Pervasive Computing, IoT and Smart Buildings

Jeremy Gummeson

Research Scientist – College of Information and Computer Sciences

gummeson@cs.umass.edu

Pervasive Computing

- Computing is becoming increasingly ubiquitous
- Sensing and computing "everywhere"
 - Increasingly part of physical environments
 - Enables many new application domains

Smart Buildings

Smart Transportation

Smart Agriculture

Rise of Pervasive Computing

- Miniaturization of computing
 - Tiny sensors with computing and communication capability
 - MEMS: MicroElectroMechanical Systems
 - Expectation: Moore's law-like growth in MEMS
- Rise of internet of things
 - Network of Physical Devices
 - Ability to network devices and have them communicate
 - Large network of sensors

assa

Smart Health

- Early Wearables devices
 - Fitness, exercise tracking
 - Sleep, heart rate, ...
- New technologies emerging:

Smart Clothing

On-body monitoring

Smart Glasses

Gaze tracking, fatigue detection

Smart Buildings

• Proliferation of smart devices in homes

Thermostat

Smart Plug

Smart Appliances

• Phone and voice interfaces:

MassAmherst

Smart Transportation

- Smart Roadways
 - Reactive Lights/Dynamic Lanes
 - Road Condition Monitoring
 - Traffic Management
- Connected Cars
 - Accident avoidance
 - Fleet Management
 - Real time public transport alerts

Typical smart app

- Personal device to mobile phone to the cloud
 - Upload data to cloud via a mobile device (or directly)
 - Low-power communication to phone
 - Cloud provides analytics and provides feedback to phone

- Environmental sensors to internet to the cloud
 - Internet-enabled sensors
 - Upload to directly to servers / cloud through a router
 - Cloud provides analytics and provides dashboard

Sensor Platform

- Smart devices are a sensor node
- Resource-constrained distributed system
- Typical Sensor platform
 - Small CPUs
 - E.g. 8bit, 4k RAM
 - Low-power radios for communication
 - 10-200kbit/sec
 - Sensors
 - Battery driven or self-powered
 - Flash storage

Small CPUs

- Example: Atmel AVR
 - 8 bit
 - 4 KB RAM
 - 128 KB flash on-chip
 - ~8 mA
- Example: TI MSP430
 - 16 bit
 - 10 KB RAM
 - 48 KB flash
 - 2 mA

MassAmherst

MSP430x20x1 BLOCK DIAGRAM P2.x & XIN/XOUT P1.x & JTAG VCC Port P2 Port P1 Flash Basic clock interrupt SMCLK interrup 2kB 1kB 128B 128B 8 chann capabilit MAB 16MHz CPU includes 16 register MDB Emulation (2B tchdog WDT Brownout protection JTAG interface 15/16-bit 2 CC registe Spy-Bi Wire RST/NM

Higher-powered processors:

- ARM7 32 bit, 50 MHz, >>1MB RAM
- ARM9 32 bit, 400 MHz, >>16MB RAM

Low Power Radios

- Industrial, Scientific and Medical (ISM) Band
 - 900 MHz (33 cm), 2400 MHz (Bluetooth)
- Varying modulation and protocol
 - Zigbee (IEEE 802.15.4) Modulating Phase
 - Bluetooth (IEEE 802.15.1) Modulating Frequency
- Short range

lassAmherst

- Typically <100 m
- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive
- Listening can take more energy than transmitting

Battery power

- Example: Mica2 "mote"
 - Total battery capacity: 2500mAH (2 AA cells)
 - System consumption: 25 mA (CPU and radio on)
 - Lifetime: 100 hours (4 days)

• Alternatives:

lassAmherst

- Bigger batteries
- Energy Harvesting (Solar/Wind/Motion)
- Duty cycling

Sensors

- Temperature
- Humidity
- Magnetometer
- Vibration
- Acoustic
- Light
- Motion (e.g. passive IR)
- Imaging (cameras)
- Accelerometer
- GPS

UMassAmherst

• Lots of others...

