
A Deep Dive into the Linux
Kernel

Processes and Syscall
Ahmed Ali-Eldin

Practicalities
● Book: Linux Kernel Development 3rd Edition, Robert Love

○ Available as E-Book via the library
○ Available in hard-copy
○ Google the book, it is a great book

● Part of the course, so part of the Midterm exam
○ You are expected to understand both Minix and Linux

● My assumption, you know Minix, so let us look at Linux and compare

Linux very short history
● Started by an undergrad at the University of Helsinki

○ Frustrated by Minix licensing issues
○ Ported some code from a previous project, the GNU project

■ The GNU project started in 1983, to create a "complete Unix-compatible software
system"

○ People took real notice in the mid-nineties
○ Today, maintained by the Linux foundation

■ Stable release by Greg Kroah-Hartman (http://www.kroah.com/)

http://www.kroah.com/

Linux system model

● Each processor is
○ In user-space, executing user

code in a process
○ In kernel-space, in process

context, executing on behalf of
a specific process

○ In kernel-space, in interrupt
context, not associated with a
process, handling an interrupt

A beast of a different nature
● The kernel has access to neither the C library nor the standard C headers.
● The kernel is coded in GNU C.
● The kernel lacks the memory protection afforded to user-space.
● The kernel cannot easily execute floating-point operations.
● The kernel has a small per-process fixed-size stack.
● Because the kernel has asynchronous interrupts, is preemptive, and supports SMP,

synchronization and concurrency are major concerns within the kernel.
● Portability is important.

Linux is a beast

Floating Point operations in the kernel
● Horrible idea

○ Floating point operations in user space
○ the kernel normally catches a trap and then initiates the transition from integer to floating point

mode
○ What does this mean, varies by architecture
○ Using a floating point inside the kernel requires manually saving and restoring the floating point

registers

Concurrency and Synchronization
● Race conditions can happen and will happen when developing in the kernel

○ Linux is a preemptive multitasking operating system.
■ Processes are scheduled and rescheduled at the whim of the kernel’s

process scheduler.
■ The kernel must synchronize between these tasks.

○ Interrupts occur asynchronously with respect to the currently executing code.
■ without proper protection, an interrupt can occur in the midst of accessing

a resource, and the interrupt handler can then access the same resource.
○ The Linux kernel is preemptive.

■ without protection, kernel code can be preempted in favor of different code
that then accesses the same resource.

Kernel Source tree
No servers

Linux Process Management

The Process abstraction

● Thread share the virtual memory abstraction but each
receive it own virtual processor

● A program itself is not a process;
○ a process is an active program and related resources
○ Open files, address space…

● In the Linux code base, processes are tasks

The Linux Task Structure

● A circular doubly linked list called
the task list (or a task array)

● It is long with around 500 lines
○ around 1.7 kilobytes on a 32-bit

machine

The Task list

Linux Process Tree

● All processes are descendants of the init process, whose
PID is one.
○ The relationship between processes is stored in the process descriptor.
○ Each task_struct has a pointer to the parent’s task_struct , named parent
○ And a list of children, named children

Per Process Kernel Stack

Process Creation

● Unix/Linux separates creating a new process into two
distinct functions: fork() and exec()

Fork and exec

● fork()
○ Creates a child process that is a copy of the current task
○ Differs only from the parent in its (unique) PID
○ its parent PID which is set to its original ID
○ A few other signals

● exec()
○ loads a new executable into the address space and begins executing it

copy-on-write
● Delay or altogether prevent copying of the data
● Rather than duplicate the process address space, the parent and the child

can share a single copy.
● The data, is marked in such a way that if it is written to, a duplicate is made

and each process receives a unique copy.

Threading in Linux

Remember..

Minix
Linux

Old Solaris
(but also
GoLang!)

Side note: Why M:N in GoLang?
● Because it decouples concurrency from parallelism.

○ A 100 requests/sec to a web-server running on 4 cores

Back to Linux

● Kernel has no real threads
○ Everything is a process, i.e., kernel has no special data-structures or

semantics to handle threads
○ Each thread thus has a unique task_struct
○ Windows, Solaris, and many other OSes have an explicit kernel support

for threads, sometimes referred to as lightweight processes
○ To Linux, threads are simply a manner of sharing resources between

processes
○ Threads created using clone() syscall

Clone() flags

Kernel threads
● Special threads for the kernel to run operations in the background
● Exist only in the kernel with no corresponding user-level thread
● They are schedulable and preemptable
● To see the kernel threads running on your Linux machine

○ ps -ef

● More on this in later Linux lectures!

