o You are expected to understand both Minix and Linux

e My assumption, you know Minix, so let us look at Linux and compare

Linux very short history

e Started by an undergrad at the University of Helsinki
o Frustrated by Minix licensing issues
o Ported some code from a previous project, the GNU project
m The GNU project started in 1983, to create a "complete Unix-compatible software
system"
o People took real notice in the mid-nineties
o Today, maintained by the Linux foundation
m Stable release by Greg Kroah-Hartman (http://www.kroah.com/)

http://www.kroah.com/

Linux system model

e Each processor 1s

o In user-space, executing user
code 1n a process

o In kernel-space, in process
context, executing on behalf of
a specific process

o In kernel-space, in interrupt
context, not associated with a
process, handling an interrupt

Application 1 Application 2 Application 3

Y Y Y

System Call Interface

Y Y Y

Kernel Subsystems

Device Drivers

>user-space

> kernel-space

hardware

A beast of a different nature

The kernel has access to neither the C library nor the standard C headers.
The kernel is coded in GNU C.

The kernel lacks the memory protection afforded to user-space.

The kernel cannot easily execute floating-point operations.

The kernel has a small per-process fixed-size stack.

Because the kernel has asynchronous interrupts, is preemptive, and supports SMP,
synchronization and concurrency are major concerns within the kernel.
e Portability is important.

Linux is a beast

Lines of code per Kernel version
Click and drag in the plot area to zoom in

25M
20M
(%)
8 15M
(9]
e
o
O
c 10M
=
5M
0
S aP Pl 4P v 5 P A D B gk ohe? P ge ot e
R R R RN S S R Y S R Y % %' X

Version

Floating Point operations in the kernel

e Horrible idea
o Floating point operations in user space
o the kernel normally catches a trap and then initiates the transition from integer to floating point
mode
o What does this mean, varies by architecture
o Using a floating point inside the kernel requires manually saving and restoring the floating point
registers

Concurrency and Synchronization

e Race conditions can happen and will happen when developing in the kernel
o Linux is a preemptive multitasking operating system.
= Processes are scheduled and rescheduled at the whim of the kernel’s
process scheduler.
= The kernel must synchronize between these tasks.
o Interrupts occur asynchronously with respect to the currently executing code.
m without proper protection, an interrupt can occur in the midst of accessing
a resource, and the interrupt handler can then access the same resource.
o The Linux kernel is preemptive.
m without protection, kernel code can be preempted in favor of different code
that then accesses the same resource.

Kernel Source tree

No servers

Directory
arch
block
crypto
Documentation
drivers
firmware
fs
include
init

ipc
kernel
1ib

mm

net
samples
scripts
security
sound
usr
tools

virt

Description

Architecture-specific source

Block 1/0 layer

Crypto API

Kernel source documentation

Device drivers

Device firmware needed to use certain drivers
The VFS and the individual filesystems
Kernel headers

Kernel boot and initialization
Interprocess communication code

Core subsystems, such as the scheduler
Helper routines

Memory management subsystem and the VM
Networking subsystem

Sample, demonstrative code

Scripts used to build the kernel

Linux Security Module

Sound subsystem

Early user-space code (called initramfs)
Tools helpful for developing Linux

Virtualization infrastructure

Linux Process Management

The Process abstraction

e Thread share the virtual memory abstraction but each
receive it own virtual processor

e A program itself is not a process;
O a process is an active program and related resources
o Open files, address space...

e In the Linux code base, processes are tasks

The Linux Task Structure

e A circular doubly linked list called
the task list (or a task array)

e Itis long with around 500 lines

o around 1.7 kilobytes on a 32-bit
machine

in sched.h &

1379

#1380c

1381
1382
1383
1384

{1385
| 1386

1387

1388
1389
1390
1391
1392
1393
1394
1395
. 1396

1397

1398
1399

. 1400
| 1401

1402
1403
1404

i l4e5
i 1406

1407
1408
1409
1410
1411

1412

1413

{1414
L 1415
| 1416

1417
1418
. 1419

| 1420
{1421

1422
1423
1424
1425
1426
1427
1428

| 1429
| 1430
{1431

struct task struct {

volatile long state; /* -1 unrunnable, © runnable, >0 stopped */

void *stack;

atomic_t usage;

unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;

