Consistency and Replication

• Today:
 – Consistency models
 • Data-centric consistency models
 • Client-centric consistency models

Why replicate?

• Data replication versus compute replication
• Data replication: common technique in distributed systems
• Reliability
 – If one replica is unavailable or crashes, use another
 – Protect against corrupted data
• Performance
 – Scale with size of the distributed system (replicated web servers)
 – Scale in geographically distributed systems (web proxies)
Replication Issues

• When to replicate?
• How many replicas to create?
• Where should the replicas located?

• Will return to these issues later (WWW discussion)
• Today: how to maintain consistency?
• Key issue: need to maintain consistency of replicated data
 – If one copy is modified, others become inconsistent

CAP Theorem

• Conjecture by Eric Brewer at PODC 2000 conference
 – It is impossible for a web service to provide all three guarantees:
 • Consistency (nodes see the same data at the same time)
 • Availability (node failures do not the rest of the system)
 • Partition-tolerance (system can tolerate message loss)
 – A distributed system can satisfy any two, but not all three, at the same time
• Conjecture was established as a theorem in 2002 (by Lynch and Gilbert)
CAP Theorem Examples

- Consistency + Availability
 - Single database, cluster database, LDAP, xFS
 - 2 phase commit
- Consistency + partition tolerance
 - distributed database, distributed locking
 - pessimistic locking
- Availability + Partition tolerance
 - Coda, Web caching, DNS
 - leases, conflict resolution,

NoSQL Systems and CAP

Visual Guide to NoSQL Systems

- A: Availability
 - Each client can always read and write
- C: Consistency
 - All clients always have the same view of the data
- P: Partition Tolerance
 - The system works until detects physical network partitions

Data Models
- Relational (comparison)
- Key-Value
- Column-Oriented/Tabular
- Document-Oriented

Pick Two

- CA: RDBMSs (MySQL, Postgres, etc)
- AP: Dynamo, Voldemort, Tokyo Cabinet, KAI
- CP: Cassandra, SimpleDB, CouchDB, Riak
- CP: BigTable, Hypertable, Hbase
- CP: MongoDB, Terrastore, Scalans
- CP: Berkeley DB, MemcacheDB, Redis

Figure Courtesy of Nathan Hurst
Object Replication

- **Approach 1**: application is responsible for replication
 - Application needs to handle consistency issues

- **Approach 2**: system (middleware) handles replication
 - Consistency issues are handled by the middleware
 - Simplifies application development but makes object-specific solutions harder

Replication and Scaling

- Replication and caching used for system scalability

- **Multiple copies**:
 - Improves performance by reducing access latency
 - But higher network overheads of maintaining consistency
 - Example: object is replicated N times
 - Read frequency R, write frequency W
 - If $R<<W$, high consistency overhead and wasted messages
 - Consistency maintenance is itself an issue
 - What semantics to provide?
 - Tight consistency requires globally synchronized clocks!

- **Solution**: loosen consistency requirements
 - Variety of consistency semantics possible
Data-Centric Consistency Models

- Consistency model (aka *consistency semantics*)
 - Contract between processes and the data store
 - If processes obey certain rules, data store will work correctly
 - All models attempt to return the results of the last write for a read operation
 - Differ in how “last” write is determined/defined

Strict Consistency

- Any read always returns the result of the most recent write
 - Implicitly assumes the presence of a global clock
 - A write is immediately visible to all processes
 - Difficult to achieve in real systems (network delays can be variable)
Sequential Consistency

• Sequential consistency: weaker than strict consistency
 – Assumes all operations are executed in some sequential order and each process issues operations in program order
 • Any valid interleaving is allowed
 • All agree on the same interleaving
 • Each process preserves its program order
 • Nothing is said about “most recent write”

- Linearizability

 • Assumes sequential consistency and
 – If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
 – Stronger than sequential consistency
 – Difference between linearizability and serializability?
 • Granularity: reads/writes versus transactions

 • Example:
Linearizability Example

- Four valid execution sequences for the processes of the previous slide. The vertical axis is time.

\[
\begin{align*}
\text{x = 1; print ((y, z); } & \quad \text{x = 1; y = 1; print (x, z); } \quad \text{y = 1; z = 1; print (x, y); } \quad \text{y = 1; x = 1; print (y, z); } \\
\text{y = 1; print (x, z); } & \quad \text{z = 1; print (x, y); } \quad \text{z = 1; print (x, z); } \quad \text{z = 1; print (y, z); } \\
\text{z = 1; print (x, y); } & \quad \text{print (x, y); } \quad \text{print (x, y); } \quad \text{print (x, y); }
\end{align*}
\]

Prints: 001011 \quad \text{Prints: 101011} \quad \text{Prints: 010111} \quad \text{Prints: 111111}

Signature: 001011 \quad \text{Signature: 101011} \quad \text{Signature: 110101} \quad \text{Signature: 111111}

(a) \quad \text{Signature: 110101} \quad \text{Signature: 111111}

(b) \quad \text{Signature: 110101} \quad \text{Signature: 111111}

(c) \quad \text{Signature: 110101} \quad \text{Signature: 111111}

(d)