Self-harvesting Sensors

- Harvest energy from environment to power themselves
 - tiny solar panels,
 - use vibration,
 - thermal,
 - airflow, or
 - wireless energy

Typical Design Issues

- Single node
 - Battery power/how to harvest energy to maximize lifetime
- Inside a network of sensors
 - Data aggregation
 - Duty cycling
 - Localization, Synchronization
 - Routing

MassAmherst

- Once data is brought out of the network (server-side processing)
 - "Big data" analytics
 - Derive insights
 - Make recommendations, send alerts
 - Provide active control

Green Computing

- Greening of Computing
 - Sustainable IT
 - How to design energy-efficient hardware, software and systems?
- Computing for Greening
 - Use of IT to make physical infrastructure efficient
 - Homes, offices, buildings, transportation

Historical Overview

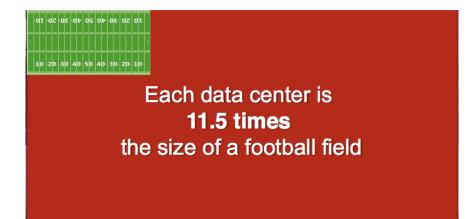
- Energy-efficient mobile devices a long standing problem
 - Motivation: better battery life, not green
- Recent growth of data centers
 - More energy-efficient server design
 - Motivation: lower electricity bills
 - Green systems, lower carbon footprint
- Apply "Greening" to other systems
 - IT for Greening

Computing and Power Consumption

• Energy to Compute

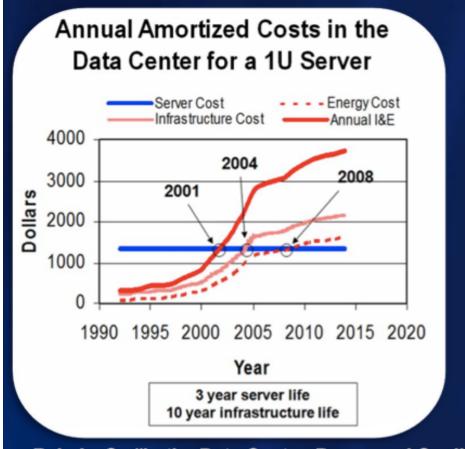
ass At

- 20% power usage in office buildings
- 50-80% at a large college
- 3% of our carbon footprint and growing
- Data centers are a large fraction of the IT carbon footprint
 - PCs, mobile devices also a significant part


What is a data center?

- Facility for housing a large number of servers and data storage
- Google data center (Dalles, OR)
 - 12 football fields in size
 - ~ 100K servers
- 100 MW of power

VlassAmherst


• Enough for a small city

Data Center Energy Cost

UMassAmherst

Belady, C., "In the Data Center, Power and Cooling Costs More than IT Equipment it Supports", *Electronics Cooling Magazine* (February 2007)

Energy Bill of a Google Data Center

- Assume 100,000 servers
- Monthly cost of 1 server
 - 500W server

lassAmhers

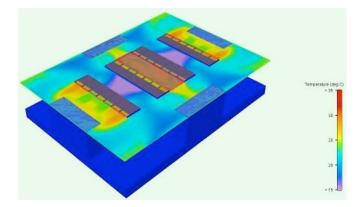
- Cost=(Watts X Hours / 1000) * cost per KWH
- Always-on server monthly cost = \$50
- Monthly bill for 100K servers = \$5M
- What about cost of cooling?
 - Use PUE (power usage efficiency)
 - PUE =2 => cost doubles
 - Google PUE of 1.2 => 20% extra on 5M (~ \$6M)

How to design green data centers

- A green data center will
 - Reduce the cost of running servers
 - Cut cooling costs
 - Employ green best practices for infrastructure

Reducing server cost

- Buy / design energy-efficient servers
 - Better hardware, better power supplies
 - DC is more energy-efficient than AC
- Manage your servers better!
 - Intelligent power management
 - Turn off servers when not in use
 - Virtualization => can move apps around



Reducing cooling cost

- Better air conditioning
 - Thermal engineering / better airflow
 - Move work to cooler regions
- Newer cooling

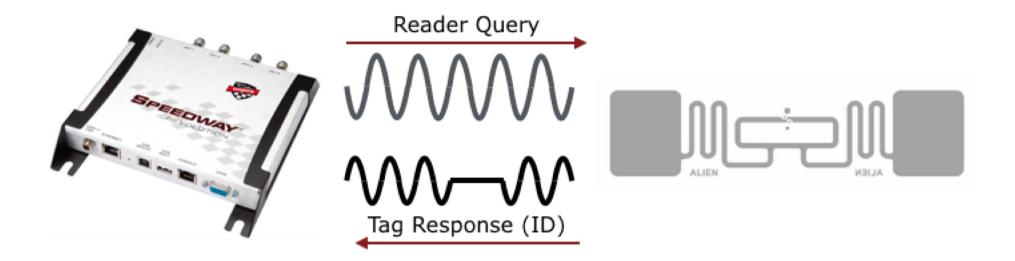
assAmherst

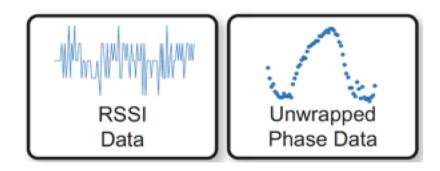
- Naturally cooled data centers
- Underground bunkers