#ifdef CONFIG_SMP
struct 1list node wake_entry;
int on_cpu;
unsigned int wakee flips;
unsigned long wakee flip_decay ts;
struct task struct *last _wakee;

int wake cpu;
#endif
int on_rgqg;

int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched class *sched_class;
struct sched_entity se;
struct sched rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
struct task group *sched task group;
#endif
struct sched dl_entity dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt notifier: */
struct hlist head preempt notifiers;
#endif

#ifdef CONFIG BLK DEV IO TRACE
unsigned int btrace seq;
#endif

unsigned int policy;
int nr_cpus_allowed;
cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock nesting;
union rcu_special rcu_read _unlock special;
struct list head rcu_node entry;
struct rcu_node *rcu_blocked node;
#endif /* #ifdef CONFIG PREEMPT RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks nvcsw;
bool rcu_tasks_holdout;
struct list head rcu_tasks holdout list;
int rcu_tasks_idle_cpu;
#endif /* Bifdef CONFIG TASKS RCU */

The Task list

struct task_struct

'/struct task=struct

“/struct task=struct

struct task=struct

unsigned long state;
int prio;
unsigned long policy;

struct task_struct *parent; 9
struct list_head tasks;
pid_t pid; _2

e

process descriptor

~
the task list

Linux Process Tree

e All processes are descendants of the init process, whose
PID is one.

©)

©)

O

The relationship between processes is stored in the process descriptor.
Each task_struct has a pointer to the parent’s task_struct , named parent
And a list of children, named children

14905 /*

1491 * pointers to (original) parent process, youngest child, younger sibling,

1492 * older sibling, respectively. (p->father can be replaced with

1493 * p->real parent->pid)

1494 %/

1495 struct task struct _ rcu *real_parent; /* real parent process */

1496 struct task struct _ rcu *parent; /* recipient of SIGCHLD, wait4() reports */

1497 /*

1498 * children/sibling forms the list of my natural children

1499 o

1500 struct list_head children; /* list of my children */

1501 struct list head sibling; /* linkage in my parent's children list */

1502 struct task struct *group leader; /* threadgroup leader */

1503

Per Process Kernel Stack

Process Kernel Stack

- highest memory address
Start of Stack
- stack pointer
Y
struct thread_struct
current_thread_info ()- i - lowest memory address

thread_info has a pointer to the process descriptor

the process’s struct task_struct

Process Creation

e Unix/Linux separates creating a new process into two
distinct functions: fork() and exec()

Fork and exec

o fork()

o Creates a child process that is a copy of the current task
o Differs only from the parent in its (unique) PID
o its parent PID which is set to its original ID
o Afew other signals
e exec)
o loads a new executable into the address space and begins executing it

copy-on-write

e Delay or altogether prevent copying of the data
e Rather than duplicate the process address space, the parent and the child

can share a single copy.
e The data, is marked in such a way that if it is written to, a duplicate is made

and each process receives a unique copy.

Threading in Linux

Remember..

LI

Minix
<«— kernel thread
; ; ; 34— user thread
Old Solaris
(but also
GoLang!)

<«— kemel thread

<«— user thread

<«——Kkernel thread

<«— user thread

<«— kernel thread

Side note: Why M:N in GoLang?

e Because it decouples concurrency from parallelism.
o A 100 requests/sec to a web-server running on 4 cores

Back to Linux

e Kernel has no real threads

o Everything is a process, i.e., kernel has no special data-structures or
semantics to handle threads

o Each thread thus has a unique task_struct

o Windows, Solaris, and many other OSes have an explicit kernel support
for threads, sometimes referred to as lightweight processes

o To Linux, threads are simply a manner of sharing resources between
processes

o Threads created using clone() syscall

Clone() flags

Flag

CLONE_FILES
CLONE_FS
CLONE__IDLETASK
CLONE_NEWNS
CLONE__PARENT
CLONE_PTRACE
CLONE_SETTID
CLONE_SETTLS
CLONE__STIGHAND
CLONE_SYSVSEM
CLONE_THREAD

CLONE_VFORK

CLONE_UNTRACED

CLONE__STOP

CLONE_SETTLS

Meaning

Parent and child share open files.

Parent and child share filesystem information.

Set PID to zero (used only by the idle tasks).

Create a new namespace for the child.

Child is to have same parent as its parent.