Causal consistency

- Causally related writes must be seen by all processes in the same order.
 - Concurrent writes may be seen in different orders on different machines

\[
\begin{align*}
P1: \text{W(x)a} & \quad \text{P1: W(x)a} \\
P2: & \quad R(x)b \quad W(x)b \\
P3: & \quad R(x)b \quad R(x)a \\
P4: & \quad R(x)a \quad R(x)b
\end{align*}
\]

(a) Not permitted

\[
\begin{align*}
P1: \text{W(x)a} & \quad \text{P2: W(x)b} \\
P2: & \quad R(x)b \quad R(x)a \\
P3: & \quad R(x)a \quad R(x)b \\
P4: & \quad R(x)a \quad R(x)b
\end{align*}
\]

(b) Permitted
Other models

• FIFO consistency: writes from a process are seen by others in the same order. Writes from different processes may be seen in different order (even if causally related)
 – Relaxes causal consistency
 – Simple implementation: tag each write by (Proc ID, seq #)
• Even FIFO consistency may be too strong!
 – Requires all writes from a process be seen in order
• Assume use of critical sections for updates
 – Send final result of critical section everywhere
 – Do not worry about propagating intermediate results
 • Assume presence of synchronization primitives to define semantics

Other Models

Use granularity of critical sections, instead of individual read/write

• Weak consistency
 – Accesses to synchronization variables associated with a data store are sequentially consistent
 – No operation on a synchronization variable is allowed to be performed until all previous writes have been completed everywhere
 – No read or write operation on data items are allowed to be performed until all previous operations to synchronization variables have been performed.
• Entry and release consistency
 – Assume shared data are made consistent at entry or exit points of critical sections
Summary of Data-centric Consistency Models

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict</td>
<td>Absolute time ordering of all shared accesses matters.</td>
</tr>
<tr>
<td>Linearizability</td>
<td>All processes must see all shared accesses in the same order. Accesses are furthermore ordered according to a (nonunique) global timestamp</td>
</tr>
<tr>
<td>Sequential</td>
<td>All processes see all shared accesses in the same order. Accesses are not ordered in time</td>
</tr>
<tr>
<td>Causal</td>
<td>All processes see causally-related shared accesses in the same order.</td>
</tr>
<tr>
<td>FIFO</td>
<td>All processes see writes from each other in the order they were used. Writes from different processes may not always be seen in that order</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>Shared data can be counted on to be consistent only after a synchronization is done</td>
</tr>
<tr>
<td>Release</td>
<td>Shared data are made consistent when a critical region is exited</td>
</tr>
<tr>
<td>Entry</td>
<td>Shared data pertaining to a critical region are made consistent when a critical region is entered.</td>
</tr>
</tbody>
</table>

(b)

Client-centric Consistency Models

- Assume read operations by a single process P at two different local copies of the same data store
 - Four different consistency semantics
- **Monotonic reads**
 - Once read, subsequent reads on that data items return same or more recent values
- **Monotonic writes**
 - A write must be propagated to all replicas before a successive write by the same process
 - Resembles FIFO consistency (writes from same process are processed in same order)
- **Read your writes**: read(x) always returns write(x) by that process
- **Writes follow reads**: write(x) following read(x) will take place on same or more recent version of x
Eventual Consistency

• Many systems: one or few processes perform updates
 – How frequently should these updates be made available to other read-only processes?
• Examples:
 – DNS: single naming authority per domain
 – Only naming authority allowed updates (no write-write conflicts)
 – How should read-write conflicts (consistency) be addressed?
 – NIS: user information database in Unix systems
 • Only sysadmins update database, users only read data
 • Only user updates are changes to password

Eventual Consistency

• Assume a replicated database with few updaters and many readers
• Eventual consistency: in absence of updates, all replicas converge towards identical copies
 – Only requirement: an update should eventually propagate to all replicas
 – Cheap to implement: no or infrequent write-write conflicts
 – Things work fine so long as user accesses same replica
 – What if they don’t:
Epidemic Protocols

- Used in Bayou system from Xerox PARC
- Bayou: weakly connected replicas
 - Useful in mobile computing (mobile laptops)
 - Useful in wide area distributed databases (weak connectivity)
- Based on theory of epidemics (*spreading infectious diseases*)
 - Upon an update, try to “infect” other replicas as quickly as possible
 - Pair-wise exchange of updates (*like pair-wise spreading of a disease*)
 - Terminology:
 - Infective store: store with an update it is willing to spread
 - Susceptible store: store that is not yet updated
- Many algorithms possible to spread updates

Spreading an Epidemic

- Anti-entropy
 - Server P picks a server Q at random and exchanges updates
 - Three possibilities: only push, only pull, both push and pull
 - Claim: A pure push-based approach does not help spread updates quickly (Why?)
 - Pull or initial push with pull work better
- Rumor mongering (aka gossiping)
 - Upon receiving an update, P tries to push to Q
 - If Q already received the update, stop spreading with prob $1/k$
 - Analogous to “hot” gossip items => stop spreading if “cold”
 - Does not guarantee that all replicas receive updates
 - Chances of staying susceptible: $s = e^{-k+1}(1-s)$
Removing Data

- Deletion of data items is hard in epidemic protocols
- Example: server deletes data item x
 - No state information is preserved
 - Can’t distinguish between a deleted copy and no copy!
- Solution: death certificates
 - Treat deletes as updates and spread a death certificate
 - Mark copy as deleted but don’t delete
 - Need an eventual clean up
 - Clean up dormant death certificates