Last Class: Introduction to Operating
Systems

User apps

Virtual machine interface

(O8]

physical machine interface

hardware

* An operating system is the interface between the user and the
architecture.

) Computer Science CS377: Operating Systems Lecture 2, page 1

Course Staff Office Hours

¢ Instructor: Prashant Shenoy
— Th 1:30 - 2:30, LGRC A333 or by appt

* TAs:
— Walid Hanafy
* Wed and Fri, 4 - Spm, LGRT T223
* Email: whanafy [at] cs.umass.edu

) Computer Science Lecture 2, page 2



Today: Computer Architecture Basics

» Architecture refresher

» What the OS can do 1s dictated in part by the
architecture.

* Architectural support can greatly simplify or complicate
the OS.

§ Computer Science CS377: Operating Systems Lecture 2, page 3

Computer Architecture Basics

Input-output connectors

Processor power supply connector

RAM connectors

ASUS PSAD2-E - http: com

Baches battery

* Picture of a motherboard/logicboard

Computer Science Lecture 2, page 4



Generic Computer Architecture

mouse keyboard printer monitor
disks _
@@ é (Y !
CcPU disk USB controller gi=phics
controller adapter
|—| System bus
Network
memory card

CPU: the processor that performs the actual computation
— Multiple “cores” common in today’s processors

I/0 devices: terminal, disks, video board, printer, etc.
— Network card is a key component, but also an I/O device

* Memory: RAM containing data and programs used by the CPU

System bus: communication medium between CPU, memory, and
, peripherals

2 £ Compu-fer Science CS377: Operating Systems Lecture 2, page 5

Modern Operating System Functionality

*  Process and Thread Management

*  Concurrency: Doing many things simultaneously (1/0,
processing, multiple programs, etc.)
—  Several users work at the same time as if each has a private machine

—  Threads (unit of OS control) - one thread on the CPU at a time, but many
threads active concurrently

*  1/O devices: let the CPU work while a slow I/O device is
working

*  Memory management: OS coordinates allocation of memory
and moving data between disk and main memory.

*  Files: OS coordinates how disk space is used for files, in order
to find files and to store multiple files

* Distributed systems & networks: allow a group of machines to
work together on distributed hardware

Computer Science CS377: Operating Systems Lecture 2, page 6



Architectural Features Motivated by OS Services

OS Service Hardware Support
Protection Kernel/user mode, protected
instructions, base/limit registers

Interrupts Interrupt vectors

System calls Trap instructions and trap vectors

/0 Interrupts and memory mapping

Scheduling, error recovery, Timer

accounting

Synchronization Atomic instructions

Virtual memory Translation look-aside buffers

Computer Science CS377: Operating Systems Lecture 2, page 7

Protection

« CPU supports a set of assembly instructions
— MOV [address], ax
— ADD ax, bx

— MOV CRn (move control register)
— IN, INS  (input string)

— HLT (halt)

— LTR (load task register)

— INT n (software interrupt)

— Some instructions are sensitive or privileged

o) ¢ .
3 \fy Computer Science Lecture 2, page 8



Protection

Kernel mode vs. User mode: To protect the system from aberrant
users and processors, some instructions are restricted to use only
by the OS. Users may not

— address 1/0 directly

— use instructions that manipulate the state of memory (page table pointers,
TLB load, etc.)

— set the mode bits that determine user or kernel mode
— disable and enable interrupts
— halt the machine

but in kernel mode, the OS can do all these things.

The hardware must support at least kernel and user mode.
— A status bit in a protected processor register indicates the mode.
— Protected instructions can only be executed in kernel mode.

y : Compufer Science CS377: Operating Systems Lecture 2, page 9

Crossing Protection Boundaries

* System call: OS procedure that executes privileged instructions
(e.g., I/O) ; also API exported by the kernel
— Causes a trap, which vectors (jumps) to the trap handler in the OS kernel.

— The trap handler uses the parameter to the system call to jump to the
appropriate handler (I/O, Terminal, etc.).

— The handler saves caller's state (PC, mode bit) so it can restore control to
the user process.

— The architecture must permit the OS to verify the caller's parameters.
— The architecture must also provide a way to return to user mode when

finished.
user process
user mode

| user process executing H calls system call ‘ | return from system call (mode bit = 1),
\ 7
LY v
A} 7

kernel trap return

ormne mode bit = 0 mode bit = 1

kernel mode

execute system call (mode bit = 0)

& Computer Science CS377: Operating Systems Lecture 2, page 10




Example System calls

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(hame, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

omputer Science

Windows System Calls

Lecture 2, page 11

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close afile
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

OF M

Eg J Computer Science

Some Win32 API calls

Lecture 2, page 12




Memory Protection

Architecture must provide support so that the OS can
— protect user programs from each other, and
— protect the OS from user programs.
The simplest technique is to use base and limit registers.
Base and limit registers are loaded by the OS before starting a program.

The CPU checks each user reference (instruction and data addresses), ensuring
it falls between the base and limit register values

operating system

job 1

<—— Base register
job 2

<— Limit register
job 3

job 4
SpES———

5 Computer Science CS377: Operating Systems Lecture 2, page 13

Process Layout in Memory

Address (hex)
FFFF

Stack |

77

Gap

ik

Data |

NN

Text

0000

. Processes have three segments: text, data, stack

Computer Science Lecture 2, page 14



Registers

» Register = dedicated name for one word of memory managed by
CPU
— General-purpose: “AX”, “BX”, “CX” on x86
— Special-purpose: Sp

: 0
» “SP” = stack pointer arel

* “FP” = frame pointer

* “PC” = program counter FP

* Change processes:
save current registers &
load saved registers =
context switch