Continue tracing child.

Write the TID back to user-space.

Create a new TLS for the child.

Parent and child share signal handlers and blocked signals.
Parent and child share System V sEM_UNDO semantics.
Parent and child are in the same thread group.

vfork () was used and the parent will sleep until the child
wakes it.

Do not let the tracing process force CLONE_PTRACE on the
child.

Start process in the TASK_STOPPED state.

Create a new TLS (thread-local storage) for the child.

CLONE_CHILD_CLEARTID Clear the TID in the child.
Set the TID in the child.

CLONE_PARENT_SETTID Set the TID in the parent.

CLONE_CHILD_SETTID

CLONE_VM Parent and child share address space.

Kernel threads

Special threads for the kernel to run operations in the background
Exist only in the kernel with no corresponding user-level thread
They are schedulable and preemptable

To see the kernel threads running on your Linux machine
o ps-ef
e More on this in later Linux lectures!

Process (and thread) termination

e Process destruction is self-induced.

O O O O O O

occurs when the process calls the exit() system call
explicitly when it is ready to terminate
implicitly on return from the main subroutine of any program.
Involuntarily, due to a signal or an exception

bulk of the work is handled by do_exit() (defined in kernel/exit.c)
After do_exit() completes, the process descriptor for the terminated
process still exists, and the process is a zombie

m enables the system to obtain information about a child process after

it has terminated

Process (and thread) termination

e Parent in charge of cleaning up after children
o Remember, all tasks/processes/threads have a parent

e The acts of cleaning up after a process and removing its
process descriptor are separate

e Parent has obtained information on its terminated child, or
signified to the kernel that it does not care, the child’s

task struct is deallocated.

What if the parent dies/exits?

e Children are re-parented
o either another process in the current thread group
o or, if that fails, the init process

Process Scheduling

Process states

Existing task calls
fork() and creates
a new process.

Task forks.

TASK_RUNNING

(ready but
not running)

Event occurs and task is woken up
and placed back on the run queue.

Scheduler dispatches task to run:
schedule() calls context_switch().

Task is preempted
by higher priority task.

TASK_INTERRUPTIBLE
or
TASK_UNINTERRUPTIBLE J<<|
(waiting)

Task exits via
do_exit.

TASK_RUNNING

(running)

Task is terminated.

Task sleeps on wait queue
for a specific event.

Multitasking

e Linux interleaves the execution of more than one process
o On Mutli-processor machines, processes can run in parallel

e Linux uses preemptive multitasking
o Scheduler kicks out tasks based on some algorithm
o Usually after a given time-slice
o This is opposite to cooperative multitasking where tasks run for as long as they wish
m Mac OS 9 and Windows 3.1 (two ancient OSes) used cooperative multi-tasking

Evolution of Linux Process scheduler

e Before kernel v2.4, very naive scheduler that scaled poorly
e Inv2.5, Linux introduced a new scheduler, commonly called the O(1)

scheduler
o A constant time algorithm to pick which process to run
o Scaled to 100s of cores
o But had several shortcomings with latency-sensitive applications
m Extremely slow which made things bad for many applications

e Inv2.6, introduced multiple new schedulers for the user to choose from

o The most notable of these was the Rotating Staircase Deadline scheduler,
o introduced the concept of fair scheduling, borrowed from queuing theory,

The Completely fair Scheduler

Developed as part of v2.6.23, and rolled out in october 2007

®
o Default scheduler today
o Reading: https://www.linuxjournal.com/node/10267
Single Task Two Tasks Four Tasks
\ vy Vs
100 % CPU 500 CPU gSO%CPU Bmimgmgm
i | CPUTask |

Ideal Precise Multi-tasking CPU - Each task yuns in parallel and consumes equal CPU share

Single Task Two Tasks Four Tasks
l
\ V Amau ||
* . all othex all other
" fasks A tasks
100 % CPU 100 % CPU for 3 100 0 CPU for X
running task *, | | running fask

Actual CPU - While one task uses the CPU, every other task waits

https://www.linuxjournal.com/node/10267

Scheduling primer

e |/O Bound vs CPU bound processes
o Run until blocked vs run until preempted
m Word processor vs Matlab
o Linux favors I/O bound processes

e Priorities
o Nice values from -20 to 19

e Timeslices
o CFS has a novel approach to calculate a timeslice
o Assigning a proportion of the processor based on the current load in the system, with the nice
value acting as a weight
m Processes with higher nice values (a lower priority) receive a deflationary weight,
yielding them a smaller proportion of the processor
m Processes with smaller nice values (a higher priority) receive an inflationary weight,
netting them a larger proportion of the processor.