Process (and thread) termination

● Process destruction is self-induced.
○ occurs when the process calls the exit() system call
○ explicitly when it is ready to terminate
○ implicitly on return from the main subroutine of any program.
○ Involuntarily, due to a signal or an exception
○ bulk of the work is handled by do_exit() (defined in kernel/exit.c)
○ After do_exit() completes, the process descriptor for the terminated

process still exists, and the process is a zombie
■ enables the system to obtain information about a child process after

it has terminated

Process (and thread) termination

● Parent in charge of cleaning up after children
○ Remember, all tasks/processes/threads have a parent

● The acts of cleaning up after a process and removing its
process descriptor are separate

● Parent has obtained information on its terminated child, or
signified to the kernel that it does not care, the child’s
task_struct is deallocated.

What if the parent dies/exits?

● Children are re-parented
○ either another process in the current thread group
○ or, if that fails, the init process

Process Scheduling

Process states

Multitasking
● Linux interleaves the execution of more than one process

○ On Mutli-processor machines, processes can run in parallel

● Linux uses preemptive multitasking
○ Scheduler kicks out tasks based on some algorithm
○ Usually after a given time-slice
○ This is opposite to cooperative multitasking where tasks run for as long as they wish

■ Mac OS 9 and Windows 3.1 (two ancient OSes) used cooperative multi-tasking

Evolution of Linux Process scheduler
● Before kernel v2.4, very naive scheduler that scaled poorly
● In v2.5, Linux introduced a new scheduler, commonly called the O(1)

scheduler
○ A constant time algorithm to pick which process to run
○ Scaled to 100s of cores
○ But had several shortcomings with latency-sensitive applications

■ Extremely slow which made things bad for many applications

● In v2.6, introduced multiple new schedulers for the user to choose from
○ The most notable of these was the Rotating Staircase Deadline scheduler,
○ introduced the concept of fair scheduling, borrowed from queuing theory,

The Completely fair Scheduler
● Developed as part of v2.6.23, and rolled out in october 2007

○ Default scheduler today
○ Reading: https://www.linuxjournal.com/node/10267

https://www.linuxjournal.com/node/10267

Scheduling primer
● I/O Bound vs CPU bound processes

○ Run until blocked vs run until preempted
■ Word processor vs Matlab

○ Linux favors I/O bound processes

● Priorities
○ Nice values from -20 to 19

● Timeslices
○ CFS has a novel approach to calculate a timeslice
○ Assigning a proportion of the processor based on the current load in the system, with the nice

value acting as a weight
■ Processes with higher nice values (a lower priority) receive a deflationary weight,

yielding them a smaller proportion of the processor
■ Processes with smaller nice values (a higher priority) receive an inflationary weight,

netting them a larger proportion of the processor.

Example: What should the scheduler do?
Consider a processor running

Scheduler ideal scenario
● Have the word editor run fast

○ Give higher priority/CPU time

● Have the encoder use all processor when available
○ But get preempted by the word editor

● Other Operating Systems
○ Give higher prio + higher time slice to interactive apps

● Linux
○ Guarantee the text editor a certain proportion of the processor, i.e., 50% in this case
○ When the word editor blocks, run the encoder
○ When the editor wakes up, preempt the encoder

The Linux Scheduling algorithm
● Linux scheduler is modular

○ Huge difference from most other operating systems today
○ Multiple schedulers can be running for different processes!

■ All in parallel
○ This is the concept of scheduler classes

● Which scheduler class takes precedence controlled by a class priority
○ Base scheduler defined in kernel/sched.c
○ CFS is registered as the base scheduler for all normal processes
○ Let us look at the different available schedulers
○ https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

Compare to Minix 3 (from last lecture)

Many reasons behind CFS
● Start interactive processes even if they have finished their timeslice
● Absolute time slices are a function of the timer ticks (clock speed)

○ Linux runs from embedded systems to large servers

● There are other reasons

Fair Scheduling
● Fairness, each task gets 1/n of the processor slice
● True life, context switching has a cost

○ Cache
○ Registers
○ Etc

● Instead run Round robin starting with the process that ran the least
● Each process run for for a timeslice proportional to its weight divided by the

total weight of all runnable threads.
● If there are too many threads, switching cost becomes a huge issue

○ CFS defines a floor timeslice
○ Default is 1 ms

Implementation of CFS
● Time Accounting
● Process Selection
● The Scheduler Entry Point
● Sleeping and Waking Up

The Scheduler Entity
 Structure

● struct sched_entity, defined in

<linux/sched.h>

CFS implementation
● CFS Selection policy: Use the smallest vruntime

○ CFS uses a red-black tree to manage the list of runnable processes and efficiently find the
process with the smallest vruntime

● Scheduler entry point
○ Function schedule() in kernel/sched.c
○ Finds highest priority scheduler class

● Sleeping and waking up
○ TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE.