Computer Science CS377: Operating Systems Lecture 2, page 15

Memory Hierarchy

* Higher = small, fast, more $, lower latency
*  Lower = large, slow, less $, higher latency

m 1-cycle latency
- 2-cycle latency

DS, IS separate

- 7-cycle latency

DS, IS unified

100 cycle latency

- 40,000,000 cycle latency

200,000,000+ cycle latency

Computer Science CS377: Operating Systems Lecture 2, page 16



Caches

Access to main memory: “expensive”
— ~ 100 cycles (slow, but relatively cheap ($))

Caches: small, fast, expensive memory
— Hold recently-accessed data (D$) or instructions (I$)
— Different sizes & locations
* Level 1 (L1) — on-chip, smallish
* Level 2 (L2) — on or next to chip, larger
* Level 3 (L3) — pretty large, on bus
— Manages lines of memory (32-128 bytes)

Caches are managed by hardware (no explicit OS management)

5 Computer Science CS377: Operating Systems Lecture 2, page 17

Caches in SMP and Multi-core

Write-back vs. write-through caching

Cache consistency important => write through

processor
first level Q Q e Q
cache {L1)

| | I

2nd level
cache {L2)

shared
memory

Computer Science Lecture 2, page 18



Traps

* Traps: special conditions detected by the architecture
— Examples: page fault, write to a read-only page, overflow,

systems call 0: 000080000

1: 0x00100000

* On detecting a trap, the hardware 2: 0x00100480

3: 0x00123010

— Saves the state of the process (PC, stack, etc.)
— Transfers control to appropriate trap handler (OS routine)

* The CPU indexes the memory-mapped trap vector with the
trap number,

* then jumps to the address given in the vector, and
* starts to execute at that address.
* On completion, the OS resumes execution of the process

CompuTer Science CS377: Operating Systems Lecture 2, page 19

Traps

Trap Vector:

0: 0x00080000 Illegal address

1: 0x00100000 Memory violation
2: 0x00100480 Illegal instruction
3: 0x00123010 System call

*  Modern OS use Virtual Memory traps for many functions: debugging,
distributed VM, garbage collection, copy-on-write, etc.

* Traps are a performance optimization. A less efficient solution is to insert extra
instructions into the code everywhere a special condition could arise.

* Recap of System Calls from page 8

CompuTer Science CS377: Operating Systems Lecture 2, page 20




/O Control

« Each I/O device has a little processor inside it that enables it to
run autonomously.

CPU 1ssues commands to I/O devices, and continues

*  When the I/0 device completes the command, it issues an
interrupt

*  CPU stops whatever it was doing and the OS processes the 1/0
device's interrupt

2 . ]
y CompuTer Science CS377: Operating Systems Lecture 2, page 21

Three 1/0O Methods

*  Synchronous, asynchronous, memory-mapped

Synchronous Asynchronous
requesting process . }
user
{ waiting A A requesting process A user
- N
device driver device driver
1 [ |
fkernel < 1 interrupt handler 1t 1 interrupt handler r kernelf
1 L |
¥ i
hardware J- hardware
data transfer = = data transfer
~ /
time  —— time ——p

(a) (b)

b7 . .
Fi, Computer Science CS377: Operating Systems Lecture 2, page 22



Memory-Mapped 1/0O

»  Enables direct access to I/O controller (vs. being required to
move the I/O code and data into memory)

*  PCs (no virtual memory), reserve a part of the memory and put
the device manager in that memory (e.g., all the bits for a video
frame for a video controller).

Access to the device then becomes almost as fast and convenient
as writing the data directly into memory.

g Computer Science CS377: Operating Systems Lecture 2, page 23

Interrupt based asynchronous 1/0

«  Device controller has its own small processor which executes
asynchronously with the main CPU.

«  Device puts an interrupt signal on the bus when it is finished.

« CPU takes an interrupt.

Save critical CPU state (hardware state),

Disable interrupts,

Save state that interrupt handler will modify (software state)

Invoke interrupt handler using the in-memory Interrupt Vector
Restore software state

Enable interrupts

Restore hardware state, and continue execution of interrupted process

Nk W=

; Computer Science CS377: Operating Systems Lecture 2, page 24



Timer & Atomic Instructions

Timer
*  Time of Day
*  Accounting and billing

*  CPU protected from being hogged using timer interrupts
that occur at say every 100 microsecond.
— At each timer interrupt, the CPU chooses a new process to

execute.
Interrupt Vector:

0: 0x2£f080000 | keyboard
1: 0x2{f100000 mouse
2: 0x2ff100480 | timer
3: 0x2ff123010 Disk 1
:,a CompuTer‘ Science CS377: Operating Systems Lecture 2, page 25
Synchronization

Processces.

Interrupts interfere with executing processes.
OS must be able to synchronize cooperating, concurrent

Architecture must provide a guarantee that short sequences

of instructions (e.g., read-modify write) execute atomically.

Two solutions:

1. Architecture mechanism to disable interrupts before
sequence, execute sequence, enable interrupts again.

2. A special instruction that executes atomically (e.g.,

test&set)

g Computer Science CS377: Operating Systems Lecture 2, page 26



Virtual Memory

* Virtual memory allows users to run programs without loading the
entire program in memory at once.

 Instead, pieces of the program are loaded as they are needed.

* The OS must keep track of which pieces are in which parts of
physical memory and which pieces are on disk.

* In order for pieces of the program to be located and loaded
without causing a major disruption to the program, the hardware
provides a translation lookaside buffer to speed the lookup.

CompuTer Science CS377: Operating Systems Lecture 2, page 27

Summary

Keep your architecture book on hand.

OS provides an interface to the architecture, but also requires some
additional functionality from the architecture.

— The OS and hardware combine to provide many useful and
important features.

g PN & . .
é, Computer Science CS377: Operating Systems Lecture 2, page 28