Example: What should the scheduler do?

Consider a processor running

HEVC =

OpenOffice.org

H.265 - HIGH EFFICIENCY VIDEO CODING

Scheduler ideal scenario

e Have the word editor run fast
o Give higher priority/CPU time
e Have the encoder use all processor when available
o But get preempted by the word editor
e Other Operating Systems
o Give higher prio + higher time slice to interactive apps
e Linux
o Guarantee the text editor a certain proportion of the processor, i.e., 50% in this case

o When the word editor blocks, run the encoder
o When the editor wakes up, preempt the encoder

The Linux Scheduling algorithm

e Linux scheduler is modular
o Huge difference from most other operating systems today
o Multiple schedulers can be running for different processes!
m Allin parallel
o This is the concept of scheduler classes

e Which scheduler class takes precedence controlled by a class priority
o Base scheduler defined in kernel/sched.c
o CFSis registered as the base scheduler for all normal processes
o Let us look at the different available schedulers
o https://qithub.com/torvalds/linux/blob/master/kernel/sched/sched.h

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

#define RUNTIME_INF ((u64)~BULL)

static inline int idle_policy(int policy)

{
return policy == SCHED_IDLE;
}
static inline int fair_policy(int policy)
{
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

static inline int rt_policy(int policy)

{
return policy == SCHED_FIFO || policy == SCHED_RR;

static inline int dl_policy(int policy)

{
return policy == SCHED_DEADLINE;

Compare to Minix 3 (from last lecture)

Multiple Schedulers

Moving Scheduler into user space presents an important scheduling
opportunity to create multiple schedulers, where a scheduler could exist per
user, per device type, etc. Also, this allows better utilization of a multicore
system as it allows higher cpu utilization and load balancing.

Layer { Scheduling domain

E
i

- : [Scheduler A
¢ [UsecProcess | [UsorProcess | [UserProcess | [Com =
? ! Mode (2] Scheduler C
2 | Driver ‘ . [scheduler D
1 &e

Many reasons behind CFS

e Start interactive processes even if they have finished their timeslice

e Absolute time slices are a function of the timer ticks (clock speed)
o Linux runs from embedded systems to large servers

e [here are other reasons

Fair Scheduling

e Fairness, each task gets 1/n of the processor slice
e True life, context switching has a cost

o Cache
o Registers
o Etc

e Instead run Round robin starting with the process that ran the least
e Each process run for for a timeslice proportional to its weight divided by the
total weight of all runnable threads.

e If there are too many threads, switching cost becomes a huge issue
o CFS defines a floor timeslice
o Defaultis 1 ms

Implementation of CFS

Time Accounting

Process Selection

The Scheduler Entry Point
Sleeping and Waking Up

struct sched_entity {

/* For load-balancing: *
struct load_weight load;
unsigned long runnable_weight;
n struct rb_node run_node;
The Scheduler Entity
unsigned int on_rq;
Structure
u64d sum_exec_runtime;
u64 vruntime;
ué4 prev_sum_exec_runtime;
u6d nr_migrations;
struct sched_statistics statistics;
e struct sched entity, defined in #ifdef CONFIG_FAIR_GROUP_SCHED
- int depth;
struct sched_entity *parent;
. /* rq on which this entity is (to be) queued: *
<:/7f7LI)C/3;()/7EECf.f7:> struct cfs_rq *cfs_rq;
/* rq "owned" by this entity/group: */
struct cfs_rq *my_Qq;
#endif
#ifdef CONFIG_SMP
* per entity load average tracking.

struct sched_avg avg;

CFS implementation

e CFS Selection policy: Use the smallest vruntime
o CFS uses a red-black tree to manage the list of runnable processes and efficiently find the
process with the smallest vruntime

e Scheduler entry point
o Function schedule() in kernel/sched.c
o Finds highest priority scheduler class

e Sleeping and waking up
©0 TASK INTERRUPTIBLE and TASK UNINTERRUPTIBLE.