Build them in Iceland

• Free cooling-based data centers

Invest in Iceland Agency


HOME A	BOUT US	PUBL	ICATIONS	REPORTS	NEWS	LINKS	CONTACT US	REQUEST CALL-BACK
Doing Business in Iceland		Path: News						
Investment Opportunities		25. June 2007						
» Power Sources		Iceland: Outstanding location for Data Centers						
» Energy intensive		According to a benchmarking study, by Price Waterhouse Coopers in Belgium for Invest in Iceland Age Orkuveita Reykjavíkur, Farice, Siminn, and Landsvirkjun, Iceland stands out as a location for Data Cer						
» Data Centers in Iceland								
Iceland within Reach								
Locations								
Request Call-back		Iceland can offer clean, renewable energy at a very competitive price and the study showed that						
Film in Iceland		Iceland offers lower cost for Data Centers than USA, UK and even India. This makes Iceland a very attractive location for Data Centers, and even more so if taken into account the fact that the need for cooling is substantially less in Iceland, due to a cooler climate, and that the energy in Iceland is renewable. Studies have shown that half of the energy cost of a Data Center is for cooling, making Iceland an even more ideal location. Furthermore, Iceland provides only hydro-electric and/or geothermal energy, which is renewable and therefore environmentally friendly, does not contribute to global warming, and requires no carbon credits.						



UMassAmherst

RFID Sensing:

Read rate: ~50 samples / second

Ubiquitous RFID Challenges

- 1. Routing power and communications to readers is challenging
- 2. Antennas need to be large to achieve good coverage
- 3. Antennas need line of sight to tags

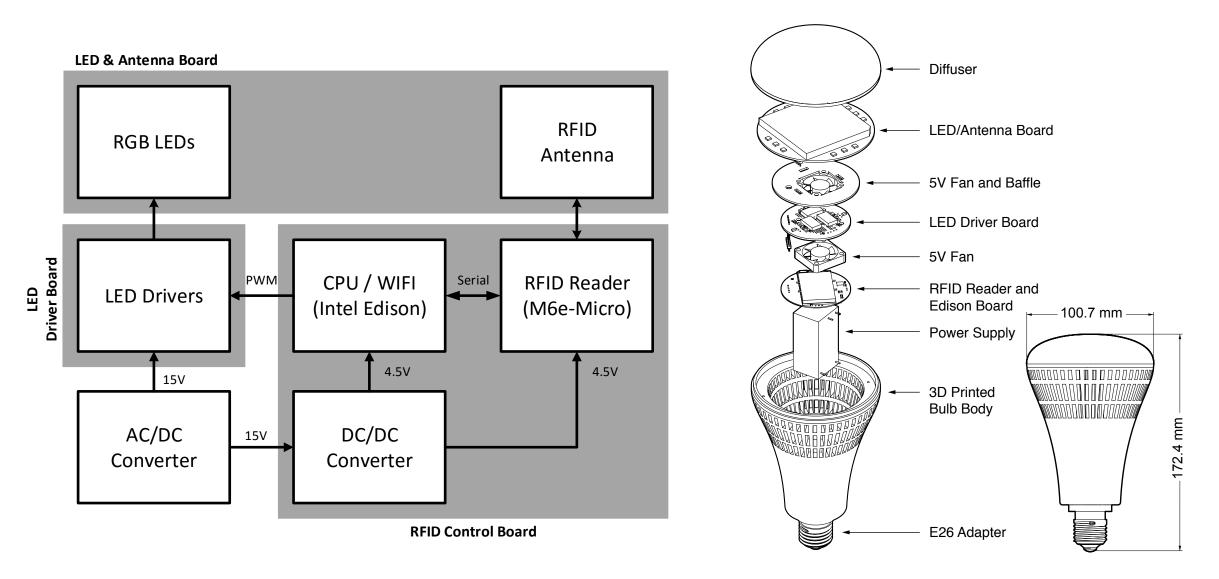
Idea: Reuse Existing Home Infrastructure

Our Solution: The RFID Light Bulb

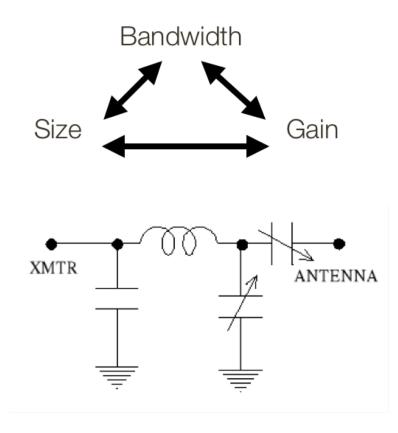
Our Solution: The RFID Light Bulb

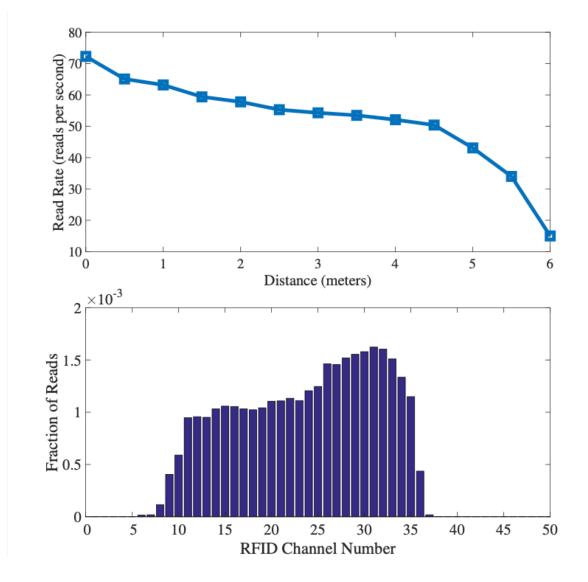
Technical Overview

1. Install light bulbs, associate with WiFi APs


2. Install tags, Register with backend

3. Interpret tag data, Actuate lighting / UI

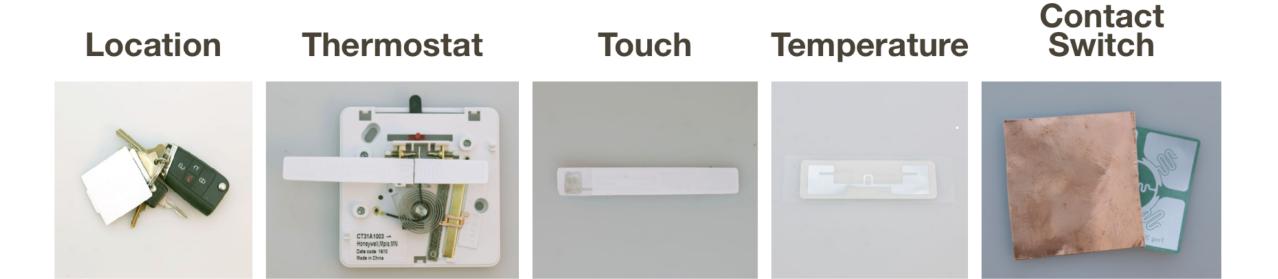

Hardware Design



Antenna Evaluation

Fundamental Tradeoff:

Lightbulb Software


RFID Server:

UDP packet stream including: <ID, RSSI, Phase, Sensor Value>

PWM Server:

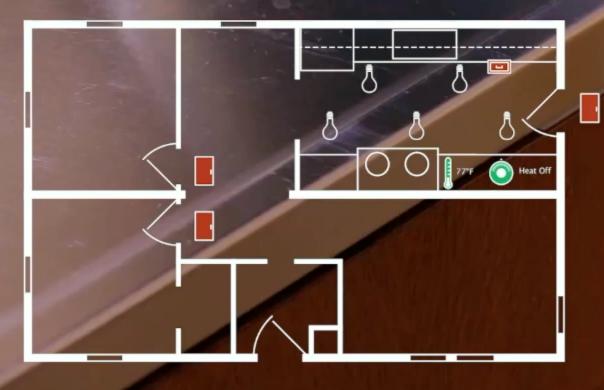
TCP Packet Containing: < Red, Green, Blue, Fadesec>

Interactive RFID Tags

Application Overview

To showcase the applications enabled by networks of RFID light bulbs, we explore three application categories that leverage the scale of coverage and immediate feedback that RFID light bulbs provide:

- 1. Navigation
- 2. Infrastructure Monitoring
- 3. Prepackaged Content



Application: Navigation

EF

7

7

Application: Infrastructure Monitoring

Application: Pre-packaged Content

11851

min

1111

Summary

assAr

- "Greening" of computing for IoT and Health Applications
 - Design of energy-efficient hardware & software
- Computing for greening
 - Use of IT for monitoring, analytics, and control
 - Use of intelligent software for power management
 - Forecasting for renewable energy harvesting
- Emerging IoT Technologies
 - Battery-free Sensing with RFID Sensors